SMOOTH FAMILIES OF FIBRATIONS AND ANALYTIC SELECTIONS OF POLYNOMIAL HULLS

MIRAN ČERNE

Constructed are strictly increasing smooth families $\Sigma^t \subseteq \partial D \times \mathbb{C}^2$, $t \in [0,1]$, of fibrations over the unit circle with strongly pseudoconvex fibers all diffeomorphic to the ball $\overline{B^4}$ such that there is no analytic selection of the polynomial hull of Σ^0 and which end at the product fibration $\Sigma^1 = \partial D \times \overline{B^4}$. In particular these examples show that the continuity method for describing the polynomial hull of a fibration over ∂D fails even if the complex geometry of the fibers is relatively simple.

1. INTRODUCTION

Let \mathcal{P}_n be the algebra of holomorphic polynomials in n complex variables and let $X \subseteq \mathbb{C}^n$ be a compact subset of the complex space \mathbb{C}^n . The polynomial hull \hat{X} of X is defined as

$$\widehat{X} := \{z_o \in \mathbf{C}^n; |p(z_o)| \leq \sup_{z \in X} |p(z)|, p \in \mathcal{P}_n\} .$$

Let $D \subseteq C$ be the unit disc in the complex plane C and let ∂D be its boundary, the unit circle in C. An H^{∞} analytic disc with boundary in X is an H^{∞} mapping $h: D \to \mathbb{C}^n$ such that

 $h(\xi) \in X$ almost everywhere $dm(\xi)$,

where $dm(\xi)$ stands for the Lebesgue measure on ∂D . By the maximum principle it follows immediately that if h is an H^{∞} analytic disc with boundary in X, then the whole disc h(D) lies in the polynomial hull \hat{X} of X, that is, $h(D) \subseteq \hat{X}$. It is a classical result by Stolzenberg, [10], that it is not always the case that the set $\hat{X} \setminus X$ can be given as the union of the H^{∞} analytic discs with boundaries in X. Later Wermer, [11], refined Stolzenberg's example and constructed a fibration over the unit circle ∂D with fibers in \mathbf{C} with the same property.

Received 20th September, 1994

I would like to thank my thesis advisor prof. Franc Forstneric for many stimulating discussions, helpful suggestions and constant encouragment. This work was supported in part by a grant from the Ministry of Science and Technology of the Republic of Slovenia.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 \$A2.00+0.00.

On the other hand there is a series of papers [1, 4, 5, 7, 8, 9] on the polynomial hull of a fibration

$$X := \bigcup_{\xi \in \partial D} \{\xi\} \times X_{\xi} \subseteq \partial D \times \mathbf{C}^n$$

over ∂D , which show that in the case the geometry of the fibers X_{ξ} , $\xi \in \partial D$, is tame, that is, arbitrary dimension n and all fibers are geometrically convex [1, 4, 7, 9] or n = 1 and the fibers are only connected and simply connected [5, 8], one can describe the polynomial hull of X as the union of the graphs $\{(z, h(z)); z \in D\}$ of the H^{∞} analytic discs h in \mathbb{C}^n for which

 $h(\xi) \in X_{\xi}$ almost everywhere $dm(\xi)$.

A disc h of this kind is called an *analytic selection* of the polynomial hull of X. An example by Helton and Merino, [6], shows that the condition on the fibers to be only connected and simply connected is not enough for the same result to hold for $n \ge 2$. Namely, they found an example of a fibration X over ∂D with connected and simply connected fibers in \mathbb{C}^2 , whose polynomial hull \hat{X} is nontrivial, but there is no graph of an H^{∞} analytic disc whose boundary lies in X.

