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SMOOTH FAMILIES OF FIBRATIONS AND
ANALYTIC SELECTIONS OF POLYNOMIAL HULLS

MlRAN O E R N E

Constructed are strictly increasing smooth families E' C dD X C3 , t e [0,1], of
fibrations over the unit circle with strongly pseudoconvex fibers all diffeomorphic
to the ball B* such that there is no analytic selection of the polynomial hull of
E° and which end at the product fibration El = dD X B* . In particular these
examples show that the continuity method for describing the polynomial hull of
a fibration over dD fails even if the complex geometry of the fibers is relatively
simple.

1. INTRODUCTION

Let Vn be the algebra of holomorphic polynomials in n complex variables and let
X C Cn be a compact subset of the complex space C n . The polynomial hull X of X
is defined as

X := {zo e Cn; \p(zo)\ ^ sup \p(z)\ ,p € Vn} .

Let D C C be the unit disc in the complex plane C and let dD be its boundary,
the unit circle in C. An H°° analytic disc with boundary in X is an H°° mapping
h : D -» Cn such that

h(£) G X almost everywhere dm(£) ,

where dm(£) stands for the Lebesgue measure on dD. By the maximum principle it
follows immediately that if h is an H°° analytic disc with boundary in X, then the
whole disc h(D) lies in the polynomial hull X of X, that is, h(D) C X. It is a classical
result by Stolzenberg, [10], that it is not always the case that the set X \ X can be
given as the union of the H°° analytic discs with boundaries in X. Later Wermer,
[11], refined Stolzenberg's example and constructed a fibration over the unit circle dD
with fibers in C with the same property.
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98 M. Cerne [2]

On the other hand there is a series of papers [1, 4, 5, 7, 8, 9] on the polynomial
hull of a fibration

X := (J {£} xX(CdDxCn

over dD, which show that in the case the geometry of the fibers X(, £ 6 dD, is tame,
that is, arbitrary dimension n and all fibers are geometrically convex [1, 4, 7, 9] or
n — 1 and the fibers are only connected and simply connected [5, 8], one can describe
the polynomial hull of X as the union of the graphs {(z,h(z));z g D} of the 17°°
analytic discs h in C™ for which

h(£) £ X( almost everywhere dm(£) .

A disc h of this kind is called an analytic selection of the polynomial hull of X. An
example by Helton and Merino, [6], shows that the condition on the fibers to be only
connected and simply connected is not enough for the same result to hold for n ^ 2.
Namely, they found an example of a fibration X over dD with connected and simply
connected fibers in C 2 , whose polynomial hull X is nontrivial, but there is no graph
of an H°° analytic disc whose boundary lies in X.

All proofs of the above positive results for n ^ 2 are essentially based on a very
clever use of the Hanh-Banach theorem and are, therefore, linear (convex) in their
nature. One could hope that exploiting the complex geometry of the fibers X(, £ £ dD,

one could still get some positive results on the description of the polynomial hull of X

as Forstneric did in [5] in the case of one dimensional fibers. See also [8]. In this paper
we give two examples, inspired by the example by Helton and Merino, [6], which show
that the so called continuity method for describing the polynomial hull of a fibration
over 3D, which was so successfully used by Forstneric for n — 1, [5], fails even in the
case the complex geometry of the fibers is simple. See also [2].

THEOREM 1 . 1 . There exists a smooth family of fibrations

(eev

in dD x C2 with the following properties:

1. for all t G [0,1] and for all £ e dD the interiors Q\ of the fibers E£
are strongly pseudoconvex domains in C2 with smooth boundaries, all

diffeomorphic to the ball and such that fi£ = E | ,

2. all fibers of the fibration E1 are Euclidean balls in C2 ,
3. the family is strictly increasing in the sense that for all £ £ dD and for

all pairs t,r £ [0,1], t < T , the inclusion
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holds,
4. the Rbration S° has the property that its polynomial hull is nontrivial,

but there is no H°° analytic selection of the fibration E° .

