Unit Elements in the Double Dual of a Subalgebra of the Fourier Algebra A(G)

Tianxuan Miao

Abstract. Let \mathcal{A} be a Banach algebra with a bounded right approximate identity and let \mathcal{B} be a closed ideal of \mathcal{A} . We study the relationship between the right identities of the double duals \mathcal{B}^{**} and \mathcal{A}^{**} under the Arens product. We show that every right identity of \mathcal{B}^{**} can be extended to a right identity of \mathcal{A}^{**} in some sense. As a consequence, we answer a question of Lau and Ülger, showing that for the Fourier algebra A(G) of a locally compact group G, an element $\phi \in A(G)^{**}$ is in A(G) if and only if $A(G)\phi \subseteq A(G)$ and $E\phi = \phi$ for all right identities E of $A(G)^{**}$. We also prove some results about the topological centers of \mathcal{B}^{**} and \mathcal{A}^{**} .

Introduction

Let \mathcal{A} be a Banach algebra with a bounded right approximate identity and let its double dual A^{**} be equipped with the first Arens multiplication (see Arens [1]). If Bis a closed subalgebra of \mathcal{A} , then \mathcal{B}^{**} is embedded into \mathcal{A}^{**} by inclusion. We study the relationship between the right identities of \mathcal{B}^{**} and \mathcal{A}^{**} . The motivation is that sometimes we need to reduce a problem to the case of a subalgebra with a sequential bounded approximate identity (see Corollary 2.4 and Theorem 3.2). Let B be a closed ideal of \mathcal{A} such that there is a projection which is also a multiplier from \mathcal{A} to \mathcal{B} , *i.e.*, a bounded linear operator $m: \mathcal{A} \to \mathcal{B}$ satisfying m(ab) = am(b) = m(a)b for $a, b \in \mathcal{A}$ and m(c) = c for $c \in \mathcal{B}$. Then \mathcal{B}^* is embedded into \mathcal{A}^* by m^* . If we identify a right unit *E* of \mathcal{B}^{**} with an element $i^{**}(E)$ in \mathcal{A}^{**} , where $i: \mathcal{B} \to \mathcal{A}$ is the inclusion map, then we prove that *E* can be extended to a right identity \tilde{E} of \mathcal{A}^{**} in the sense that \tilde{E} is a right identity of A^{**} and $\tilde{E} = E$ on $m^*(\mathcal{B}^*)$. Then we apply this result to show that for the Fourier algebra A(G) of a locally compact group G, an element $\phi \in A(G)^{**}$ is in A(G) if and only if $A(G)\phi \subseteq A(G)$ and $E\phi = \phi$ for all right identities E of $A(G)^{**}$. This answers problem h) in Lau and Ülger [13]. In the second part of this paper, we study the relationship between the topological centers of \mathcal{B}^{**} and \mathcal{A}^{**} . We prove that the topological center of \mathcal{B}^{**} (or \mathcal{A}^{**}) can be embedded into the topological center of \mathcal{A}^{**} (or \mathcal{B}^{**}). Then we apply these results to the case of Herz-Figà-Talamanca algebra $A_p(G)$ of a locally compact group to generalize results in Hu [9] and Hu and Neufang [10].

This paper is organized as follows. In Section 1, we recall some necessary notations and some preliminary results. In Section 2, we prove an extension theorem of a right identity in \mathcal{B}^{**} to a right identity in \mathcal{A}^{**} under certain conditions. Let *G* be a locally

Received by the editors March 13, 2006; revised November 23, 2006.

This research is supported by an NSERC grant

AMS subject classification: Primary: 43A07.

Keywords: Locally compact groups, amenable groups, Fourier algebra, identity, Arens product, topological center.

[©]Canadian Mathematical Society 2009.

compact group, G_0 an open and closed subgroup and N a compact normal subgroup of G. We apply this result to extend right identities of $A_p(G_0)^{**}$ and $L_1(G/N)^{**}$ to $A_p(G)^{**}$ and $L_1(G)^{**}$, respectively. In Section 3, we use the extension theorem to answer an open problem and to improve results in [13]. In Section 4, we deal with the topological center problems for \mathcal{B}^{**} and \mathcal{A}^{**} .

1 Preliminaries and Some Notations

Let \mathcal{A} be a Banach algebra with a bounded right approximate identity. The duality between Banach spaces is denoted by $\langle \cdot, \cdot \rangle$. Recall the definition of the first Arens product on the double dual \mathcal{A}^{**} : for $a, b \in \mathcal{A}$ and $f \in \mathcal{A}^*$, we define $fa \in \mathcal{A}^*$ by $\langle fa, b \rangle = \langle f, ab \rangle$. Then, for $\phi, \psi \in \mathcal{A}^{**}$, $\psi f \in \mathcal{A}^*$ is defined by $\langle \psi f, a \rangle = \langle \psi, fa \rangle$ and finally, $\phi \psi \in \mathcal{A}^{**}$ is defined by $\langle \phi \psi, f \rangle = \langle \phi, \psi f \rangle$. Throughout this paper, we regard the first Arens product as the Arens product. It is easy to see that the map $\nu \to \nu \mu$ is weak^{*} continuous on \mathcal{A}^{**} for any $\mu \in \mathcal{A}^{**}$. But $\nu \to \mu \nu$ may not be weak^{*} continuous. The set

 $\Lambda(\mathcal{A}^{**}) = \{ \mu \in \mathcal{A}^{**} \colon \nu \to \mu\nu \text{ is continuous in the weak}^* \text{ topology} \}$

is called the topological center of \mathcal{A}^{**} . It is obvious that $\mathcal{A} \subseteq \Lambda(\mathcal{A}^{**})$.

Let $\mathcal{A}^*\mathcal{A}$ be the norm closure of the linear span of $\{fa : f \in \mathcal{A}^*, a \in \mathcal{A}\}$. Then the dual of the space $\mathcal{A}^*\mathcal{A}$ equipped with the multiplication induced by that of \mathcal{A}^{**} is also a Banach algebra. Let $\tilde{M} = \{\mu \in (\mathcal{A}^*\mathcal{A})^* : \mathcal{A}\mu \subseteq \mathcal{A}\}$ and the topological center of $(\mathcal{A}^*\mathcal{A})^*$ is defined by

 $\tilde{Z}_{\mathcal{A}} = \{ \mu \in (\mathcal{A}^* \mathcal{A})^* \colon \nu \to \mu \nu \text{ is continuous in the weak}^* \text{ topology} \}.$

An element *E* in A^{**} is called a right identity or right unit if $\phi E = \phi$ for all $\phi \in A^{**}$. Let \mathcal{E} denote the set of all right identities of A^{**} . It is easy to see that an element of A^{**} is a right unit if and only if it is a weak^{*} cluster point of some bounded right approximate identity in A, see [3, p. 146].

Let *S* be a set. The characteristic function of *S* is denoted by 1_S . A Banach algebra is said to be weakly sequentially complete if every weakly Cauchy sequence converges in the weak topology.

For any locally compact group *G* equipped with a fixed left Haar measure λ , let $L^p(G)$, $1 \le p \le \infty$, be the usual Lebesgue spaces on *G* with norm $\|\cdot\|_p$. Suppose that $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. The Herz–Figà–Talamanca algebra $A_p(G)$ is the space of continuous functions *u* which can be represented as

$$u = \sum_{n=1}^{\infty} f_i * \check{g}_i \text{ with } f_i \in L^q(G), g_i \in L^p(G), \text{ and } \sum_{n=1}^{\infty} \|f_i\|_q \|g_i\|_p < \infty,$$

where $\check{g} \in L^p(G)$ is defined by $\check{g}(x) = g(x^{-1}), x \in G$. The norm of *u* is defined by

$$||u||_{A_p(G)} = \inf \sum_{n=1}^{\infty} ||f_i||_q ||g_i||_p,$$

where the infimum is taken over all the representations of u above. It is known that $A_p(G)$ is a regular tauberian Banach algebra under the pointwise multiplication and $A_p(G)$ has a bounded approximate identity if and only if the group G is amenable (see Herz [8], Theorem 6). We emphasize that our $A_p(G)$ coincides with $A_q(G)$, $\frac{1}{p} + \frac{1}{q} = 1$, in [16]. It follows that the dual $A_p(G)^*$ is the space of convolution operators on $L^p(G)$, denoted by $PM_p(G)$ as in Herz [8]. Let $PF_p(G)$ be the norm closure of $L^1(G)$ in $A_p(G)^*$. Then $PF_p(G)^* = W_p(G)$ is a Banach algebra under pointwise multiplication. For p = 2, $A_p(G) = A(G)$ is the Fourier algebra of G, $PM_p(G) = VN(G)$ is the group Von Neumann algebra of G, $PF_2(G) = C_p^*(G)$ is the reduced group C^* algebra and $W_2(G) = B_p(G)$ (see Eymard [5]). For more properties of $PM_p(G)$ and $PF_p(G)$, see Pier [16]. Throughout this paper, B(G) denotes the Fourier–Stieltjes algebra of G as defined in Eymard [5].

