TWO AMALGAMS RELATED TO THE ALTERNATING GROUP ON SIX LETTERS

PANAGIOTIS PAPADOPOULOS

A characterisation is given of some of the parabolics found in Co_3 , and $SP_4(9)$ using the amalgam method.

1. INTRODUCTION

Leg G be a finite group, p a prime, $S \in Syl_p(G)$ and $B = N_G(S)$. A proper subgroup of G which contains a conjugate of B is called a *parabolic subgroup* of G. The set \Im of parabolic subgroups of G ordered by inclusion becomes a partially ordered set called *the parabolic geometry* of G. In recent years the parabolic geometry (in particular for p = 2) has been used to study, construct, characterise and prove uniqueness of many of the sporadic finite simple groups. The parabolic geometries (again for p = 2) also play an important role in the ongoing revision of the classification of the finite simple groups, in particular in the so called quasi-thin and uniqueness cases.

Parabolic subgroups have been studied most intensively for p = 2 but many interesting examples exist (besides the groups of Lie type) for arbitrary primes.

Recall that G is an amalgamated product of P_1 and P_2 if (G, P_1, P_2) has the following properties:

- (i) P_1 and P_2 are finite subgroups of G.
- (ii) $G = \langle P_1, P_2 \rangle$.
- (iii) Let $S \in \operatorname{Syl}_p(P_1 \cap P_2)$ and $B = N_{P_1 \cap P_2}(S)$; then $B = N_{P_i}(S)$, i = 1, 2. In particular $S \in \operatorname{Syl}_p(P_i)$, i = 1, 2.
- (iv) No nontrivial normal subgroup of G is contained in B.

To any amalgamated product (G, P_1, P_2) we can associate a graph Γ whose vertices are the cosets of P_1 and P_2 in G and two cosets are adjacent if they are distinct and have non-empty intersection We remark that if $B = N_G(S)$ then the graph Γ can be embedded into the parabolic geometry of G.

The amalgamation method has proven very successful in determining the structure of P_1 and P_2 assuming the action of P_1 and P_2 on their neighbours $\Delta(P_1)$ and $\Delta(P_2)$ respectively in the graph Γ is given.

Received 27th May, 1998

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.

P. Papadopoulos

Let us assume for simplicity that $P_1 \cap P_2 = B$. Let $Q_i = O_p(P_i)$, $L_i = O^p(P_i) = \langle S^{P_i} \rangle$ and $P_i^{(l)}/Q_i = C_{G_i/Q_i}(L_i/Q_i)$. Then it is easy to see that $P_i^{(l)}$ is precisely the kernel of the action of P_i on $\Delta(P_i)$ and L_i acts transitively on $\Delta(P_i)$. Hence the group L_i/Q_i carries most of the information about the action of P_i and $\Delta(P_i)$ and we refer to the pair $(L_1/Q_1, L_2/Q_2)$ as the type of the amalgamated product (G, P_1, P_2) .

The main task of the amalgam method can now be described as determining (P_1, P_2) from the type $(L_1/Q_1, L_2/Q_2)$. For example, in [9] we determined the structure of (P_1, P_2) of type $(\Theta, \text{SL}_2(3))$, where $\Theta \cong \text{PSL}_2(9)$, M_{11} , M_{12} or $2 \cdot M_{12}$, for p = 3.

For the remainder of this paper we shall work under the following hypothesis: (*) (G, P_1, P_2) is an amalgamated product of type (Θ, Ψ) for p = 3 so that:

- (i) $\Theta \cong \text{PSL}_2(9), M_{11}, M_{12} \text{ or } 2 \cdot M_{12},$
- (ii) $\Psi \cong PSL_2(9)$ or $SL_2(9)$,
- (iii) $C_{P_i}(O_3(P_i)) \leq O_3(P_i)$ for i = 1, 2.

Introduce now the following notation: $G \sim 3^{d_1 + \ldots + d_n} H$ means that there exists a normal series

$$1=H_0\leqslant H_1\leqslant\ldots\leqslant H_n\leqslant G,$$

so that for $i = 1, 2, ..., n, H_i/H_{i-1}$ is an elementary Abelian minimal normal subgroup of G/H_{i-1} with $|H_i/H_{i-1}| = 3^{d_i}$ and $G/H_n \cong H$.

Also, by $G \sim 2 \cdot H$ we mean that $G/Z(G) \cong H$, |Z(G)| = 2 and $Z(H) \leq H'$. We are now able to state our main result.