THEOREM 1.2 . There exists a smooth family of fibrations

E«:= (J « } x E | , (*6[0,l])
(€BD

in dD x C2 with the properties (1), (2) and (3) of Theorem 1 and with the additional
properties:

4. for every t G [0,1] and for every £ G 3D there is a fixed small open ball
Bo included in the interior fi| of all fibers E£,

5. there is a point zo in the polynomial hull of E°, zo $ E° , through which
there is no graph of an H°° analytic selection of E° .

2. BLOWING UP AN ARC

In this section we prove the following proposition.

PROPOSITION 2.1.

Let 7 be a smooth arc in R2 C C2 . Tien there exists a smooth strictly plurisub-
harmonic function p~ on C2 such that

(a) 7 = {z G C2;p(z) = 0} = {z G C2; Vp(a) = 0} and
(b) there exists C > 0 such that for every c ^ C the level set {z G C2;p(z) =

c} is an Euclidean 3-sphere.

PROOF: Let / be any smooth nonnegative function on R2 such that

(a) the zero set of / and the zero set of the gradient V / are both equal to
7 and

(b) there exists an ro > 0 such that / ( s i , x2) = x\ + x\ for x\ + x\ ~£ r2 .

Here the coordinates in R2 C C2 are X\,X2 and the coordinates in C2 are Z\ — X\ +iyi

and Z2 = X2 + iyz • For A > 0 we define

P\{zi,Z2) = f{x!,x2) + A(y2 +yj) .

Then

(1) the zero set of p\ and the zero set of Vp* are both equal to the arc 7
and

(2) the Levi form of the function p\ is
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where the notation fXixj stands for the second partial derivative of the
function / with respect to x+ and Xj, i,j = 1,2.

Condition (6) on the function / ensures that if A is large enough, the function p\ is
strictly plurisubharmonic on C2 . We fix such a A and denote the function p\ by p.

Let x : R- ~* [0,1] be a smooth function whose support is contained in the interval
[—1, [ro + 2) ] and which equals 1 on the closed interval [0, (ro + 1) ] • Also, let g be a
smooth nonnegative function on R such that

(1) g{x) = 0 for x^r2
o,

(2) g'(x) > 0 and g"(x) > 0 for x > r\,

(3) p{z)X' (|z|2) + g' (|z|a) > 0 for every z <E C 2 .

For e G (0,1) we define

If £ is small enough, the function p is strictly plurisubharmonic on C2 and its zero set
is the arc 7. We fix such an e and denote the corresponding function by p. Thus the
preposition will be proved once we prove the following lemma.

LEMMA 2 . 1 . Tie zero set oi the gradient Vp is the arc 7 .

PROOF: Let z" = (x° + iy°,x% + it/J) be a point where the gradient V/> is zero.

We consider the following three cases:

1. Case \z°\ < ro. Then p~ = ep in a neighbourhood of the point z" and thus

z° € 7 .

2. Case \z°\ > ro + 2. Then p(z) = s( |« |2] in a neighbourhood of the point z°.

Since g'(x) > 0 for x > r\, we get a contradiction.

3. Case ro ^ \z"\ ^ ro + 2. The y components of the gradient Vp, that is, the
derivatives of p with respect to 3/1 and 3/2 at the point z are equal to

^-(z) = 2(A£ x( |z |2) +ep{z)X
l(\z\

2) + g'(\z\2))yj (j = 1,2) .

Therefore, if Vp(z°) — 0, one concludes that since

(1) AeX(|*|2) +ep(z)X'(\z\2) + g'(\z\2) > e(p(z)X>'(\z\2) +g'(\z\2)) > 0

on C 2 , it follows

2/i° = 2/2 = 0 •

Our initial assumption (b) on the function / and the fact that \z"\ ^ ro imply

/ . i (*i ,*5) = 2x? and /„ (*? ,» ; ) - 2x° ..
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The x components, that is, the derivatives with respect to x\ and xi variables, of the
equation Vp~(z°) = 0, together with (1) give

x° = x\ = 0 .