All proofs of the above positive results for $n \ge 2$ are essentially based on a very clever use of the Hanh-Banach theorem and are, therefore, linear (convex) in their nature. One could hope that exploiting the complex geometry of the fibers X_{ξ} , $\xi \in \partial D$, one could still get some positive results on the description of the polynomial hull of Xas Forstnerič did in [5] in the case of one dimensional fibers. See also [8]. In this paper we give two examples, inspired by the example by Helton and Merino, [6], which show that the so called continuity method for describing the polynomial hull of a fibration over ∂D , which was so successfully used by Forstnerič for n = 1, [5], fails even in the case the complex geometry of the fibers is simple. See also [2].

THEOREM 1.1. There exists a smooth family of fibrations

$$\Sigma^t := igcup_{\xi\in\partial D} \{\xi\} imes \Sigma^t_{\xi}, \quad (t\in[0,1])$$

in $\partial D \times \mathbf{C}^2$ with the following properties:

- 1. for all $t \in [0,1]$ and for all $\xi \in \partial D$ the interiors Ω_{ξ}^{t} of the fibers Σ_{ξ}^{t} are strongly pseudoconvex domains in \mathbb{C}^{2} with smooth boundaries, all diffeomorphic to the ball and such that $\overline{\Omega_{\xi}^{t}} = \Sigma_{\xi}^{t}$,
- 2. all fibers of the fibration Σ^1 are Euclidean balls in \mathbb{C}^2 ,
- 3. the family is strictly increasing in the sense that for all $\xi \in \partial D$ and for all pairs $t, \tau \in [0, 1]$, $t < \tau$, the inclusion

$$\Sigma^t_{\boldsymbol{\xi}} \subseteq \Omega^{ au}_{\boldsymbol{\xi}}$$

holds,

4. the fibration Σ^0 has the property that its polynomial hull is nontrivial, but there is no H^{∞} analytic selection of the fibration Σ^0 .

THEOREM 1.2. There exists a smooth family of fibrations

$$\Sigma^t := \bigcup_{\boldsymbol{\xi} \in \partial D} \{\boldsymbol{\xi}\} \times \Sigma^t_{\boldsymbol{\xi}}, \quad (t \in [0, 1])$$

in $\partial D \times \mathbb{C}^2$ with the properties (1), (2) and (3) of Theorem 1 and with the additional properties:

- 4. for every $t \in [0,1]$ and for every $\xi \in \partial D$ there is a fixed small open ball B_o included in the interior Ω_{ξ}^t of all fibers Σ_{ξ}^t ,
- 5. there is a point z_o in the polynomial hull of Σ^0 , $z_o \notin \Sigma^0$, through which there is no graph of an H^{∞} analytic selection of Σ^0 .

2. BLOWING UP AN ARC

In this section we prove the following proposition.

PROPOSITION 2.1.

Let γ be a smooth arc in $\mathbb{R}^2 \subseteq \mathbb{C}^2$. Then there exists a smooth strictly plurisubharmonic function $\tilde{\rho}$ on \mathbb{C}^2 such that

- (a) $\gamma = \{z \in \mathbf{C}^2; \widetilde{\rho}(z) = 0\} = \{z \in \mathbf{C}^2; \nabla \widetilde{\rho}(z) = 0\}$ and
- (b) there exists C > 0 such that for every $c \ge C$ the level set $\{z \in \mathbb{C}^2; \tilde{\rho}(z) = c\}$ is an Euclidean 3-sphere.

PROOF: Let f be any smooth nonnegative function on \mathbb{R}^2 such that

- (a) the zero set of f and the zero set of the gradient ∇f are both equal to γ and
- (b) there exists an $r_o > 0$ such that $f(x_1, x_2) = x_1^2 + x_2^2$ for $x_1^2 + x_2^2 \ge r_o^2$.

