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Cohomology Ring of Symplectic Quotients
by Circle Actions

Ramin Mohammadalikhani

Abstract. In this article we are concerned with how to compute the cohomology ring of a symplectic

quotient by a circle action using the information we have about the cohomology of the original mani-

fold and some data at the fixed point set of the action. Our method is based on the Tolman-Weitsman

theorem which gives a characterization of the kernel of the Kirwan map. First we compute a generating

set for the kernel of the Kirwan map for the case of product of compact connected manifolds such that

the cohomology ring of each of them is generated by a degree two class. We assume the fixed point

set is isolated; however the circle action only needs to be “formally Hamiltonian”. By identifying the

kernel, we obtain the cohomology ring of the symplectic quotient. Next we apply this result to some

special cases and in particular to the case of products of two dimensional spheres. We show that the

results of Kalkman and Hausmann-Knutson are special cases of our result.

1 Introduction

In this article we are concerned with the cohomology ring of symplectic reductions.

We would like to answer the following question: When we consider a Hamiltonian
action of a Lie group on a symplectic manifold, what would the quotient space topo-
logically look like? The interesting point is that in fact, using only the information
about the moment map at the fixed point set of the action, one can at least theoreti-

cally answer this question. The Tolman-Weitsman theorem [TW1] has now enabled
us to find the answer to our question with just the information mentioned. Kalkman
was the first who in [Ka] calculated the cohomology ring of the symplectic reduction
of a projective space by a circle action using the localization formula. However his

work was not continued further. The next attempt to understand the cohomology of
these spaces was based on other means.

Hausmann and Knutson used Danilov’s theorem to approach the problem.
Danilov’s theorem specifies the cohomology rings of all toric manifolds. In cases

where the original manifold is a toric manifold, one can show that its symplectic
quotient is a toric manifold too. One is then able to use Danilov’s theorem to find the
cohomology ring of the symplectic reduction. This is what Hausmann and Knutson
did in [HK] to calculate the cohomology ring of the symplectic quotient of a product

of two-dimensional spheres.
We know very little when the group acting on the manifold is a general compact

Lie group or even a torus. In her Ph.D. thesis, R. Goldin [G] (also see [G2]) answered
this question for the action of a torus on a coadjoint orbit of SU(n).

Later Tolman and Weitsman [TW2] generalized the results of Hausmann and
Knutson to a compact connected symplectic manifold, but they had to assume that
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the action is semi-free and the fixed point set is isolated. They found the integer co-
homology ring of Mred = µ−1(0)/S1, whenever 0 is a regular value of the moment

map. The conditions of semi-free action and the fixed point set being isolated en-
abled them to establish a correspondence between the fixed point set of the circle
action on M and that of the product of two-dimensional spheres. However to obtain
those results Tolman and Weitsman did not use their own theorem [TW1], which

already opens the way to answer the problem in more general settings. Our method
in this article is based on this key theorem. This theorem reduces the problem of
finding a generating set for the kernel of the Kirwan map

κ : H∗
T(M) → H∗

(

µ−1(0)/T
)

to some specific algebraic calculations. We are then done with the task of finding the
cohomology ring of the quotient space because

H∗
(

µ−1(0)/T
)

∼
= H∗

T(M)/ ker(κ),

due to Kirwan’s surjectivity theorem ([Ki1], 5.4) which asserts that κ is a surjective
ring homomorphism.

We would like to state the Tolman-Weitsman theorem here for the case of circle

actions on which the results of this article are based:

Theorem 1 ([TW1]) Let S1 act on a compact symplectic manifold M with moment

map µ : M → R. Assume that r is a regular value of µ. Let F denote the set of fixed

points of the action. Write M−(r) = µ−1(−∞, r) and M+ = µ−1(r, +∞). Define

K±(r) = {α ∈ H∗
S1 (M, C) : α|F∩M±(r) = 0} and K(r) = K+(r) ⊕ K−(r). Then there

is a short exact sequence:

0 → K(r) → H∗
S1 (M, C)

κ
→ H∗(Mred , C) → 0,

where κ is the Kirwan map and Mred = µ−1(r)/S1.

When r = 0 we write M±, K± and K for M±(0), K±(0) and K(0).

Remark By Remark 3.4 of [TW1], we do not need to assume that the action is

Hamiltonian. The statement still holds if the action is more generally formally Hamil-

tonian. This means there is a Morse-Bott function µ : M → t∗ = Lie(S1)∗ ∼
= R (a

formal moment map) such that the critical points of µ correspond exactly to the fixed
points of the action. Then as long as M is compact and 0 is a regular value of µ, the

theorem is true for any formal moment map.