Hence also the assumption ro < \z°\ < ro + 2 leads to a contradiction and the lemma,

thus also the proposition, is proved. u

A more geometric interpretation of the above proposition is that for every simple
arc 7 in R 2 C C 2 there exists a smooth family of strictly pseudoconvex domains

nt:={z€C2;p(z)<t} (t 6 (0,oo)) ,

in C2 with smooth boundary which starts at 7, is strictly increasing in the sense that
for each pair of parameters t < T the domain fit is compactly included in the domain
fiT and which ends at some large Euclidean ball. Observe also that since the gradient
V/> is nonzero except on 7 all the domains fit, t 6 (0,00), are topological cells.

REMARK 2.1. If one is given a smooth family of simple arcs 7^, £ £ dD, in R2 C C2 ,
then one can choose a smooth family of smooth functions f(, £ £ dD, satisfying
conditions (a) and (b) for each £ 6 dD. Since the set of parameters is compact,
the functions x a n ( l 9 a n ( i the constants A and e can be chosen uniformly, that is,
independent of the parameter £ £ dD, and the corresponding strictly plurisubharmonic
functions P((z) vary smoothly in both variables £ and z.

REMARK 2.2. The above construction can be applied to any arc 7 in C2 for which
there exists a holomorphic automorphism $ of C2 such that $(7) C R2.

3. FIRST FAMILY OF FIBRATIONS

We consider now the following family of arcs in R2 C C2 . Let 71 be the semicircle
in R2 given by the equation

x\ + x\ = 1 , x2 ^ 0 .

For £ G dD we denote by R( the map

Ri : C2 —• C2

defined by

Observe that R( is a linear isomorphism of C2 . For ^ £ dD such that 0 ^ arg (£) ^ TT/2
or (37r)/2^arg(£)sJ27r let

ft •= 7i
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and for the parameters £ £ dD such that n/2 < arg (£) < (37r)/2 we smoothly perturb
the initial arc 71 to get arcs 7^ which do not pass through the point (0,1) but they
still pass through the points (1,0) and ( — 1,0). For instance, for ( = e" one may take
7£ to be defined by the equation

( 1 - Q { s ) f x \ + x \ = ( 1 - e{s)f , x 2 > 0 ,

where g : R —» [0,1) is any smooth function whose support is the interval [7r/2, (37r)/2].
We define

Here by y/% we mean the principal branch of the square root, that is, y/—l — i. Since
we have 7^ — 71 in a neighbourhood of ( = 1 and since the arc 71 is symmetric with
respect to the X2-axis, the family of arcs -f(, £ £ dD, is smooth. Using our initial
construction for an arc 7 C R2 and Remarks 2.1 and 2.2, one gets a smooth family
of fibrations E1, t > 0, in dD x C2 such that for each t the interiors of all fibers
are strongly pseudoconvex domains with smooth boundaries and for t large enough all
fibers of E* are Euclidean balls centred at the point (0,0) with the fixed radius \/t.
Also, for every pair t,r £ (0,oo), t < T, all fibers of the fibration S1 are included in
the interiors of the corresponding fibers of ET.

REMARK 3.1 . Observe that by a theorem of Docquier and Grauert [3] the above prop-

erties of the family of fibrations £*, t > 0, assure that the fibers of E* remain polyno-

mially convex for each parameter t > 0.

To finish our example we first observe that since

the polynomial hull of E1 contains the point (0,0,0) for all t > 0. Finally we prove
the following lemma.

LEMMA 3 . 1 . For t > 0 small enough there is no graph of an H°° analytic

mapping F : D —> C2 with boundary in the fibration E* C dD x C2 .

PROOF: We prove the lemma for

Once this is proved the normal family argument finishes the proof of the lemma. Namely,
assume that there is a sequence tn | 0, n £ N, such that for all n there exists an H°°

analytic selection Fn for En := S1" . By the normal family argument there exists a
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subsequence of {.Fn}neN > still denoted by Fn, which normally converges to an H°°
function Fo. Then for every holomorphic polynomial p in three variables and every
z G D we have

\p(z,Fo(z))\ = u m | p ( z , F n ( z ) ) K U m sup \p{x)\ = sup |p(a:)| .
™ n i 6E n zeE°

The inequality follows because the discs Fn, n G N, are analytic selections for the
fibrations S™, n 6 N, and the last equality is true since the family of fibrations E1,
t ^ 0, is continuous in Hausdorff topology of compact sets in C2 . Therefore the graph
{(z,Fo(z));z € D} is contained in the polynomial hull of E° and so Fo is an analytic
selection of E° . Here we used the fact that all fibers of the fibration E° are polynomialy
convex in C2.