Here the coordinates in $\mathbf{R}^2 \subseteq \mathbf{C}^2$ are x_1, x_2 and the coordinates in \mathbf{C}^2 are $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$. For $\lambda > 0$ we define

$$ho_\lambda(z_1,z_2)=f(x_1,x_2)+\lambdaig(y_1^2+y_2^2ig)$$

Then

- (1) the zero set of ρ_{λ} and the zero set of $\nabla \rho_{\lambda}$ are both equal to the arc γ and
- (2) the Levi form of the function ρ_{λ} is

$$L(\rho_{\lambda}) := \frac{1}{4} \begin{pmatrix} f_{\boldsymbol{x}_1 \boldsymbol{x}_1} + 2\lambda & f_{\boldsymbol{x}_1 \boldsymbol{x}_2} \\ f_{\boldsymbol{x}_1 \boldsymbol{x}_2} & f_{\boldsymbol{x}_2 \boldsymbol{x}_2} + 2\lambda \end{pmatrix},$$

where the notation $f_{x_ix_j}$ stands for the second partial derivative of the function f with respect to x_i and x_j , i, j = 1, 2.

Condition (b) on the function f ensures that if λ is large enough, the function ρ_{λ} is strictly plurisubharmonic on \mathbb{C}^2 . We fix such a λ and denote the function ρ_{λ} by ρ .

Let $\chi : \mathbf{R} \to [0,1]$ be a smooth function whose support is contained in the interval $[-1, (r_o + 2)^2]$ and which equals 1 on the closed interval $[0, (r_o + 1)^2]$. Also, let g be a smooth nonnegative function on R such that

(1)
$$g(x) = 0$$
 for $x \leq r_o^2$,

(2) g'(x) > 0 and $g''(x) \ge 0$ for $x > r_o^2$, (3) $\rho(z)\chi'(|z|^2) + g'(|z|^2) \ge 0$ for every $z \in \mathbb{C}^2$.

For $\varepsilon \in (0,1)$ we define

$$\widetilde{
ho}_{arepsilon}(z)=arepsilon\chi\Big({\leftert z
ight
vert}^{2}\Big)
ho(z)+g\Big({\leftert z
ight
vert}^{2}\Big)\quadig(z\in\mathbf{C}^{2}ig)\;.$$

If ε is small enough, the function $\tilde{\rho}$ is strictly plurisubharmonic on \mathbb{C}^2 and its zero set is the arc γ . We fix such an ε and denote the corresponding function by $\tilde{\rho}$. Thus the proposition will be proved once we prove the following lemma.

LEMMA 2.1. The zero set of the gradient $\nabla \tilde{\rho}$ is the arc γ .

PROOF: Let $z^{o} = (x_{1}^{o} + iy_{1}^{o}, x_{2}^{o} + iy_{2}^{o})$ be a point where the gradient $\nabla \tilde{\rho}$ is zero. We consider the following three cases:

1. Case $|z^o| < r_o$. Then $\tilde{\rho} = \varepsilon \rho$ in a neighbourhood of the point z^o and thus $z^{o} \in \gamma$.

2. Case $|z^{o}| > r_{o} + 2$. Then $\widetilde{\rho}(z) = g(|z|^{2})$ in a neighbourhood of the point z^{o} . Since g'(x) > 0 for $x > r_o^2$, we get a contradiction.

3. Case $r_o \leq |z^o| \leq r_o + 2$. The y components of the gradient $\nabla \tilde{\rho}$, that is, the derivatives of $\tilde{\rho}$ with respect to y_1 and y_2 at the point z are equal to

$$rac{\partial \widetilde{
ho}}{\partial y_j}(z) = 2\Big(\lambda arepsilon \chi \Big(|z|^2 \Big) + arepsilon
ho(z) \chi' \Big(|z|^2 \Big) + g' \Big(|z|^2 \Big) \Big) y_j \quad (j=1,2) \; .$$

Therefore, if $\nabla \tilde{\rho}(z^o) = 0$, one concludes that since

(1)
$$\lambda \varepsilon \chi (|z|^2) + \varepsilon \rho(z) \chi' (|z|^2) + g' (|z|^2) > \varepsilon (\rho(z) \chi' (|z|^2) + g' (|z|^2)) \ge 0$$

on C^2 , it follows

$$y_1^o = y_2^o = 0 \ .$$

Our initial assumption (b) on the function f and the fact that $|z^o| \ge r_o$ imply

$$f_{x_1}(x_1^o, x_2^o) = 2x_1^o$$
 and $f_{x_2}(x_1^o, x_2^o) = 2x_2^o$.