Besides the Tolman-Weitsman theorem that we use in this article, the residue for-
mula ([JK1], [JK3]) is another powerful tool which may enable us to answer the
question even in more general cases.

For the various definitions and properties of equivariant cohomology see for ex-
ample [Au] and [BGV].
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2 Notation and Preliminaries

First let us fix our notation. Consider a compact connected manifold M whose coho-
mology ring is generated by degree two classes xi ∈ H2(M), i = 1, 2, . . . , m. Assume
the manifold is equipped with a circle action with isolated fixed points. We label the

fixed point set by F j , j = 1, 2, . . . , n. Suppose there are moment maps for the action
denoted by µi : M → R such that it xi = t dµi for all t ∈ R ∼

= t∗ = Lie(T)∗. Here
T = S1. Consider the two-form x =

∑m
i=1 xi . Corresponding to this two-form we

also have the function µ : M → R defined by µ =

∑m
i=1 µi so that it x = t dµ.

We impose the extra condition that µ does not vanish at any of the fixed points.
Now consider the equivariant cohomology algebra H∗

T(M). As a vector space it
can be written as

R = H∗
T(M) ∼= H∗

T(point) ⊗ H∗(M),

where H∗(M) ∼
= C[x1, . . . , xm]/I. Here I is the set of relations in H∗(M). Also

H∗
T(point) = C[t], the polynomial ring in the variable t .
If x̃i = xi + tµi are the equivariant extensions of the corresponding xi ’s, then we

see that x̃1, . . . , x̃m together with t generate the equivariant cohomology H∗
T(M) as a

ring. We also consider the equivariant extension x̃ = x + tµ.

The values of the moment maps at the fixed points are of great importance. We de-
note them as follows: µi(F j) = θi j so that the restriction of x̃i to the j-th component
of the fixed point set is θi j : x̃i |F j

= θi jt . Then µ(F j) =

∑m
i=1 θi j and x̃|F j

=

∑m
i=1 θi jt .

Now we would like to specify K+ and K− in the ring R. According to the Tolman-

Weitsman theorem,

K+ = {α ∈ H∗
T(M) : α|F j = 0 for all j such that µ(F j) > 0}.

Equivalently,

K+ =

{

α ∈ R : α(θ1 jt, . . . , θm jt) = 0 for all j such that µ(F j) =

m
∑

i=1

θi j > 0
}

.

The ideal K− is defined similarly with the difference that > is replaced with < in
the definition of the set. We can consider K+ and K− as the intersection of a finite

number of ideals as follows: Consider the multivariable polynomial ring

R̄ = C[t][x̃1, . . . , x̃m]

in the variables x̃i with coefficients in C[t] (the polynomial ring in one variable t with
complex coefficients). Thus H∗

T(M) is the quotient of R̄ by an ideal of relations.
For 1 ≤ j ≤ n define the ideals

I j = {α ∈ H∗
T(M) : α|F j

= 0} ∼
= {α ∈ R̄ : α(x̃1 = θ1 jt, . . . , x̃m = θm jt) = 0}

in R̄. Then K̄+ is the intersection of those I j ’s that correspond to the j’s for which the
value of the moment map µ is positive:

K̄+ =

⋂

1≤ j≤n:µ(F j )>0

I j

(

similarly K̄− =

⋂

1≤ j≤n:µ(F j )<0

I j

)

.
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In fact we know the generators of each I j . They are simply x̃1−θ1 jt, . . . , x̃m−θm jt .
The problem of classifying the intersection ideal (say by specifying a generating set) is

very hard and still open! We can solve this problem for a special case that is important
to our geometric concerns. In the next section we will explain this special case and
will show that a generating set for the intersection ideal exists such that each of its
elements is a product of proper linear terms.

3 The Main Result and Its Proof

We shall consider the special case when M is a product of compact connected sym-

plectic manifolds Mi , i = 1, 2, . . . , m, i.e., M = M1 × M2 × · · · × Mm such that the
cohomology ring of each Mi is generated by a two-form xi ∈ H2(Mi), i.e., H∗(Mi) =

〈xi〉. Consider the extensions of these forms to M by xi = 1 ⊗ · · · ⊗ xi ⊗ · · · ⊗ 1 ∈
H∗(M) =

⊗m
i=1 H∗(Mi). Each Mi is equipped with a Hamiltonian circle action with

isolated fixed points. Consider the diagonal action on M. The fixed points are la-
beled by m-tuples F = (F1 j1

, F2 j2
, . . . , Fm jm

) for all choices of 1 ≤ j i ≤ ni , where ni

is the number of the fixed points of Mi with distinct moment map value. Here Fi j

denotes the union of those fixed points of Mi whose value under the moment map

µi is θi j . Therefore j = j ′ ⇔ θi j = θi j ′ for all i, j, j ′. If the value of µi at Fi j is
denoted by θi j , then µ(F) = µ(F1 j1

, F2 j2
, . . . , Fm jm

) =

∑m
i=1 θi ji

. The restrictions of
each x̃i and x̃ to the fixed point F = (F1 j1

, F2 j2
, . . . , Fm jm

) are given by x̃i |F = θi ji
t

and x̃|F =

∑m
i=1 θi ji

t .