Let $UC_p(\hat{G})$ be the norm closure of the subset of $PM_p(G)$ consisting of all fu for $u \in A_p(G)$ and $f \in PM_p(G)$. For $f \in PM_p(G)$, the support of f is defined to be the closed subset $\operatorname{supp}(f)$ of G such that $x \notin \operatorname{supp}(f)$ if and only if there exists a neighborhood U_x of x in G such that $\langle f, u \rangle = 0$ for all $u \in A_p(G)$ such that $\sup u \subseteq U_x$ as a function on G (see Herz [8, page 101]). Then it is well known that $UC_p(\hat{G})$ is the norm closure of the set of all elements of $PM_p(G)$ with compact support.

Let G_0 be an open subgroup of a locally compact group G. It is proved by Herz [8] (Proposition 5) that $A_p(G_0)$ is identified with the subalgebra of $A_p(G)$ consisting of functions in $A_p(G)$ which vanish outside G_0 and the restriction map from $A_p(G)$ onto $A_p(G_0)$, denoted by m_{G_0} , is a contraction. It is obvious that $A_p(G_0)$ is a closed ideal of $A_p(G)$, and m_{G_0} is a projection and is also a multiplier.

Some conventions. Let $i: \mathcal{B} \to \mathcal{A}$ be the inclusion map and $m: \mathcal{A} \to \mathcal{B}$ be any map. Then \mathcal{B}^{**} is embedded into \mathcal{A}^{**} by i^{**} . In this paper, we write $i^{**}(\phi)$ as ϕ , and sometimes we consider m as a map from \mathcal{A} to \mathcal{A} without confusion.

2 Extensions of a Unit

Let \mathcal{B} be a subalgebra of a Banach algebra \mathcal{A} . In this section, we will extend a unit of \mathcal{B}^{**} to a unit of \mathcal{A}^{**} .

Definition Let \mathcal{B} be a closed subalgebra of a Banach algebra \mathcal{A} . An element E of \mathcal{A}^{**} is called a right unit or identity of \mathcal{B}^{**} in \mathcal{A}^{**} if $\phi E = \phi$ for $\phi \in \mathcal{B}^{**}$.

Clearly, if $E_{\mathcal{B}} \in \mathcal{B}^{**}$ is a right unit of \mathcal{B}^{**} in the normal sense, then $E_{\mathcal{B}}$ is a right unit of \mathcal{B}^{**} in \mathcal{A}^{**} .

Proposition 2.1 Let \mathbb{B} be a closed subalgebra of a Banach algebra \mathcal{A} . Then an element E of \mathcal{A}^{**} is a right unit of \mathbb{B}^{**} in \mathcal{A}^{**} if and only if there is a net $\{a_{\alpha}\}$ in \mathcal{A} such that $a_{\alpha} \to E$ in the $\sigma(\mathcal{A}^{**}, \mathcal{A}^{*})$ -topology and $||ba_{\alpha} - b|| \to 0$ for $b \in \mathbb{B}$.

Proof Let *E* be a right unit of \mathcal{B}^{**} in \mathcal{A}^{**} . By Goldstine's theorem, there exists a net $\{x_{\beta}\}$ in \mathcal{A} such that $||x_{\beta}|| \leq ||E||$ and $x_{\beta} \to E$ in the $\sigma(\mathcal{A}^{**}, \mathcal{A}^{*})$ -topology. Then for every $b \in \mathcal{B}$, it is clear that $bx_{\beta} \to bE$ in $\sigma(\mathcal{A}^{**}, \mathcal{A}^{*})$ -topology. Since $b \in \mathcal{B}$ and *E* is

a right unit of \mathcal{B}^{**} in \mathcal{A}^{**} , we have bE = b. Thus, $bx_{\beta} \to b$ in the weak topology in \mathcal{A} .

For any finite set Γ of \mathcal{A}^* and any positive integer k, since $x_\beta \to E$ in the $\sigma(\mathcal{A}^{**}, \mathcal{A}^*)$ -topology, there exists β_k such that $|\langle x_\beta, f \rangle - \langle E, f \rangle| < \frac{1}{k}$ for all $f \in \Gamma$ and $\beta \geq \beta_k$. For every finite set $\Lambda = \{b_1, b_2, \ldots, b_n\}$ of \mathcal{B} , since $(b_1x_\beta - b_1, b_2x_\beta - b_2, \ldots, b_nx_\beta - b_n) \to (0, 0, \ldots, 0)$ in the weak topology of the direct sum $\mathcal{A} \oplus \mathcal{A} \oplus \cdots \oplus \mathcal{A}$ (n copies), 0 is in the norm closure of the convex hull of $\{(b_1x_\beta - b_1, b_2x_\beta - b_2, \ldots, b_nx_\beta - b_n) : \beta \geq \beta_k\}$. Hence, there exists a convex combination of elements from $\{x_\beta : \beta \geq \beta_k\}$, denoted by a_α , such that $\|(b_1a_\alpha - b_1, b_2a_\alpha - b_2, \ldots, b_na_\alpha - b_n)\| < \frac{1}{k}$, and so $\|ba_\alpha - b\| < \frac{1}{k}$ for all $b \in \Lambda$, where $\alpha = (\Gamma, \Lambda, k)$ is directed as usual. Therefore, a_α satisfies the requirements.

Conversely, if $\{a_{\alpha}\}$ is a net in \mathcal{A} such that $a_{\alpha} \to E$ in the $\sigma(\mathcal{A}^{**}, \mathcal{A}^{*})$ -topology and $||ba_{\alpha} - b|| \to 0$ for $b \in \mathcal{B}$, then the weak^{*} cluster point E of $\{a_{\alpha}\}$ is a right unit of \mathcal{B}^{**} in \mathcal{A}^{**} . In fact, for $b \in \mathcal{B}$, $||ba_{\alpha} - b|| \to 0$ and $ba_{\alpha} \to bE$ in the $\sigma(\mathcal{A}^{**}, \mathcal{A}^{*})$ -topology imply bE = b. If $\phi \in \mathcal{B}^{**}$, it is routine to check that $\phi E = \phi$.

Remark. If \mathcal{B} is a closed subalgebra of \mathcal{A} and $m: \mathcal{A} \to \mathcal{B}$ is a projection, then \mathcal{B}^* is embedded into \mathcal{A}^* by the mapping $m^*: \mathcal{B}^* \to \mathcal{A}^*$. \mathcal{B}^* is identified with $m^*(\mathcal{A}^*)$ as follows. For any $f \in \mathcal{B}^*$, let \tilde{f} be an extension of f to an element of \mathcal{A}^* . It is easy to see that the map $f \mapsto m^*(\tilde{f})$ is well-defined and is an isomorphism from \mathcal{B}^* onto $m^*(\mathcal{A}^*)$. Furthermore, the map $f \mapsto m^*(\tilde{f})$ is an isometry from \mathcal{B}^* onto $m^*(\mathcal{A}^*)$ if ||m|| = 1. We will extend a right unit of \mathcal{B}^{**} to right units of \mathcal{A}^{**} . Precisely, for a right unit E of \mathcal{B}^{**} , we like to find right units \tilde{E} of \mathcal{A}^{**} such that $\tilde{E} = E$ on $m^*(\mathcal{A}^*)$.