Polynomial hulls

The x components, that is, the derivatives with respect to x_1 and x_2 variables, of the equation $\nabla \tilde{\rho}(z^o) = 0$, together with (1) give

$$x_1^o = x_2^o = 0$$

Hence also the assumption $r_o \leq |z^o| \leq r_o + 2$ leads to a contradiction and the lemma, thus also the proposition, is proved.

A more geometric interpretation of the above proposition is that for every simple arc γ in $\mathbb{R}^2 \subseteq \mathbb{C}^2$ there exists a smooth family of strictly pseudoconvex domains

$$\Omega_t := \{z \in {old C}^2; \widetilde{
ho}(z) < t\} \quad (t \in (0,\infty)) \in$$

in \mathbb{C}^2 with smooth boundary which starts at γ , is strictly increasing in the sense that for each pair of parameters $t < \tau$ the domain Ω_t is compactly included in the domain Ω_{τ} and which ends at some large Euclidean ball. Observe also that since the gradient $\nabla \tilde{\rho}$ is nonzero except on γ all the domains Ω_t , $t \in (0, \infty)$, are topological cells.

REMARK 2.1. If one is given a smooth family of simple arcs γ_{ξ} , $\xi \in \partial D$, in $\mathbf{R}^2 \subseteq \mathbf{C}^2$, then one can choose a smooth family of smooth functions f_{ξ} , $\xi \in \partial D$, satisfying conditions (a) and (b) for each $\xi \in \partial D$. Since the set of parameters is compact, the functions χ and g and the constants λ and ε can be chosen uniformly, that is, independent of the parameter $\xi \in \partial D$, and the corresponding strictly plurisubharmonic functions $\tilde{\rho}_{\xi}(z)$ vary smoothly in both variables ξ and z.

REMARK 2.2. The above construction can be applied to any arc γ in \mathbb{C}^2 for which there exists a holomorphic automorphism Φ of \mathbb{C}^2 such that $\Phi(\gamma) \subseteq \mathbb{R}^2$.

3. FIRST FAMILY OF FIBRATIONS

We consider now the following family of arcs in $\mathbf{R}^2 \subseteq \mathbf{C}^2$. Let γ_1 be the semicircle in \mathbf{R}^2 given by the equation

$$x_1^2 + x_2^2 = 1$$
, $x_2 \ge 0$.

For $\xi \in \partial D$ we denote by R_{ξ} the map

$$R_{\ell}: \mathbf{C}^2 \longrightarrow \mathbf{C}^2$$

defined by

$$R_{\xi}(z_1, z_2) := (\xi z_1, z_2)$$
.

Observe that R_{ξ} is a linear isomorphism of \mathbb{C}^2 . For $\xi \in \partial D$ such that $0 \leq \arg(\xi) \leq \pi/2$ or $(3\pi)/2 \leq \arg(\xi) \leq 2\pi$ let

$$\gamma_{\xi} := \gamma_1$$

M. Černe

and for the parameters $\xi \in \partial D$ such that $\pi/2 < \arg(\xi) < (3\pi)/2$ we smoothly perturb the initial arc γ_1 to get arcs γ_{ξ} which do not pass through the point (0,1) but they still pass through the points (1,0) and (-1,0). For instance, for $\xi = e^{is}$ one may take γ_{ξ} to be defined by the equation

$$(1-\varrho(s))^2 x_1^2 + x_2^2 = (1-\varrho(s))^2 , \quad x_2 \ge 0 ,$$

where $\rho : \mathbf{R} \to [0,1)$ is any smooth function whose support is the interval $[\pi/2, (3\pi)/2]$. We define