As usual we are concerned about the kernel of the Kirwan map: K = K+ ⊕ K−.
The following proposition is of fundamental importance to us:

Proposition 1 The ideal K̄+ has a generating set such that each generator is a product

of linear terms of the form x̃i − θi ji
t. Moreover the linear terms that appear in each

generator are mutually distinct. The same as for K̄+ is true for K̄−.

Note that here i indexes the manifolds Mi and ji indexes the fixed point set of the
i-th manifold Mi .

The proposition is an immediate consequence of the following lemma.

Lemma 1 Consider the ring R̄ = C[t][x̃1, . . . , x̃m], and consider the following finite

set F ′
= {F = (θ1 j1

t, . . . , θm jm
t) ∈ C[t]m : 1 ≤ ji ≤ ni such that θi j > θi j ′ for

j < j ′} of points in C[t]m, where the real numbers θi j and positive integers ni are given.

Define F̄+ = {(θ1 j1
t, . . . , θm jm

t) ∈ F ′ :
∑m

i=1 θi ji
> c}, where c is some fixed real

number. It is a subset of F ′. Let I+ = {α ∈ R̄ : α(F) = 0 for all F ∈ F̄+}. Then

the ideal I+ has a generating set consisting of polynomials each of which is a product of

terms of the form x̃i −θi ji
t which we will refer to as linear terms from now on. The linear

terms in each generator are mutually distinct. If we replace the condition
∑m

i=1 θi ji
> c

with
∑m

i=1 θi ji
< c, the statement is still true.

To prove this, we need the following algebraic lemma:

Lemma 2 If P(x1, . . . , xn) is a polynomial and P(a1, . . . , an) = 0, then there are

polynomials Q1, . . . , Qn in x1, . . . , xn such that P = (x1 − a1)Q1 + · · · + (xn − an)Qn.
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Proof of Lemma 2 Since P(a1, . . . , an) = 0, the Euclidean Lemma tells us that
there are polynomials Q1 and R1(x2, . . . , xn) such that P = (x1 − a1)Q1 + R1. Then

R1(a2, . . . , an) = 0. Thus, we can proceed by induction on k for Rk(ak, . . . , an), to
finally obtain P = (x1 − a1)Q1 + · · · + (xn − an)Qn + Rn, where Rn is just a number.
Then from P(a1, . . . , an) = 0, we get Rn = 0. This completes the proof of the lemma.

Proof of Lemma 1 The proof is by induction on m. To understand how the induc-
tion works, we initially discuss both cases m = 1 and m = 2, even though mathe-
matically we only need to check the case m = 1.

So assume m = 1. We show I+ is generated by one element, i.e.
∏

j:θ j>c(x̃ − θ jt).

To see this, notice that α(x̃) ∈ I+ if and only if α(F) = 0 for every F ∈ F̄+. This

means (x̃ − θ jt) divides α for each j with θ j > c. So their product also divides α,
which is what we wanted to prove.

Now consider the case m = 2 so that R̄ = C[t][x̃1, x̃2]. We arrange the points of
F̄+ in the following table:

(θ11t, θ21t) (θ12t, θ21t) · · · (θ1lt , θ21t)

...
...

...

(θ11t, θ2ml
t) (θ12t, θ2ml

t) . . . (θ1lt , θ2ml
t)

...
...

(θ11t, θ2m2
t) (θ12t, θ2m2

t)

...

(θ11t, θ2m1
t).

Here the k-th row and i-th column is (θ1it, θ2kt) for k ≤ mi . The integer mi is the

largest integer such that θ1i +θ2mi
> c and l is the largest integer such that θ1l+θ21 > c.