Definition Let \mathcal{B} be a closed subalgebra of a Banach algebra \mathcal{A} and let $m: \mathcal{A} \to \mathcal{B}$ be a bounded projection. For a right unit E of \mathcal{B}^{**} in \mathcal{A}^{**} , we say that a right unit \tilde{E} of \mathcal{A}^{**} is an extension of E if $\langle \tilde{E}, m^*(f) \rangle = \langle E, m^*(f) \rangle$ for $f \in \mathcal{A}^*$.

A natural question is whether there exists an extension for a given right unit of \mathcal{B}^{**} in \mathcal{A}^{**} . The following example shows that the answer to this question is negative in general.

Example. Let B(G) be the Fourier–Stieltjes algebra of an amenable locally compact group G (see Eymard [5]). Then B(G) is a unital commutative Banach algebra. So $B(G)^{**}$ has a unique unit I. The Fourier algebra A(G) is a closed ideal of B(G). Since B(G) is a direct sum of A(G) and a subspace of B(G) (see Miao [14]), there is a projection from B(G) to A(G). From Corollary 2.4 below we know that there are many right units in $A(G)^{**}$ if G is not compact. Therefore, the right units of $A(G)^{**}$ in $B(G)^{**}$ cannot be extended to right units of $B(G)^{**}$.

We have to put conditions on \mathcal{B} and the projection *m*. If \mathcal{B} is an ideal of \mathcal{A} , we say that an operator $m: \mathcal{A} \to \mathcal{B}$ is a multiplier if m(ab) = m(a)b = am(b) for $a, b \in \mathcal{A}$.

Lemma 2.2 If \mathcal{B} is a closed ideal of a Banach algebra \mathcal{A} such that there is a bounded projection $m: \mathcal{A} \to \mathcal{B}$ which is also a multiplier, then for any $a \in \mathcal{A}$, $f \in \mathcal{A}^*$ and $\varphi \in \mathcal{A}^{**}$, we have

- (i) $m^*(fa) = fm(a) = m^*(f)a;$
- (ii) $m^*(\varphi f) = m^{**}(\varphi)f = \varphi m^*(f).$

Proof These can be verified directly by an elementary calculation using the definition of the Arens product and the fact that *m* is a multiplier.

Theorem 2.3 Let A be a Banach algebra with a bounded right approximate identity. If B is a closed ideal of A such that there is a bounded projection $m: A \to B$ which is also a multiplier, then every right unit E_B of B^{**} in A^{**} can be extended to a right unit \tilde{E} of A^{**} .

Proof Since \mathcal{A} has a bounded right approximate identity, we can choose a right unit E of \mathcal{A}^{**} . We denote $\tilde{E} = E - m^{**}(E) + m^{**}(E_{\mathcal{B}})$. We claim that \tilde{E} is an extension of $E_{\mathcal{B}}$. We show that \tilde{E} is a right unit of \mathcal{A}^{**} first. It follows from Proposition 2.1 that there is a net $\{a_{\alpha}\}$ in \mathcal{A} such that $a_{\alpha} \to E_{\mathcal{B}}$ in the $\sigma(\mathcal{A}^{**}, \mathcal{A}^{*})$ -topology and $\|ba_{\alpha} - b\| \to 0$ for $b \in \mathcal{B}$. For any $a \in \mathcal{A}$, since $m(a) \in \mathcal{B}$ and $m^{*}(fa) = fm(a)$ by Lemma 2.2(i), we have

$$\langle m^{**}(E_{\mathcal{B}})f,a\rangle = \langle m^{**}(E_{\mathcal{B}}),fa\rangle = \langle E_{\mathcal{B}},m^{*}(fa)\rangle = \langle E_{\mathcal{B}},fm(a)\rangle \\ = \lim_{\alpha} \langle a_{\alpha},fm(a)\rangle = \lim_{\alpha} \langle m(a)a_{\alpha},f\rangle = \langle m(a),f\rangle.$$

Thus, $\langle m^{**}(E_{\mathcal{B}})f, a \rangle = \langle m(a), f \rangle$. Similarly, $\langle m^{**}(E)f, a \rangle = \langle m(a), f \rangle$. Therefore, $m^{**}(E)f = m^{**}(E_{\mathcal{B}})f$. For $\varphi \in \mathcal{A}^{**}$, since $\varphi E = \varphi$, we have

$$\langle \varphi \tilde{E}, f \rangle = \langle \varphi E, f \rangle - \langle \varphi, m^{**}(E) f \rangle + \langle \varphi, m^{**}(E_{\mathcal{B}}) f \rangle = \langle \varphi E, f \rangle = \langle \varphi, f \rangle.$$

Therefore \tilde{E} is a right unit of \mathcal{A}^{**} .

If $f \in A^*$, since *m* is a projection onto \mathcal{B} , $m^*(m^*(f)) = m^*(f)$. Hence, $\langle m^{**}(E), m^*(f) \rangle = \langle E, m^*(f) \rangle$, and so we have

$$\begin{split} \langle \tilde{E}, m^*(f) \rangle &= \langle E - m^{**}(E) + m^{**}(E_{\mathcal{B}}), m^*(f) \rangle \\ &= \langle m^{**}(E_{\mathcal{B}}), m^*(f) \rangle = \langle E_{\mathcal{B}}, m^*(f) \rangle. \end{split}$$

So \tilde{E} is an extension of $E_{\mathcal{B}}$.

Corollary 2.4 Let G be an amenable locally compact group and let G_0 be an open and closed subgroup of G. Then every right unit of $A_p(G_0)^{**}$ in $A_p(G)^{**}$ can be extended to a right unit of $A(G)_p^{**}$. In particular, when p = 2, $A(G)^{**}$ has a unique right unit only when G is compact.

Proof Since $m_{G_0}: A_p(G) \to A_p(G_0)$ is a projection as well as a multiplier, the proof of the first part of this result is finished by using Theorem 2.3.

If *G* is not compact, then there is an open, closed σ -compact, and noncompact subgroup G_0 of *G*. Since G_0 is σ -compact, $A(G_0)$ has a sequential bounded approximate identity $\{a_n\}$. Then $\{a_n\}$ has at least two distinct w^* cluster points E_1 and E_2 in $A(G_0)^{**}$. In fact, if there were only one w^* cluster point, then $\{a_n\}$ would be a weakly Cauchy sequence. Since $A(G_0)$ is weakly sequentially complete, $\{a_n\}$ must converge to its cluster point in the weak topology in $A(G_0)$. Hence the cluster point must be in $A(G_0)$, and so $A(G_0)$ is unital. This is impossible since G_0 is not compact. Hence E_1 and E_2 are distinct right units of $A(G_0)^{**}$ in $A(G)^{**}$. By Theorem 2.3, there are extensions of E_1 and E_2 to $A(G)^{**}$ that would create two distinct right identities for $A(G)^{**}$. This is a contradiction.

386

Corollary 2.5 Let G be a locally compact group, and let N be a compact normal subgroup of G. Then every right unit of $L^1(G/N)^{**}$ in $L^1(G)^{**}$ can be extended to a right unit of $L^1(G)^{**}$.

Proof Let $\pi_N: G \to G/N$ be the canonical map. For any $f \in L^1(G)$, $\dot{f}(\dot{x}) = \int_N f(x\xi) d\xi$ defines a function in $L^1(G/N)$, where $\dot{x} = \pi_N(x)$ for $x \in G$. Moreover, there is a Haar measure on G/N such that

$$\int_{G/N} \left\{ \int_N f(x\xi) d\xi \right\} d\dot{x} = \int_G f(x) dx$$

for all $f \in L^1(G)$ (see Reiter and Stegeman [17, p. 100]). If we regard $L^1(G/N)$ as a subspace of $L^1(G)$ consisting of periodic functions on G with respect to N, then it is routine to check that $L^1(G/N)$ is a closed ideal of $L^1(G)$. Define $m: L^1(G) \rightarrow$ $L^1(G/N)$ by $m(f) = \dot{f}$ for $f \in L^1(G)$. Since m(f * g) = m(f) * m(g) = m(f) * g =f * m(g) for $f, g \in L^1(G)$ (see Reiter and Stegeman [17, Theorem 3.5.4]), m is a multiplier. It follows from Theorem 2.3 that any right unit of $L^1(G/N)^{**}$ can be extended to a right unit of $L^1(G)^{**}$.