$$\widetilde{\gamma}_{m{\xi}} := R_{\sqrt{m{\xi}}}(\gamma_{m{\xi}}) \; .$$

Here by $\sqrt{\xi}$ we mean the principal branch of the square root, that is, $\sqrt{-1} = i$. Since we have $\gamma_{\xi} = \gamma_1$ in a neighbourhood of $\xi = 1$ and since the arc γ_1 is symmetric with respect to the x_2 -axis, the family of arcs $\tilde{\gamma}_{\xi}$, $\xi \in \partial D$, is smooth. Using our initial construction for an arc $\gamma \subseteq \mathbb{R}^2$ and Remarks 2.1 and 2.2, one gets a smooth family of fibrations Σ^t , t > 0, in $\partial D \times \mathbb{C}^2$ such that for each t the interiors of all fibers are strongly pseudoconvex domains with smooth boundaries and for t large enough all fibers of Σ^t are Euclidean balls centred at the point (0,0) with the fixed radius \sqrt{t} . Also, for every pair $t, \tau \in (0, \infty)$, $t < \tau$, all fibers of the fibration Σ^t are included in the interiors of the corresponding fibers of Σ^{τ} .

REMARK 3.1. Observe that by a theorem of Docquier and Grauert [3] the above properties of the family of fibrations Σ^t , t > 0, assure that the fibers of Σ^t remain polynomially convex for each parameter t > 0.

To finish our example we first observe that since

$$\left(\sqrt{\xi},0\right),\left(-\sqrt{\xi},0\right)\in\widetilde{\gamma}_{\boldsymbol{\xi}}\quad (\boldsymbol{\xi}\in\partial D)\;,$$

the polynomial hull of Σ^t contains the point (0,0,0) for all t > 0. Finally we prove the following lemma.

LEMMA 3.1. For t > 0 small enough there is no graph of an H^{∞} analytic mapping $F: D \to \mathbb{C}^2$ with boundary in the fibration $\Sigma^t \subseteq \partial D \times \mathbb{C}^2$.

PROOF: We prove the lemma for

$$\Sigma^0 := igcup_{\xi\in\partial D}\{\xi\} imes\widetilde{\gamma}_{\xi}\;.$$

Once this is proved the normal family argument finishes the proof of the lemma. Namely, assume that there is a sequence $t_n \downarrow 0$, $n \in \mathbb{N}$, such that for all n there exists an H^{∞} analytic selection F_n for $\Sigma^n := \Sigma^{t_n}$. By the normal family argument there exists a

Polynomial hulls

subsequence of $\{F_n\}_{n \in \mathbb{N}}$, still denoted by F_n , which normally converges to an H^{∞} function F_o . Then for every holomorphic polynomial p in three variables and every $z \in D$ we have

$$|p(z,F_o(z))| = \lim_n |p(z,F_n(z))| \leq \lim_n \sup_{x\in\Sigma^n} |p(x)| = \sup_{x\in\Sigma^0} |p(x)|$$

The inequality follows because the discs F_n , $n \in \mathbb{N}$, are analytic selections for the fibrations Σ^n , $n \in \mathbb{N}$, and the last equality is true since the family of fibrations Σ^t , $t \ge 0$, is continuous in Hausdorff topology of compact sets in \mathbb{C}^2 . Therefore the graph $\{(z, F_o(z)); z \in D\}$ is contained in the polynomial hull of Σ^0 and so F_o is an analytic selection of Σ^0 . Here we used the fact that all fibers of the fibration Σ^0 are polynomially convex in \mathbb{C}^2 .

Let us assume now that there is an analytic mapping

$$(f,g): D \longrightarrow \mathbf{C}^2$$

such that

 $(f(\xi), g(\xi)) \in \widetilde{\gamma}_{\xi}$ (almost everywhere $\xi \in \partial D$).