Notice that l ≤ n1.
Since θ11 > θ12 > · · · > θ1n1

and θ21 > θ22 > · · · > θ2n2
, then if θ1(i+1) + θ2 j > c,

we also have θ1i + θ2 j > c. Therefore m1 ≥ m2 ≥ · · · ≥ ml which is a crucial fact in

our argument.
Fix α ∈ I+. Then α(x̃1, x̃2) vanishes at all F ∈ F̄+. By Lemma 2 applied to

the first point of the first column, we see that there are polynomials p(x̃1, x̃2) and
q(x̃2) such that α(x̃1, x̃2) = (x̃1 − θ11t)p(x̃1, x̃2) + (x̃2 − θ21t)q(x̃2). Since α vanishes

at other points of the first column, we see that q(θ22t) = · · · = q(θ2m1
t) = 0, so

that (x̃2 − θ22t)(x̃2 − θ23t) · · · (x̃2 − θ2m1
t) has to divide q(x̃2). Therefore, there is a

polynomial q ′(x̃2) such that q(x̃2) = (x̃2−θ22t)(x̃2−θ23t) · · · (x̃2−θ2m1
t)q ′(x̃2). Now

by considering the vanishing of α at the first point of the second column we find that

there are polynomials p1(x̃1, x̃2) and q1(x̃2) such that

p(x̃1, x̃2) = (x̃1 − θ12t)p1(x̃1, x̃2) + (x̃2 − θ21t)q1(x̃2).
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Considering the rest of the points of the second column in the same way as what we
concluded for q(x̃2), we see that q1(x̃2) = (x̃2 − θ22t)(x̃2 − θ23t) · · · (x̃2 − θ2m2

t)q ′
1(x̃2)

for some polynomial q ′
1(x̃2). One can now write α as

α(x̃1, x̃2) = (x̃1 − θ11t)(x̃1 − θ12t)p1(x̃1, x̃2)

+ (x̃1 − θ11t)(x̃2 − θ21t) · · · (x̃2 − θ2m2
t)q ′

1(x̃2)

+ (x̃2 − θ21t) · · · (x̃2 − θ2m1
t)q ′(x̃2).

Proceeding by induction we write α as

α(x̃1, x̃2) = (x̃1 − θ11t)(x̃1 − θ12t) · · · (x̃1 − θ1lt)ql

+ (x̃1 − θ11t)(x̃1 − θ12t) · · · (x̃1 − θ1(l−1)t)(x̃2 − θ21t) · · · (x̃2 − θ2ml
t)q ′

l−1

+ · · · + (x̃1 − θ11t)(x̃2 − θ21t) · · · (x̃2 − θ2m2
t)q ′

1

+ (x̃2 − θ21t) · · · (x̃2 − θ2m1
t)q ′.

This not only completes the proof for the case m = 2, but also gives a specific list of
the generators in the form that was claimed.

Inductively assume the lemma is true for any polynomial in m−1 variables and for
any value of c, so that any two linear terms in each of the contributing products are
distinct. We then show it also holds for any polynomial in m variables and any value
of c, so that any two linear terms in each of the contributing products are distinct.

Assume α ∈ I+, so that it vanishes at the given points of C[t]m. As before we
arrange the points at which α vanishes in the following way: the first column consists
of the points (θ11t, θ2 j2

t, . . . , θm jm
t) for ( j2, . . . , jm) ∈ A1 ⊂ {1, . . . , n2} × · · · ×

{1, . . . , nm}, the second column is (θ12t, θ2 j2
t, . . . , θm jm

t) for ( j2, . . . , jm) ∈ A2, and

the last column is (θ1lt, θ2 j2
t, . . . , θm jm

t) for ( j2, . . . , jm) ∈ Al, where Ai are specified
by the definition of the set F̄+ so that

Ai = {( j2, . . . , jm) : ji ≤ ni and θ1i +

m
∑

k=2

θk jk
> c}.

Here l is the largest integer such that there is some point in F̄+ whose first coordinate

is θ1lt .
Because θ11 > θ12 > · · · > θ1l, we see that if we have θ1(i+1) +

∑m
k=2 θk jk

> c, then
we also have θ1i +

∑m
k=2 θk jk

> c. Therefore Al ⊂ Al−1 ⊂ · · · ⊂ A2 ⊂ A1.
Considering the first point of the first column we see that by the division algorithm

α(x̃1, . . . , x̃m) = (x̃1 − θ11t)p(x̃1, . . . , x̃m) + q(x̃2, . . . , x̃m) for some polynomials p

and q. Considering the rest of the points of the first column we find that q has to
satisfy q(θ2 j2

t, . . . , θm jm
t) = 0 for all ( j2, . . . , jm) ∈ A1. Consider the points in

C[t]m−1 corresponding to A1. Then θ2 j2
+ · · · + θm jm

> −θ11 + c, so that we can

apply the induction hypothesis to q and c ′ = c − θ11 and conclude that q can be
written as a linear combination of products of linear terms of the form (x̃2 − θ2 j2

t),
(x̃3 − θ3 j3

t), . . . and (x̃2 − θm jm
t), where j2, . . . , jm are specified by A1 and no linear

term appears twice in each resulting product.
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Next considering the second column, we find polynomials p1 and q1 such that
p(x̃1, . . . , x̃m) = (x̃1 − θ12t)p1(x̃1, . . . , x̃m) + q1(x̃2, . . . , x̃m). Because A2 ⊂ A1, we

see that q1(θ2 j2
t, . . . , θm jm

t) = 0 for all ( j2, . . . , jm) ∈ A2. So q1 is a combination of
products of linear terms by the induction hypothesis so that no linear term appears
twice in each resulting product. One can now write α as