3 Applications of the Extension Theorem to *A*(*G*)

In this section we present some applications of the results given in Section 2. Theorem 3.2 settles an open problem in Lau and Ülger [13, open problem h, p. 1211]. To prove Theorems 3.2 and 4.4, we need the next lemma.

Lemma 3.1 Let G be a locally compact group and $\varphi \in A_p(G)^{**}$. If for every open σ -compact subgroup G_0 of G, $m_{G_0}^{**}(\varphi)$ is in $A_p(G_0)$, then the restriction of φ onto $UC_p(\hat{G})$ is in $A_p(G)$.

Proof We will show that for each *n*, there is a compact subset K_n of *G* such that $|\langle \varphi, f \rangle| < \frac{1}{n}$ for $f \in UC_p(\hat{G})$ with $||f|| \leq 1$ and $\operatorname{supp}(f) \subseteq G \setminus K_n$. Otherwise, there exists a positive number $\epsilon > 0$ and a function $f_1 \in UC_p(\hat{G})$ which has compact support, and is such that $||f_1|| \leq 1$ and $|\langle \varphi, f_1 \rangle| \geq \epsilon$. Since *G* is locally compact, let U_1 be a symmetric open subset of *G* with a compact closure $\overline{U_1}$ such that the group unit *e* is in U_1 and $\operatorname{supp}(f_1) \subseteq U_1$. There exists an element $f_2 \in UC_p(\hat{G})$ with compact support $\operatorname{supp}(f_2) \subseteq G \setminus \overline{U_1}$ and $||f_2|| \leq 1$ satisfying that $|\langle \varphi, f_2 \rangle| \geq \epsilon$. Let U_2 be a symmetric open subset of *G* such that $\operatorname{supp}(f_2) \subseteq U_2$, $\overline{U_2}$ is compact and $U_1^2 \subseteq U_2$. By continuing the same process, we have a sequence $\{f_n\}$ in $UC_p(\hat{G})$ and a sequence of symmetric open subsets $\{U_n\}$ of *G* satisfying for each *n*,

(1) $||f_n|| \leq 1$ and $\overline{U_n}$ is compact;

(2) $\operatorname{supp}(f_{n+1}) \subseteq G \setminus \overline{U_n}, \ \overline{U_n^2} \subseteq U_{n+1} \text{ and } \operatorname{supp}(f_n) \subseteq U_n;$

(3) $|\langle \varphi, f_n \rangle| \ge \epsilon$. Let $G_0 = \bigcup_n U_n$.

Then by condition (2), G_0 is an open σ -compact subgroup of G. So it is also closed. Then $m_{G_0}^{**}(\varphi)$ is in $A_p(G_0)$ by hypothesis. It follows that there is a compact subset K of G_0 such that $|\langle m_{G_0}^{**}(\varphi), f \rangle| \leq \frac{1}{2}\epsilon$ for any $f \in PM_p(G)$ with $\operatorname{supp}(f) \subseteq G \setminus K$ (see Miao [15]). Since K is compact and the sequence $\{U_n\}$ of open sets is increasing, there is *n* such that $K \subseteq U_n$. Hence $\operatorname{supp}(f_{n+1}) \subseteq G \setminus \overline{U_n} \subseteq G \setminus K$. It follows that $|\langle m_{G_0}^{**}(\varphi), f_{n+1} \rangle| \leq \frac{1}{2}\epsilon$. This contradicts the fact that

$$|\langle m_{G_0}^{**}(\varphi), f_{n+1} \rangle| = |\langle \varphi, m_{G_0}^{*}(f_{n+1}) \rangle| = |\langle \varphi, f_{n+1} \rangle| \ge \epsilon$$

for each *n* since supp $(f_{n+1}) \subseteq U_{n+1} \subseteq G_0$ and so it is clear that $m^*_{G_0}(f_{n+1}) = f_{n+1}$ (see Eymard [5, Proposition 4.8]).

Let G_0 be an open, closed and σ -compact subgroup of G containing all K_n . Then it is easy to see that for any $f \in UC_p(\hat{G})$ with support in $G \setminus G_0$, we have $\langle \varphi, f \rangle = 0$. For any $f \in UC_p(\hat{G})$, it is routine to check that $\operatorname{supp}(f - m_{G_0}^*(f)) \subseteq G \setminus G_0$. Hence we have

$$\langle \varphi, f \rangle = \langle \varphi, m_{G_0}^*(f) \rangle + \langle \varphi, f - m_{G_0}^*(f) \rangle = \langle m_{G_0}^{**}(\varphi), f \rangle.$$

Since $m_{G_0}^{**}(\varphi)$ is in $A_p(G_0) \subseteq A_p(G)$, the restriction of φ to $UC_p(\hat{G})$ is in $A_p(G)$.

Theorem 3.2 Let G be an amenable locally compact group. Then for an element $\varphi \in A(G)^{**}, \varphi \in A(G)$ if and only if $A(G)\varphi \subseteq A(G)$ and for any E in $\mathcal{E}, E\varphi = \varphi$.

Proof One direction of the result is trivial. Conversely, let $\varphi \in A(G)^{**}$ satisfy the two conditions. If *G* is compact, then A(G) is unital. So the result is trivial. Let *G* be noncompact and let G_0 be a σ -compact, open and closed subgroup of *G*. Let $G_0 = \bigcup_{i=1}^{\infty} K_i$, where $\{K_i\}$ is a sequence of compact subsets of G_0 such that $K_1 \subseteq K_2 \subseteq K_3, \ldots$. For each *i*, choose an $a_i \in A(G_0)$ such that $a_i(x) = 1$ for $x \in K_i$ and $||a_i|| \leq 1 + \frac{1}{i}$ by amenability of G_0 (see Pier [16, Proof of Theorem 10.4]). Then $a_i \to 1_{G_0}$ in the *w**-topology of $B(G_0)$. Hence $||a_ia - a|| \to 0$ for $a \in A(G_0)$ (see Granirer and Leinert [7]).

For each *i*, $a_i \varphi \in A(G)$ by assumption. We claim that $\{a_i \varphi\}$ is a weakly Cauchy sequence. If not, then there exist two subnets $\{a_{i_{\alpha}}\varphi\}$ and $\{a_{i_{\beta}}\varphi\}$ of $\{a_i\varphi\}$ converge to different points of $A(G)^{**}$ in the $\sigma(A(G)^{**}, A(G)^*)$ -topology. Assume that $a_{i_{\alpha}} \to E_1$ and $a_{i_{\beta}} \to E_2$ in $\sigma(A(G)^{**}, A(G)^*)$ -topology without loss of generality by taking subnets. Then E_1 and E_2 are right identities of $A(G_0)^{**}$ in $A(G)^{**}$ by Proposition 2.1, and it is obvious that $a_{i_{\alpha}}\varphi \to E_1\varphi$ and $a_{i_{\beta}}\varphi \to E_2\varphi$ in the $\sigma(A(G)^{**}, A(G)^*)$ -topology. Thus, $E_1\varphi \neq E_2\varphi$. There exists $f \in A(G)^*$ such that $\langle E_1\varphi, f \rangle \neq \langle E_2\varphi, f \rangle$.

It follows from $a_{i_{\alpha}} \to E_1$ in the $\sigma(A(G)^{**}, A(G)^*)$ -topology, $a_{i_{\alpha}} \in A(G_0)$, and Lemma 2.2(ii) that

$$\begin{split} \langle E_1\varphi, m_{G_0}^*(f)\rangle &= \langle E_1, \varphi m_{G_0}^*(f)\rangle = \langle E_1, m_{G_0}^*(\varphi f)\rangle \\ &= \lim_{\alpha} \langle a_{i_{\alpha}}, m_{G_0}^*(\varphi f)\rangle = \lim_{\alpha} \langle a_{i_{\alpha}}, \varphi f\rangle = \langle E_1, \varphi f\rangle = \langle E_1\varphi, f\rangle. \end{split}$$

Similarly, $\langle E_2\varphi, m_{G_0}^*(f)\rangle = \langle E_2\varphi, f\rangle$. Hence $\langle E_1\varphi, m_{G_0}^*(f)\rangle \neq \langle E_2\varphi, m_{G_0}^*(f)\rangle$.