Let us assume now that there is an analytic mapping

such that

( / ( 0 . 5 ( 0 ) £ 1( ( almost everywhere £ £ 3D) .

Therefore the imaginary part of the function g almost everywhere on 3D equals to 0
and thus g is a constant function, that is, there is a real number a £ [0,1] such that
</(£) = a for every £ £ dD. Since the arcs 7^ for 7r/2 < arg(£) < (3TT)/2 do not pass
through the point (0,1) the constant a has to be less than 1. But then for all £ £ dD
we have

and so
/ (£ ) 2 = (l - a2)( almost everywhere dm(£) ,

which leads to a contradiction. D

4. SECOND FAMILY OF FIBRATIONS

Let 7 C R 2 C C 2 be the arc

as before. Let Xi :— 7 and let

Since again
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it is obvious that the polynomial hull of

*== U &xXt

contains the point (0,0,0) .

LEMMA 4 . 1 . There is no H°° analytic selection F : D -* C 2 of X which passes

through the point (0 ,0) .

PROOF: Let us assume that there is an analytic disc F = (f,g) whose graph has
boundary almost everywhere contained in X and is such that F(0) = (0,0). This
implies, as in the previous section, that

7(0 = 0 (UD)-

Thus

f2tt) = t (almost everywhere £ £ dD) ,

a contradiction. U

Since all fibers X( , ( e dD, of X contain the point (0,1), all fibers of the fibrations
£*, t > 0, constructed similarly as the first family of fibrations, have the point (0,1) in
its interior. Finally, repeating the argument from the previous section shows that there
exists to > 0 such that there is no analytic selection for the fibration S*° which passes
through the point (0,0). Details are omitted.

REFERENCES

[1] H. Alexander and J. Wermer, 'Polynomial hulls with convex fibers', Math. Ann. 271
(1985), 99-109.

[2] M. Cerne, Analytic discs with boundaries in a generating CR-manifold, Ph.D. Thesis
(Madison, 1994).

[3] F. Docquier and H. Grauert, 'Levisches Problem and Rungescher Satz fur Teilgebiete
Steinscher Mannigfaltigkeiten', Math. Ann. 140 (1960), 94-123.

[4] F. Forstneric, 'Polynomially convex hulls with piecewise smooth boundaries', Math. Ann.
276 (1986), 97-104.

[5] F. Forstneric, 'Polynomial hulls of sets fibered over the circle', Indiana Univ. Math. J. 37
(1988), 869-889.

[6] J.W. Helton and O. Merino, 'A fibered polynomial hull without an analytic selection',
Michigen Math. J. 41 (1994), 285-287.

[7] Z. Slodkowski, 'Polynomial hulls with convex sections and interpolating spaces', Proc.

Amer. Math. Soc. 96 (1986), 255-260.
[8] Z. Slodkowski, 'Polynomial hulls in C3 and quasicircles', Ann. Scuola Norm. Sup. Pisa

Cl. Sci. 16 (1989), 367-391.

https://doi.org/10.1017/S0004972700014489 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014489


[9] Polynomial hulls 105

[9] Z. Slodkowski, 'Polynomial hulls with convex fibers and complex geodesies', J. Fund.
Anal. 94 (1990), 156-176.

[10] G. Stolzenberg, 'A hull with no analytic structure', J. Math. Mech. 12 (1963), 103-111.
[11] J. Wermer, 'Polynomial convex hulls and analyticity', Ark. Mat. 20 (1982), 129-13.

University of Ljubljana, IMFM
Jadranska 19
61 111 Ljubljana
Slovenia

https://doi.org/10.1017/S0004972700014489 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014489