α = (x̃1 − θ11)(x̃1 − θ12)p1 + (x̃1 − θ11)q1 + q.

Note that the term (x̃1−θ11) does not appear anywhere in q1(x̃2, . . . , x̃m), so that after
multiplying by it in each term of q1, the linear terms that appear in each resulting

product are still mutually distinct.

Proceeding inductively on the columns we obtain polynomials q, q1, q2, . . . , all of
which are combinations of products of linear terms, so that eventually α can also
be written in this way with the same property that the linear terms in each resulting
product are mutually distinct.

If the condition in the definition of F̄+ is
∑m

i=1 θi ji
< c, we simply need to write

the table of the points of F̄− in reverse order so that the points corresponding to the
largest indices appear at the top of the table. Then because θ11 > θ12 > · · · > θ1l, we
see that for each i if θ1i +

∑m
k=2 θk jk

< c, then also θ1(i+1) +
∑m

k=2 θk jk
< c. Therefore

A1 ⊂ A2 ⊂ · · · ⊂ Al. We then need to start the argument from the index l proceeding

down to 1. The rest of the proof is the same. This finishes the proof of the lemma.

Let us return to geometry and the case of the product of manifolds. We shall give a
specific representation of some generating sets of K̄+ and K̄− which are of the specific

form described in Lemma 1.

For simplicity and convenience we relabel the fixed point set in the following way:

Consider A := N1 × N2 × · · · × Nm, where Ni = {1, . . . , ni}. Then we have a
one-to-one correspondence between the components of the fixed point set on which
the value of the moment map is the same and the elements of A:

F = F( J) = (F1 j1
, F2 j2

, . . . , Fm jm
) ∼ J = ( j1, j2, . . . , jm) ∈ A.

Definition 1 We define the long elements of A as members of the set

L =

{

J ∈ A | µ
(

F( J)
)

> 0
}

,

and short elements as members of the set

S =

{

J ∈ A | µ
(

F( J)
)

< 0
}

.

Consider the projections

{

Pi : A → Ni

Pi( j1, . . . , ji , . . . , jm) = ji

1 ≤ i ≤ m.
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Definition 2 We call a collection {Ai}1≤i≤m where Ai ⊂ Ni a covering of L (re-
spectively, S), if

L ⊂

m
⋃

i=1

P−1
i (Ai)

(

respectively S ⊂

m
⋃

i=1

P−1
i (Ai)

)

.

We call it a minimal covering if, whenever we drop just one element from one of the

Ai ’s, it will no longer be a covering of L (respectively, S).

Notice that some of the Ai ’s may be empty sets and P−1
i (Ai) = N1 ×· · ·×Ni−1 ×

Ai × Ni+1 × · · · × Nm.

Consider the composition of the map

C[t, x̃1, . . . , x̃m]
η
→ H∗

T(M, C)

with

H∗
T(M, C)

κ
→ H∗(Mred , C).

Let K̄+ and K̄− denote the preimages under η of K+ and K− defined in Theorem 1.
Now we are ready to state our main result:

Theorem 2 Consider the case of products of compact connected manifolds such that

the cohomology of each of them is generated by a degree-two form.

(i) The following family of classes of equivariant forms belongs to and generates K̄+:

(1)
{

∏

1≤i≤m

∏

ji∈Ai

(x̃i − θi ji
t) : Ai is a minimal covering of L

}

.

(ii) The following family of classes of equivariant forms belongs to and generates K̄−:

(2)
{

∏

1≤i≤m

∏

ji∈Ai

(x̃i − θi ji
t) : Ai is a minimal covering of S

}

.

Remark The minimality condition was added to avoid some extra terms which do

not contribute to generating K̄+ or K̄−.

Proof By Lemma 1, K̄+ has a set of generators that are products of distinct linear
terms. Moreover the lemma precisely specifies these linear terms: x̃i − θi ji

t , where
the θi ji

t are the components of the points in C[t]m at which the elements of K̄+ vanish.