We extend E_1 and E_2 to right units $\tilde{E_1}$ and $\tilde{E_2}$ of $A(\tilde{G})^{**}$ by Corollary 2.4. It follows from Lemma 2.2(ii), since $\tilde{E_1}$ is an extension of E_1 , that

$$\begin{split} \langle \tilde{E_1}\varphi, m_{G_0}^*(f) \rangle &= \langle \tilde{E_1}, \varphi m_{G_0}^*(f) \rangle = \langle \tilde{E_1}, m_{G_0}^*(\varphi f) \rangle = \langle E_1, m_{G_0}^*(\varphi f) \rangle \\ &= \langle E_1, \varphi m_{G_0}^*(f) \rangle = \langle E_1\varphi, m_{G_0}^*(f) \rangle. \end{split}$$

By a similar argument we can obtain $\langle \tilde{E}_2 \varphi, m_{G_0}^*(f) \rangle = \langle E_2 \varphi, m_{G_0}^*(f) \rangle$. Thus, we have $\langle \tilde{E}_1 \varphi, m_{G_0}^*(f) \rangle \neq \langle \tilde{E}_2 \varphi, m_{G_0}^*(f) \rangle$. This contradicts the assumption $\tilde{E}_1 \varphi = \tilde{E}_2 \varphi = \varphi$. Hence $\{a_i \varphi\}$ is a weakly Cauchy sequence.

It follows from the fact that A(G) is weakly complete that $\{a_i\varphi\}$ converges weakly to a point in A(G). So the weak limit point of $\{a_i\varphi\}$ is uniquely determined by the elements of $L^1(G) \subseteq VN(G)$ (see Eymard [5]). Let $f \in L^1(G)$ have a compact support. Since each $a_i \in A(G_0)$, we have $\langle a_i\varphi, f \rangle = \langle a_i\varphi, 1_{G_0}f \rangle$. It is obvious $\langle m_{G_0}^{**}(\varphi), (1 - 1_{G_0})f \rangle = 0$. Also, $m_{G_0}^*((1_{G_0}f)a_i) = (1_{G_0}f)m_{G_0}(a_i)$ by Lemma 2.2(i). Therefore,

$$\begin{split} \langle a_i\varphi, f \rangle &= \langle a_i\varphi, 1_{G_0}f \rangle = \langle \varphi, (1_{G_0}f)a_i \rangle \\ &= \langle \varphi, (1_{G_0}f)m_{G_0}(a_i) \rangle = \langle \varphi, m^*_{G_0}((1_{G_0}f)a_i) \rangle \\ &= \langle m^{**}_{G_0}(\varphi), (1_{G_0}f)a_i \rangle \to \langle m^{**}_{G_0}(\varphi), (1_{G_0}f) \rangle = \langle m^{**}_{G_0}(\varphi), f \rangle, \end{split}$$

by the property of a_i . Hence $m_{G_0}^{**}(\varphi) \in A(G)$. Since each $a_i \varphi \in A(G_0)$ and $A(G_0)$ is closed in A(G), we have $m_{G_0}^{**}(\varphi) \in A(G_0)$.

Let the restriction $\varphi | UC_2(\hat{G}) = u$. Then $u \in A(G)$ by Lemma 3.1. Let u_α be an approximate identity of A(G). Then it is obvious that $u_\alpha \varphi \to E\varphi$ in the $\sigma(A(G)^{**}, A(G)^*)$ topology for some $E \in \mathcal{E}$. By assumption, $E\varphi = \varphi$. Thus, $u_\alpha \varphi \to \varphi$. Since $u_\alpha \varphi = u_\alpha u$ and $u_\alpha u \to u$ in norm, $u = \varphi$. Therefore φ is in A(G).

Remark. This is analogous to a result for $L^1(G)$ proved by Lau and Ülger [13] (Theorem 5.4). However, their result for $L^1(G)$ holds for all locally compact groups G because $L^1(G)$ always has a bounded approximate identity for any G, and a stronger condition on the algebra is needed for their result (see Lau and Ülger [13, Theorem 5.4, condition(iii)]). Our result requires G to be amenable since the existence of a bounded approximate identity in A(G) is essential in Theorem 3.2.

Corollary 3.3 Let G be an amenable discrete group and $\varphi \in A(G)^{**}$. Then $\varphi \in A(G)$ if and only if $E\varphi = \varphi$ for all $E \in \mathcal{E}$.

Proof This result follows from that fact that A(G) is an ideal in $A(G)^{**}$ if G is discrete (see Lau [11] and Forrest [6]) and Theorem 3.2.

Now we apply Theorem 3.2 to the topological center problem.

Lemma 3.4 Let A be a commutative Banach algebra with a bounded approximate identity. If $\mu \in \Lambda(A^{**})$, then $E\mu = \mu$ for $E \in \mathcal{E}$.

Proof Since \mathcal{A} is commutative, it is easy to check that $a\varphi = \varphi a$ for any $a \in \mathcal{A}$ and $\varphi \in \mathcal{A}^{**}$. Let $E \in \mathcal{E}$. There is a net $\{a_{\alpha}\}$ in \mathcal{A} such that $||a_{\alpha}|| \leq ||E||$ and $a_{\alpha} \to E$ in the weak^{*} topology by Goldstine's theorem. So if $\mu \in \Lambda(\mathcal{A}^{**})$, we have

$$E\mu = \lim_{\alpha} a_{\alpha}\mu = \lim_{\alpha} \mu a_{\alpha} = \mu E = \mu.$$

It is proved in Lau and Losert [12, Theorem 6.5] that for a big class of groups, including amenable discrete groups, $\Lambda(A(G)^{**}) = A(G)$. The following corollary is a result in this direction and also a version of Theorem 2.1(i) in Baker, Lau and Pym [2] without assuming the sequential bounded approximate identity in the case of A(G) (see also [2, Theorem 2.2 and Corollary 2.3]).

Corollary 3.5 Let G be an amenable locally compact group. If $\mu \in \Lambda(A(G)^{**})$ and $A(G)\mu \subseteq A(G)$, then $\mu \in A(G)$. In particular, if G is discrete, then $\Lambda(A(G)^{**}) = A(G)$.

Proof This corollary is a direct consequence of Theorem 3.2 and Lemma 3.4.

It is an open question of Lau and Ülger [13, question (g), p. 1211] as to whether \mathcal{E} distinguishes the points of $\tilde{M} \setminus \mathcal{A}$ from those of \mathcal{A} (*i.e.*, if $\phi \in \tilde{M} \setminus \mathcal{A}$, let $\tilde{\phi}$ be an extension of ϕ to an element in \mathcal{A}^{**} . Then there exist E_1 and E_2 in \mathcal{E} such that $E_1 \tilde{\phi} \neq E_2 \tilde{\phi}$) when \mathcal{A} is sequentially complete and nonunital (see Lau and Ülger [13, p. 1208]). The following result answers this question in the case of $\mathcal{A}(G)$ and removes the condition of σ -compactness in Lau and Ülger [13, Lemma 5.13].