Therefore the imaginary part of the function g almost everywhere on ∂D equals to 0 and thus g is a constant function, that is, there is a real number $a \in [0,1]$ such that $g(\xi) = a$ for every $\xi \in \partial D$. Since the arcs $\tilde{\gamma}_{\xi}$ for $\pi/2 < \arg(\xi) < (3\pi)/2$ do not pass through the point (0,1) the constant a has to be less than 1. But then for all $\xi \in \partial D$ we have

$$\left(\left(1/\sqrt{\xi}\right)f(\xi),a\right)\in\gamma_{\xi}$$

and so

 $f(\xi)^2 = (1-a^2)\xi$ almost everywhere $dm(\xi)$,

which leads to a contradiction.

4. SECOND FAMILY OF FIBRATIONS

Let $\gamma \subseteq \mathbf{R}^2 \subseteq \mathbf{C}^2$ be the arc

$$x_1^2 + x_2^2 = 1, \quad x_2 \ge 0$$

as before. Let $X_1 := \gamma$ and let

$$X_{\boldsymbol{\xi}} := R_{\sqrt{\boldsymbol{\xi}}} X_1$$

Since again

$$(\sqrt{\xi},0),(-\sqrt{\xi},0)\in X_{\xi}\ (\xi\in\partial D)$$
,

it is obvious that the polynomial hull of

$$X:=\bigcup_{\xi\in\partial D}\{\xi\}\times X_{\xi}$$

contains the point (0,0,0).

LEMMA 4.1. There is no H^{∞} analytic selection $F: D \to \mathbb{C}^2$ of X which passes through the point (0,0).

PROOF: Let us assume that there is an analytic disc F = (f,g) whose graph has boundary almost everywhere contained in X and is such that F(0) = (0,0). This implies, as in the previous section, that

$$g(\xi) = 0 \quad (\xi \in \overline{D})$$

Thus

 $f^2(\xi) = \xi$ (almost everywhere $\xi \in \partial D$),

a contradiction.

Since all fibers X_{ξ} , $\xi \in \partial D$, of X contain the point (0,1), all fibers of the fibrations Σ^t , t > 0, constructed similarly as the first family of fibrations, have the point (0,1) in its interior. Finally, repeating the argument from the previous section shows that there exists $t_o > 0$ such that there is no analytic selection for the fibration Σ^{t_o} which passes through the point (0,0). Details are omitted.

References

- H. Alexander and J. Wermer, 'Polynomial hulls with convex fibers', Math. Ann. 271 (1985), 99-109.
- [2] M. Černe, Analytic discs with boundaries in a generating CR-manifold, Ph.D. Thesis (Madison, 1994).
- [3] F. Docquier and H. Grauert, 'Levisches Problem and Rungescher Satz f
 ür Teilgebiete Steinscher Mannigfaltigkeiten', Math. Ann. 140 (1960), 94-123.
- F. Forstnerič, 'Polynomially convex hulls with piecewise smooth boundaries', Math. Ann. 276 (1986), 97-104.
- [5] F. Forstnerič, 'Polynomial hulls of sets fibered over the circle', Indiana Univ. Math. J. 37 (1988), 869-889.
- [6] J.W. Helton and O. Merino, 'A fibered polynomial hull without an analytic selection', Michigen Math. J. 41 (1994), 285-287.
- [7] Z. Slodkowski, 'Polynomial hulls with convex sections and interpolating spaces', Proc. Amer. Math. Soc. 96 (1986), 255-260.
- [8] Z. Slodkowski, 'Polynomial hulls in C² and quasicircles', Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16 (1989), 367-391.

0

Polynomial hulls

- [9] Z. Slodkowski, 'Polynomial hulls with convex fibers and complex geodesics', J. Funct. Anal. 94 (1990), 156-176.
- [10] G. Stolzenberg, 'A hull with no analytic structure', J. Math. Mech. 12 (1963), 103-111.
- [11] J. Wermer, 'Polynomial convex hulls and analyticity', Ark. Mat. 20 (1982), 129-13.

University of Ljubljana, IMFM Jadranska 19 61 111 Ljubljana Slovenia

[9]