There are a finite number of polynomials that can be written in this form. Consid-
ering all possible choices there are a total of 2n1n2···nm polynomials made out of these
linear terms so that no linear term appears more than once. So we have the task of
separating all those that belong to K̄+ and giving an adequate set of generators for it.
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Clearly every element of (5) vanishes at F( J) for all J ∈ L. Assume α ∈ K̄+

is a product of the linear terms specified. We show that α is a multiple of some

polynomial in the class (5). This means the class of polynomials (5) form a generating
set for K̄+.

To show this for each i, define the sets Bi as Bi = { ji : (x̃i − θi ji
t) divides α}.

Then {Bi}i≤m is a covering of L, since α ∈ K̄+, hence α should vanish at F( J) for
all J ∈ L. Then α =

∏

1≤i≤m

∏

ji∈Bi
(x̃i − θi ji

t). This covering does not have to be

a minimal one. However it is clear that every covering has a minimal sub-covering,
i.e., a minimal covering {Ai}i≤m such that Ai ⊂ Bi for each i. Then the polynomial
in (i) corresponding to this minimal covering is a divisor of α so that the classes (5)
corresponding to minimal coverings suffice to form a generating set for K̄+. This

finishes the proof of (i).

The proof of (ii) is similar.

4 Examples

Example 1 Consider the projective space M = CPn equipped with a circle action
with weights m1, . . . , mn so that g · [z0 : · · · :zn] = [gm0 z0 : · · · :gmn zn] for g ∈ S1 and

[z0 : · · · :zn] ∈ CPn. This action is Hamiltonian with the moment map µ : CPn → R;

[z0 : · · · :zn] 7→
∑

i mi zi z̄i
∑

i zi z̄i
. The fixed points of this action are Fi = [0 : · · · : 1 : · · · : 0]

where 1 is in the i-th position.

Kalkman [Ka] used the localization formula to find the cohomology ring of the

symplectic quotient µ−1(0)/S1. As we show this is a special case of Theorem 2:

The cohomology ring of CPn is generated by the degree-two class of the sym-
plectic form x ∈ H2(CPn). Define x̃ as before. Also L = {i | µ(Fi) > 0} and
S = {i | µ(Fi) < 0}. By Theorem 2, the polynomials P =

∏

i∈L

(

x̃ − µ(Fi)t
)

and Q =

∏

i∈S

(

x̃ − µ(Fi)t
)

(families (1) and (2) of Theorem 2) generate K̄+ and
K̄− respectively. They correspond to the minimal coverings {L} and {S} of L and S

respectively. This result is the content of Theorem 5.2 in [Ka].

Example 2 Now consider the product of two projective spaces M = CPk × CPl with
symplectic forms x1 and x2 and a circle acting on both with weights m0, . . . , mk and
n0, . . . , nl and moment maps µ1 and µ2. Suppose we have ordered the weights so
that m0 > m1 > · · · > mk and n0 > n1 > · · · > nl. Then N1 = {0, . . . , k} and

N2 = {0, . . . , l}. Consider the diagonal circle action on M and assume 0 is a regular
value of the moment map µ = µ1 + µ2 on M so that mi + n j 6= 0 for all 0 ≤ i ≤ mk

and 0 ≤ j ≤ nl, since this is the value of µ on the fixed point with 1 in the i-th
place in CPk and in the j-th place in CPl and 0 everywhere else. Note that in the

notation of Theorem 2, θ1i = mi and θ2 j = n j . Following the explanation in the
proof of Lemma 1 (the case m = 2 in the notation of that lemma) we see that there
are integers q and l0, . . . , lq (specified by the weights of the actions on CPk and CPl)
such that q ≤ k, l ≥ l0 ≥ l1 ≥ · · · ≥ lk, and for 0 ≤ i ≤ q, mi +n j > 0 for 0 ≤ j ≤ li .

By Theorem 2 and in the notation of that theorem, we obtain the following classes
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that generate K̄+:

(x̃1 − m0t)(x̃1 − m1t) · · · (x̃1 − mqt),

(x̃1 − m0t)(x̃1 − m1t) · · · (x̃1 − mq−1t)(x̃2 − n0t) · · · (x̃2 − nlqt),

...

(x̃1 − m0t)(x̃2 − n0t) · · · (x̃2 − nl1t),

(x̃2 − n0t) · · · (x̃2 − nl0t).

Likewise we obtain classes of the above form which generate K̄−, with the only differ-
ence that now, we have them for q ′ ≤ i ≤ k, mi + n j < 0 and for l ′i ≤ j ≤ l, for some
q ′ and l ′q ′ , . . . , l ′l that are specified by the weights. Then H∗(Mred ) ∼

= C[t, x̃1, x̃2]/I,
where I is the ideal generated by the two families of classes introduced in the example.