Corollary 3.6 Let G be an amenable locally compact group and $\mathcal{A} = A(G)$. Then \mathcal{E} distinguishes the points of $\tilde{M} \setminus A$ from those of A(G)

Proof Let $\phi \in \overline{M}$. Extend ϕ to an element of $A(G)^{**}$, and denote it by ϕ . It is obvious that $a\tilde{\phi} = a\phi$ for $a \in A(G)$. Hence $A(G)\tilde{\phi} \subseteq A(G)$. Let *E* be in \mathcal{E} . If \mathcal{E} does not distinguish the point ϕ from those of A(G), then $E_1\tilde{\phi} = E_2\tilde{\phi}$ for any E_1 and E_2 in \mathcal{E} (see Lau and Ülger [13], p 1208). Fix a E_0 from \mathcal{E} and let $\psi = E_0\tilde{\phi}$. For any right unit $E \in \mathcal{E}$, we have $E\psi = EE_0\tilde{\phi} = E\tilde{\phi} = E_0\tilde{\phi} = \psi$. For any $a \in A(G)$, $a\psi = aE_0\tilde{\phi} = a\tilde{\phi} \in A(G)$. Hence $A(G)\psi \subseteq A(G)$. By Theorem 3.2, ψ is in A(G). Let $u_\alpha \to E_0$ in the $\sigma(A(G)^{**}, A(G)^*)$ topology for a bounded approximate identity $\{u_\alpha\}$ of A(G). For each $f \in VN(G)$ and $a \in A(G)$,

$$\langle \psi, fa
angle = \langle E_0 \overline{\phi}, fa
angle = \lim \langle u_{\alpha} \overline{\phi}, fa
angle = \lim \langle u_{\alpha} \phi, fa
angle$$

= $\lim \langle u_{\alpha}, \phi(fa)
angle = \lim \langle \phi, (fa)u_{\alpha}
angle = \langle \phi, fa
angle.$

Hence $\phi = \psi$ on $\mathcal{A}^*\mathcal{A}$. Therefore $\phi \in A(G)$.

It is shown in Lau and Losert [12] that for a large class of locally compact groups G, if $\mathcal{A} = A(G)$, then $\tilde{Z}_{\mathcal{A}} = B(G)$. The following result is due to Lau and Losert [12, Theorem 6.4]. It follows immediately from our Corollary 3.6 and Lau and Ülger [13, Theorem 5.12] (see also Lau and Ülger [13, Corollary 5.14]).

Corollary 3.7 Let G be an amenable locally compact group and $\mathcal{A} = A(G)$. Then $\Lambda(A(G)^{**}) = A(G)$ whenever $\tilde{Z}_{\mathcal{A}} = B(G)$.

4 Topological Center of a Subalgebra

Let \mathcal{A} be a Banach algebra. Then $\mathcal{A} \subseteq \Lambda(\mathcal{A}^{**})$ holds. It is well known that $\Lambda(L^1(G)^{**}) = L^1(G)$ for all locally compact groups G, and $\Lambda(A(G)^{**}) = A(G)$ for a large class of groups G (see in Lau and Losert [12]). It is natural to ask: for what

kind of locally compact group *G* does $\Lambda(A_p(G)^{**}) = A_p(G)$? For a subalgebra \mathcal{B} of \mathcal{A} , we study the relationship between the topological centers $\Lambda(\mathcal{B}^{**})$ and $\Lambda(\mathcal{A}^{**})$. As a consequence, we show that the problem of whether $\Lambda(A_p(G)^{**}) = A_p(G)$ can be reduced to that for an open σ -compact subgroup. We generalize some results in Hu [9] and Hu and Neufang [10].

Lemma 4.1 If \mathcal{B} is a closed ideal of a Banach algebra \mathcal{A} such that there is a bounded projection $m: \mathcal{A} \to \mathcal{B}$ which is also a multiplier, then we have

(i) $i^*(\psi f) = m^{**}(\psi)i^*(f)$ for $f \in \mathcal{A}^*$ and $\psi \in \mathcal{A}^{**}$; (ii) $m^*(\varphi g) = i^{**}(\varphi)m^*(g)$ for $g \in \mathcal{B}^*$ and $\varphi \in \mathcal{B}^{**}$.

Proof These follow from a routine verification by using the Arens product and the properties of i and m.

The following result is an abstract version of Lemma 8.1 in Hu and Neufang [10].

Theorem 4.2 Let \mathbb{B} be a closed ideal of a Banach algebra \mathcal{A} . If there exists a bounded projection $m: \mathcal{A} \to \mathbb{B}$ which is also a multiplier, then

$$i^{**}(\Lambda(\mathcal{B}^{**})) \subseteq \Lambda(\mathcal{A}^{**})$$
 and $m^{**}(\Lambda(\mathcal{A}^{**})) \subseteq \Lambda(\mathcal{B}^{**})$.

Proof Let $\varphi \in \Lambda(\mathcal{B}^{**})$. If $\psi_{\alpha} \in \mathcal{A}^{**}$ and $\psi_{\alpha} \to 0$ in the $\sigma(\mathcal{A}^{**}, \mathcal{A}^{*})$ topology, it is easy to see that $m^{**}(\psi_{\alpha}) \to 0$ in the $\sigma(\mathcal{B}^{**}, \mathcal{B}^{*})$ topology. Moreover, for any $f \in \mathcal{A}^{*}$, $i^{*}(\psi_{\alpha}f) = m^{**}(\psi_{\alpha})i^{*}(f)$ by Lemma 4.1(i), we have

$$egin{aligned} &\langle i^{**}(arphi)\psi_lpha,f
angle = \langle arphi,i^*(\psi_lpha f)
angle = \langle arphi,m^{**}(\psi_lpha)i^*(f)
angle \ &= \langle arphi m^{**}(\psi_lpha),i^*(f)
angle o 0 \end{aligned}$$

by the hypothesis $\varphi \in \Lambda(\mathcal{B}^{**})$. Hence $i^{**}(\varphi) \in \Lambda(\mathcal{A}^{**})$.

Conversely, let $\psi \in \Lambda(\mathcal{A}^{**})$ and let $\varphi_{\alpha} \in \mathcal{B}^{**}$ and $\varphi_{\alpha} \to 0$ in the $\sigma(\mathcal{B}^{**}, \mathcal{B}^{*})$ topology. For any $g \in \mathcal{B}^{*}$, since $m^{*}(\varphi_{\alpha}g) = i^{**}(\varphi_{\alpha})m^{*}(g)$ by Lemma 4.1(ii), and $i^{**}(\varphi_{\alpha}) \to 0$ in the $\sigma(\mathcal{A}^{**}, \mathcal{A}^{*})$ topology,

$$\langle m^{**}(\psi)\varphi_{\alpha},g\rangle = \langle \psi,m^{*}(\varphi_{\alpha}g)\rangle = \langle \psi,i^{**}(\varphi_{\alpha})m^{*}(g)\rangle = \langle \psi i^{**}(\varphi_{\alpha}),m^{*}(g)\rangle \to 0.$$

Therefore, $m^{**}(\psi) \in \Lambda(\mathcal{B}^{**})$.

If *H* is an open subgroup of a locally compact group *G*, we denote the inclusion map from $A_p(H)$ to $A_p(G)$ by i_H . So we have the following result.

Corollary 4.3 Let G be a locally compact group. Then for any open subgroup H of G, the following is true

$$i_{H}^{**}(\Lambda(A_{p}(H)^{**})) \subseteq \Lambda(A_{p}(G)^{**})$$
 and $m_{H}^{**}(\Lambda(A_{p}(G)^{**})) \subseteq \Lambda(A_{p}(H)^{**}).$

Theorem 4.4 Let G be an amenable locally compact group. Then $\Lambda(A_p(G)^{**}) = A_p(G)$ if and only if $\Lambda(A_p(H)^{**}) = A_p(H)$ for any open σ -compact subgroup H of G.

https://doi.org/10.4153/CJM-2009-020-0 Published online by Cambridge University Press

Proof Assume $\Lambda(A_p(G)^{**}) = A_p(G)$. For any open σ -compact subgroup H of G, if $\varphi \in \Lambda(A_p(H)^{**})$, then $i_H^{**}(\varphi) \in \Lambda(A_p(G)^{**})$ by Corollary 4.3. So $i_H^{**}(\varphi) \in A_p(G)$. It is clear that $i_H^{**}(\varphi) = 0$ on $G \setminus H$. By identitifying an element of $A_p(H)$ with an element in $A_p(G)$ as usual, we have $i_H^{**}(\varphi) = \varphi$ is in $A_p(H)$.