Example 3 As the next example we would like to consider the case of the product of
m spheres of radii r1, . . . , rm and the diagonal circle action. The result for this case
was first obtained by Hausmann and Knutson [HK]. They however had a different

approach.

So M = S2
r1
×· · ·×S2

rm
and x j is the symplectic form of the j-th sphere. The group

G is SU(2) or SO(3) acting diagonally on M and T = U (1) is its maximal torus acting
by rotation around a fixed axis, say the z-axis on each sphere. The fixed point set of

the circle action on M is then F = {(i1r1k̂, . . . , imrmk̂) | i j = ±1, 1 ≤ j ≤ m},

where k̂ is the unit vector in the z-axis direction. The moment map of the j-th sphere
is µ j : S2

r j
→ R; µ j(x j , y j , z j) = z j .

We label the fixed point set in the following way: Let A = {1, . . . , m} and J ⊂
A an arbitrary subset and consider the following fixed point associated to J, F J =

(i1r1k̂, . . . , imrmk̂), where i j = 1 if j ∈ J and i j = −1 if j /∈ J.

The restriction of each x̃ j to F J is given by

x̃ j |F J
=

{

r jt if j ∈ J

−r jt if j /∈ J,

and the value of the moment map µ at F J is µ(F J) =

∑

j∈ J r j−
∑

j /∈ J r j . We assume 0
is a regular value of the moment map so that µ(F J) 6= 0 for all fixed points F J.

Definition 3 The set J ⊂ A is called long if µ(F J) > 0, otherwise it is called short.
The set of all long subsets of A is denoted by L, and that of short subsets is denoted

by S.

Therefore J ∈ A is long if and only if
∑

j∈ J r j >
∑

j /∈ J r j .

For every subset J of A define P J =

∏

j∈ J(x̃ j − r jt) and Q J =

∏

j∈ J(x̃ j + r jt)
in the equivariant cohomology ring of M. These are polynomials in the variables x̃ j .
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Consider the following families of classes of polynomials in H∗
S1 (M):

(3)

(i) (x̃ j − r jt)(x̃ j + r jt), j ∈ A

(ii) P J, J ⊂ A long

(iii) Q J, J ⊂ A long

Theorem 3 Let M =

∏

i S2
ri

and K̄+ and K̄− be the preimages under η in

C[t, x̃1, . . . , x̃m] defined above. Then

(a) The families (i) and (ii) together form a set of generators of K̄+.

(b) The families (i) and (iii) together form a set of generators of K̄−.

Corollary 1 The cohomology ring of Mred can be written as

H∗(Mred ) ∼= C[t, x̃1, . . . , x̃m]/I,

where I is the ideal generated by the families (i), (ii) and (iii) in (2).

Proof of Theorem 3 Let Ni = {1, 2}, θi1 = −ri , θi2 = ri and let the long/short
subsets defined in Definition 3 correspond to the long/short elements defined in Def-
inition 1. Fix 1 ≤ j ≤ m and define A j = N j = {1, 2} and Ai = ∅ if i 6= j. Then
A = N1 × · · · × Nm ⊂ P−1

j (A j), hence {Ai}1≤i≤m is a covering of both L and S,

clearly a minimal one in the notation of Theorem 2. The classes (1) and (2) in The-
orem 2 corresponding to this minimal covering are both (x̃ j − r jt)(x̃ j + r jt) which is
(i) in the collection (3).

Next suppose L is a long element of A, define Ai = {2} if Pi(L) = 2 and ∅

otherwise. To proceed, we need to show that any two long subsets have nonempty
intersection. In fact if J and L are long and J ∩ L = ∅, then

∑

j∈ J r j >
∑

j /∈ J r j and
∑

j∈L r j >
∑

j /∈L r j and therefore

∑

j∈L

r j >
∑

j /∈L

r j =

∑

j∈ J

r j +
∑

j /∈ J∪L

r j ≥
∑

j∈ J

r j >
∑

j /∈ J

r j =

∑

j∈L

r j +
∑

j /∈ J∪L

r j >
∑

j∈L

r j ,

which is a contradiction. Consequently {Ai}1≤i≤m is a covering of L. If J is another
long element, there is some i such that Pi( J) = Pi(L) = {2}, hence J ∈ P−1

i (Ai).

The corresponding class in (1) is then the class PL in the collection (3) where here L

denotes the long subset corresponding to the long element being considered. If S is a
short element, using its long counterpart L (in terms of the subsets L = A − S), we
obtain the class QL in (3)(iii).