Conversely, assume $\Lambda(A_p(H)^{**}) = A_p(H)$ for any open σ -compact subgroup H of G. For any $\psi \in \Lambda(A_p(G)^{**})$, it follows from Corollary 4.3 that $m_H^{**}(\psi) \in \Lambda(A_p(H)^{**})$ for any open σ -compact subgroup H of G. Hence $m_H^{**}(\psi) \in A_p(H)$. By Lemma 3.1, the restriction of ψ onto $UC_p(\hat{G})$ denoted by u_{ψ} is in $A_p(G)$. Since G is amenable, $A_p(G)$ has a bounded approximate identity $\{a_{\alpha}\}$. Assume $a_{\alpha} \to E$ in the $\sigma(A_p(G)^{**}, A_p(G)^*)$ topology without loss of generality. For any $f \in PM_p(G)$, since $fa_{\alpha} \in UC_p(\hat{G})$ and $fa_{\alpha} = a_{\alpha}f$, we have

$$\langle \psi, a_{\alpha} f \rangle = \langle u_{\psi}, a_{\alpha} f \rangle = \langle u_{\psi} a_{\alpha}, f \rangle \rightarrow \langle u_{\psi}, f \rangle.$$

On the other hand, since $E \in \mathcal{E}$ and $\psi \in \Lambda(A_p(G)^{**})$,

$$\langle \psi, a_{\alpha} f \rangle = \langle \psi a_{\alpha}, f \rangle \rightarrow \langle \psi E, f \rangle = \langle \psi, f \rangle.$$

Hence, $\psi = u_{\psi}$ is in $A_p(G)$.

Let \mathcal{B} be a closed ideal of a Banach algebra \mathcal{A} . Next, we study the relationship between $\tilde{Z}_{\mathcal{B}}$ and $\tilde{Z}_{\mathcal{A}}$. Assume that there is a bounded projection $m: \mathcal{A} \to \mathcal{B}$ which is also a multiplier. Then i^* maps $\mathcal{A}^*\mathcal{A}$ to $\mathcal{B}^*\mathcal{B}$. In fact, if $f \in \mathcal{A}^*$ and $a \in \mathcal{A}$, we have

$$\langle i^*(fa), b \rangle = \langle fa, b \rangle = \langle f, ab \rangle = \langle f, m(ab) \rangle = \langle f, m(a)b \rangle = \langle i^*(f)m(a), b \rangle$$

for any $b \in \mathcal{B}$. Hence $i^*(fa) = i^*(f)m(a)$ is in $\mathcal{B}^*\mathcal{B}$. Therefore, $i^*(\mathcal{A}^*\mathcal{A}) \subseteq \mathcal{B}^*\mathcal{B}$. Similarly, it is easy to see that for any $g \in \mathcal{B}^*$ and $b \in \mathcal{B}$, $m^*(gb) = m^*(g)b$. So $m^*: \mathcal{B}^* \to \mathcal{A}^*$ maps $\mathcal{B}^*\mathcal{B}$ to $\mathcal{A}^*\mathcal{A}$.

Theorem 4.5 Let \mathcal{B} be a closed ideal of a Banach algebra \mathcal{A} . If there exists a bounded projection $m: \mathcal{A} \to \mathcal{B}$ which is also a multiplier, then

$$i^{**}(\tilde{Z}_{\mathcal{B}}) \subseteq \tilde{Z}_{\mathcal{A}}$$
 and $m^{**}(\tilde{Z}_{\mathcal{A}}) \subseteq \tilde{Z}_{\mathcal{B}}$.

Proof Let $\varphi \in \tilde{Z}_{\mathcal{B}}$. If $\psi_{\alpha} \in (\mathcal{A}^*\mathcal{A})^*$ and $\psi_{\alpha} \to 0$ in the $\sigma((\mathcal{A}^*\mathcal{A})^*, \mathcal{A}^*\mathcal{A})$ topology, it is easy to see that $m^{**}(\psi_{\alpha}) \to 0$ in the $\sigma((\mathcal{B}^*\mathcal{B})^*, \mathcal{B}^*\mathcal{B})$ topology. Let $\tilde{\psi}_{\alpha}$ be an extension of ψ_{α} to an element of \mathcal{A}^{**} . For any $f \in \mathcal{A}^*\mathcal{A}$, it is clear that $\psi_{\alpha}f = \tilde{\psi}_{\alpha}f$ as elements in \mathcal{A}^* , and $m^{**}(\psi_{\alpha})i^*(f) = m^{**}(\tilde{\psi}_{\alpha})i^*(f)$ as elements of \mathcal{B}^{**} . Hence, by Lemma 4.1(i), $i^*(\tilde{\psi}_{\alpha}f) = m^{**}(\tilde{\psi}_{\alpha})i^*(f)$. It follows that

$$egin{aligned} &\langle i^{**}(arphi)\psi_lpha,f
angle = \langle arphi,i^*(\psi_lpha f)
angle = \langle arphi,m^{**}(\tilde{\psi}_lpha f)
angle \ &= \langle arphi,m^{**}(\tilde{\psi}_lpha)i^*(f)
angle = \langle arphi,m^{**}(\psi_lpha)i^*(f)
angle \ &= \langle arphi m^{**}(\psi_lpha),i^*(f)
angle o 0 \end{aligned}$$

by the hypothesis $\varphi \in \tilde{Z}_{\mathcal{B}}$. Hence $i^{**}(\varphi) \in \tilde{Z}_{\mathcal{A}}$.

Conversely, let $\psi \in \tilde{Z}_{\mathcal{A}}$ and let $\varphi_{\alpha} \in \mathcal{B}^*\mathcal{B}^*$ and $\varphi_{\alpha} \to 0$ in the $\sigma((\mathcal{B}^*\mathcal{B})^*, (\mathcal{B}^*\mathcal{B}))$ topology. Let $\tilde{\varphi}_{\alpha}$ be an extension of φ_{α} to an element in \mathcal{B}^{**} . Then for any $g \in \mathcal{B}^*\mathcal{B}$, it is clear that $\varphi_{\alpha}g = \tilde{\varphi}_{\alpha}g$ as elements in \mathcal{B}^* and $i^{**}(\tilde{\varphi}_{\alpha})m^*(g) = i^{**}(\varphi_{\alpha})m^*(g)$ as elements of \mathcal{A}^{**} . By Lemma 4.1(ii), $m^*(\tilde{\varphi}_{\alpha}g) = i^{**}(\tilde{\varphi}_{\alpha})m^*(g)$, and $i^{**}(\varphi_{\alpha}) \to 0$ in the $\sigma((\mathcal{A}^*\mathcal{A})^*, \mathcal{A}^*\mathcal{A}))$ topology. Thus, we have

$$\begin{split} \langle m^{**}(\psi)\varphi_{\alpha},g\rangle &= \langle \psi,m^{*}(\varphi_{\alpha}g)\rangle = \langle \psi,m^{*}(\tilde{\varphi}_{\alpha}g)\rangle = \langle \psi,i^{**}(\tilde{\varphi}_{\alpha})m^{*}(g)\rangle \\ &= \langle \psi,i^{**}(\varphi_{\alpha})m^{*}(g)\rangle = \langle \psi i^{**}(\varphi_{\alpha}),m^{*}(g)\rangle \to 0. \end{split}$$

Therefore, $m^{**}(\psi) \in \tilde{Z}_{\mathcal{B}}$.

It is proved by Derighetti, Filali, and Monfared [4] that $W_p(G)$ can be embedded into $UC_p(\hat{G})^*$ as follows. For $b \in W_p(G)$ and $fu \in UC_p(\hat{G})$, where $u \in A_p(G)$ and $f \in PM_p(G)$, $\langle b, fu \rangle = \langle f, bu \rangle$. It is proved in Lau and Losert [12] that for p = 2, $B_p(G)$ is contained in $\tilde{Z}_{UC_2(\hat{G})}$. Their proof works for the case of $p \neq 2$ as well. In fact, we only need to show that, for $b \in W_p(G)$ and $\varphi \in UC_p(\hat{G})^*$, we have $b\varphi = \varphi b$ under the first Arens multiplication as the proof of Proposition 4.5 in Lau and Losert [12]. Since it is routine to check that $\langle b\varphi, fu \rangle = \langle \varphi b, fu \rangle$ for any $u \in A_p(G)$ and $f \in PM_p(G)$, therefore, $b\varphi = \varphi b$ and so $W_p(G) \subseteq \tilde{Z}_{UC_p(\hat{G})}$. The question is whether $\tilde{Z}_{UC_p(\hat{G})} = W_p(G)$. Lau and Losert in [12] showed that if G is second countable and the commutator subgroup $\overline{[G, G]}$ is not open in G, then it is true that $\tilde{Z}_{UC_2(\hat{G})} = B_p(G)$. The following result is the p-version of Theorem 3.6 in Hu [9], showing that this problem can be reduced to that for σ -compact open subgroups.

Corollary **4.6** *Let G be a locally compact group. Then*

- (i) $W_p(G) \subseteq \tilde{Z}_{UC_p(\hat{G})};$
- (ii) $\tilde{Z}_{UC_p(\hat{G})} = W_p(G)$ if and only if $\tilde{Z}_{UC_p(\hat{G}_0)} = W_p(G_0)$ for all σ -compact open and closed subgroups G_0 of G.

Proof (i) is proved above. To prove (ii), suppose $\tilde{Z}_{UC_p(\hat{G})} = W_p(G)$. Let G_0 be a σ -compact open and closed subgroup of G. If $\varphi \in \tilde{Z}_{UC_p(\hat{G}_0)}$, since $PF_p(G_0)$ is a closed subspace of $UC_p(G_0)$, we denote the restriction of φ onto $PF_p(G_0)$ by b_{φ} . Then $b_{\varphi} \in W_p(G_0)$. We claim that $\varphi = b_{\varphi}$. By (i), we have $b_{\varphi} \in \tilde{Z}_{UC_p(\hat{G}_0)}$. It follows from Theorem 4.5 that $i_{G_0}^{**}(\varphi - b_{\varphi}) \in \tilde{Z}_{UC_p(\hat{G})} = W_p(G)$. For any $f \in L^1(G)$, it is easy to see that $i^*(f) = f \cdot 1_{G_0}$ is in $L^1(G_0)$. Hence

$$\langle i^{**}_{G_0}(arphi-b_arphi),f
angle=\langle arphi-b_arphi,i^*_{G_0}(f)
angle=\langle arphi-b_arphi,f\mathbf{1}_{G_0}
angle=0.$$

Thus, $i_{G_0}^{**}(\varphi - b_{\varphi}) = 0$. For any $fu \in UC_p(\hat{G}_0)$, where $f \in PM_p(G_0)$ and $u \in A_p(G_0)$, we can extend f to an element \tilde{f} of $PM_p(G)$. Then $\tilde{f}u \in UC_p(G)$. It follows from the fact $i^*(\tilde{f}u) = fu$ that

$$\langle \varphi - b_{\varphi}, fu \rangle = \langle \varphi - b_{\varphi}, i^*(\tilde{f}u) \rangle = \langle i^{**}(\varphi - b_{\varphi}), \tilde{f}u \rangle = 0.$$

Therefore, $\varphi = b_{\varphi}$ is in $W_p(G_0)$.

Conversely, let $\varphi \in \tilde{Z}_{UC_p(\hat{G})}$. Note that $PF_p(G)$ is a closed subspace of $UC_p(\hat{G})$. The restriction of φ onto $PF_p(G)$, denoted by b_{φ} , is in $W_p(G)$. Let $\tilde{\varphi} = \varphi - b_{\varphi}$. If $\tilde{\varphi} \neq 0$ as an element of $UC_p(\hat{G})^*$, then there is fu in $UC_p(\hat{G})$ for $f \in PM_p(G)$ and $u \in A_p(G)$ such that $\langle \tilde{\varphi}, fu \rangle \neq 0$. Assume the support of u, denoted by K, is a compact subset of G without loss of generality. There is a σ -compact open subgroup G_0 of G such that $K \subseteq G_0$. By the hypothesis, $\tilde{Z}_{UC_p(\hat{G}_0)} = W_p(G_0)$. It follows from Theorem 4.5 that $m_{G_0}^{**}(\tilde{\varphi}) \in W_p(G_0)$. Since $fu \in UC_p(\hat{G}_0)$ and $\langle m_{G_0}^{**}(\tilde{\varphi}), fu \rangle =$ $\langle \tilde{\varphi}, m_{G_0}^*(fu) \rangle = \langle \tilde{\varphi}, fu \rangle \neq 0, m_{G_0}^{**}(\tilde{\varphi}) \neq 0$. It follows from $W_p(G_0) = PF_p(G_0)^*$ and $m_{G_0}^{**}(\tilde{\varphi}) \in W_p(G_0)$ that there is $g \in L^1(G_0)$ such that $\langle m_{G_0}^{**}(\tilde{\varphi}), g \rangle \neq 0$. On the other hand, since $L^1(G_0) \subseteq L^1(G)$, we have $\langle m_{G_0}^{**}(\tilde{\varphi}), g \rangle = \langle \tilde{\varphi}, g \rangle = \langle \varphi, g \rangle - \langle b_{\varphi}, g \rangle = 0$. This is a contradiction. Hence $\varphi = b_{\varphi}$ as elements in $UC_p(\hat{G})^*$ is in $W_p(G)$.

References

- [1] R. Arens, The adjoint of a bilinear operation. Proc. Amer. Math. Soc. 2(1951), 839–848.
- [2] J. Baker, A. T. Lau, and J. Pym, Module homomorphisms and topological centres associated with weakly sequentially complete Banach algebras. J. Funct. Anal. 158(1998), no. 1, 186–208.
- [3] F. F. Bonsall and J. Duncan, *Complete normed algebras*. Ergebnisse der Mathmatik und ihrer Grenzgebiete 80, Springer-Verlag, New York-Heidelberg-Berlin, 1973.
- [4] A. Derighetti, M. Filali, and M. S. Monfared, On the ideal structure of some Banach algebras related to convolution operators on L^p(G). J. Funct. Anal. 215(2004), no. 2, 341–365.
- [5] P. Eymard, L'algèbre de Fourier d'un groupe localement compact. Bull. Soc. Math. France 92(1964), 181–236.
- [6] B. Forrest, Arens regularity and discrete groups. Pacific J. Math. 151(1991), no. 2, 217–227.
- [7] E. E. Granirer and M. Leinert, On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebra B(G) and of the measure algebra M(G). Rocky Mountain J. Math. 11(1981), no. 3, 459–472.
- [8] C. Herz, *Harmonic synthesis for subgroups*. Ann. Inst. Fourier (Grenoble) **23**(1973), no. 3, 91–123.
- [9] Z. Hu, Open subgroups and the centre problem for the Fourier algebra. Proc. Amer. Math. Soc. 134(2006), no. 10, 3085–3095.
- [10] Z. Hu and M. Neufang, Decomposability of von Neumann algebras and the Mazur property of higher level. Canad. J. Math. 58(2006), no. 4, 768–795.
- [11] A. T. Lau, The second conjugate algebra of the Fourier algebra of a locally compact group. Trans. Amer. Math. Soc. 267(1981), no. 1, 53–63.
- [12] A. T. Lau and V. Losert, The C*-algebra generated by operators with compact support on a locally compact group. J. Funct. Anal. 112(1993), no. 1, 1–30.
- [13] A. T. Lau and A. Ülger, *Topological centers of certain dual algebras*. Trans. Amer. Math. Soc. 348(1996), no. 3, 1191–1212.
- [14] T. Miao, Decomposition of B(G). Trans. Amer. Math. Soc. 351(1999), no. 11, 4675–4692.
- [15] _____, Characterizations of elements with compact support in the dual spaces of $A_p(G)$ -modules of $PM_p(G)$. Proc. Amer. Math. Soc. **132**(2004), no. 12, 3671–3678.
- [16] J.-P. Pier, Amenable locally compact groups. Pure and Applied Mathematics, John Wiley and Sons, New York, 1984.
- [17] H. Reiter and J. D. Stegeman, *Classical harmonic analysis and locally compact groups*. Oxford University Press, 2000.

Department of Mathematical Sciences, Lakehead University, Thunder Bay, Ontario P7E 5E1 e-mail: tmiao@lakeheadu.ca

394