The elements of the family (iii) in (3) look different from those of the third family
introduced in Theorem 6.4 in [HK]. They are the same when the coefficient ring is
C. To see this start from the families (3) in Theorem 3 and write u j = x̃ j/r j . The

families (i) and (ii) can be written in terms of u j :

(x̃ j + r jt)(x̃ j − r jt) = r2
j (u j + t)(u j − t)
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and
PL =

∏

j∈L

(x̃ j − r jt) =

(

∏

j∈L

r j

)

∏

j∈L

(x̃ j/r j − t) = λL

∏

j∈L

(u j − t)

where λL = (
∏

j∈L r j). Every QL for L ∈ L can be rewritten as

QL =

∏

j∈L

(x̃ j +r jt) = λL

∏

j∈L

(u j +t) = λL

∏

j∈L

(u j−t+2t) = λL

∑

J⊂L

∏

j∈ J

(u j−t)(2t)|L− J|.

But the long subsets of L have already been included in the second family (ii), hence
we can drop the terms corresponding to J ⊂ L, J ∈ L in the last expression to obtain

the classes λL

∑

S⊂L,S∈S

∏

j∈S(u j − t)(2t)|L−S|. After dropping the scalar multiples r2
j

and λL the new families still generate K̄+ and K̄−.
The families introduced in Theorem 3 still do not perfectly match with those in

Theorem 6.4 in [HK] which in fact are finer than ours.
We need to extend our notation: let Am = {1, . . . , m}. Consider r = rm in

Theorem 1. Define L(rm) = {L ⊂ Am−1 :
∑

L r j −
∑

Am−1−L r j > rm}, and S(rm) =

{S ⊂ Am−1 :
∑

S r j −
∑

Am−1−S r j < rm}. Consider the following families:

(i) ′ (u j − t)(u j + t), j ∈ Am−1

(ii) ′ P ′
J =

∏

j∈L(u j − t), J ∈ L(rm)

(iii) ′ Q ′
J =

∑

S⊂L,S∈S

∏

j∈S(u j − t)(2t)|L−S|, J ∈ L(rm),

where u j = x̃ j/r j and λL =

∏

j∈L r j as in Remark (1). Then rm is a regular value of
the moment map for the abelian polygon space which is defined as

M =

m−1
∏

i=1

S2
ri
//rm

SO2 .

Corollary 2 Consider K̄+(rm) and K̄−(rm) for the abelian polygon space. Then

(a) The families (i) ′ and (ii) ′ together form a set of generators of K̄+(rm).

(b) The families (i) ′ and (iii) ′ together form a set of generators of K̄−(rm).

The proof is the same as that of Theorem 3 adding the comments that we gave
after the proof of that theorem.

The following corollary is Theorem 6.4 in [HK] when the coefficient ring is C:

Corollary 3 For the abelian polygon space, K̄(rm) is generated by the families (i) ′ ′,
(ii) ′ ′ and (iii) ′ ′ which are defined as follows:

(i) ′ ′ (u j − t)(u j + t) j ∈ Am−1

(ii) ′ ′ P ′ ′
L =

∏

j∈L(u j − t) L ∈ Lm

(iii) ′ ′ Q ′′
L =

∑

S⊂L,S∈Sm

∏

j∈S(u j − t)(2t)|L−S| L ∈ P(Am−1) ∩ L.

Here P(Am−1) is the set of all subsets of Am−1, and Lm and Sm are defined as Lm =
{

L ⊂ Am−1 : L ∪ {m} ∈ L
}

, and Sm =

{

S ⊂ Am−1 : S ∪ {m} ∈ S
}

.
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Proof The argument used after the proof of Theorem 3 applies here too to show that
the classes Q J in (iii) ′ can be replaced by (iii) ′ ′ ′

∑

S⊂L,S∈S(rm)

∏

j∈S(u j − t)(2t)|L−S|

for J ∈ L(rm), which together with (i) ′ and (ii) ′ still generate K̄(rm).
Then, notice that L(rm) ⊂ L∩P(Am−1) ⊂ Lm, hence the families (ii) ′ ′ and (iii) ′ ′

are larger than the families (ii) ′ and (iii) ′ ′ ′ respectively. Furthermore this allows us to
remove some of the terms in the elements in (iii) ′ ′ ′ to obtain the elements in (iii) ′ ′.
In fact consider a term in a class in (iii) ′ ′ ′ corresponding to some S ∈ S(rm) − Sm.

This means S ∪ {m} ∈ L, hence S ∈ Lm. Thus the term corresponding to this S

has already been considered in (ii) ′ ′. This establishes that the new families suffice to
generate K̄(rm).

Remark The classes V j and R in Theorem 6.4 in [HK] correspond to our classes
u j − t and 2t respectively.
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