THEOREM. Under hypothesis (*) the possible pairs (L_1, L_2) are:

- (i) $(3^5 M_{11}, 3^{1+4} \operatorname{SL}_2(9))$,
- (ii) $(3^6 \text{PSL}_2(9), 3^{1+1+4} \text{SL}_2(9))$.

Note that the above examples can be found in $G \cong Co_3$ and $PSp_4(9)$ respectively.

2. Properties of Θ , Ψ and their modules – the graph Γ

A Steiner system S(l, m, n) is a pair (Ω, B) , where Ω is a set of size n, B is a set of subsets of size m called blocks and such that every subset of size l in Ω lies in a unique member of B.

By [10], there exists, up to isomorphism, a unique Steiner system of type S(5, 6, 12). Let S = S(5, 6, 12). Define then the *Mathieu group on 12 points* to be the group $M_{12} = \text{Aut}(S) = \{\pi \in \text{Sym}(12) \mid B^{\pi} \text{ is a block for all blocks } B\}.$

Define M_{11} to be the stabiliser of a point in M_{12} . Then M_{11} is 4-transitive on eleven points and its corresponding Steiner system is S(4, 5, 11).

LEMMA 2.1.

[3]

- (a) $|M_{12}| = 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 = 2^6 \cdot 3^3 \cdot 5 \cdot 11$.
- (b) M_{12} has two classes of involutions, say D_1 and D_2 . Moreover if $D_1 = \{x \mid x \text{ fixes a point}\}$, then $x \in D_1$,

if and only if x fixes a point if and only if x fixes four points if and only if x belongs to a normaliser of a Sylow 3-subgroups of M_{12} if and only if x lifts to an involution in $2 \cdot M_{12}$.

PROOF: See [1] and [6].

NOTATION 2.2. To avoid repetitions we shall use the following notation throughout:

 $X \cong (2)H$ means that either $X \cong 2 \cdot H$ or $X \cong H$.

DEFINITION 2.3: Let X be a finite group. Slightly abusing the standard definition we shall say that X is 3-stable provided that the following condition holds: If V is an irreducible GF(3)X-module and $A \leq X$ is such that [V, A, A] = 1 then [V, A] = 1.

LEMMA 2.4. Let Y be a finite group. Then:

- (a) The following statement is equivalent to Y being 3-stable: let V be any GF(3)-module and $A \leq Y$ with [V, A, A] = 1. Then $AC_Y(V)/C_Y(V) \leq O_3(Y/C_Y(V))$.
- (b) Y is 3-stable if and only if $Y/O_3(Y)$ is 3-stable.
- (c) If every element of order 3 in Y lies in a perfect simple 3-stable subgroup of Y then Y is 3-stable.

PROOF: See [9].

DEFINITION 2.5: A GF (3)X-module V is called an FF-module for X if $C_X(V) = 1$ and if there exists a non-identity 3-subgroup A of X such that $|V| / |C_V(A)| \leq |A|$.

LEMMA 2.6. Θ is 3-stable; in particular Θ does not have an FF-module.

PROOF: The proof that Θ is 3-stable can be found in [9]; Thompson's Replacement Theorem [5, 8.2.5] implies that a group with an irreducible FF-module is not 3-stable and hence Θ does not have an FF-module.

DEFINITION 2.7: Let $X \cong SL_2(9)$ and let W be a faithful GF(3)X-module. Then W is called a natural $SL_2(9)$ -module for X if W carries the structure of a 2-dimensional vector space over GF(9) invariant under the action of X.

P. Papadopoulos

It is worth mentioning at this point that

$$A_6 \cong \mathrm{PSL}_2(9) \text{ and } 2 \cdot A_6 \cong \mathrm{SL}_2(9).$$

REMARK 2.8.

- PSL₂ (9) has four irreducible GF(3)-modules; their dimensions are: 1, 4, 6 and 9.
- (ii) Let $X = SL_2(9)$ and let V be an FF-module. Then

$$V = [V, Z(X)] \oplus C_V(X)$$

and [V, Z(X)] is a natural SL₂ (9)-module. [8, p.469 and 470].

(iii) M_{11} has two non-trivial irreducible GF(3)-modules of dimension less than or equal to 8; moreover, both have dimension five and they are dual to each other [7].

DEFINITION 2.9: Let $\Gamma = \{P_i x \mid x \in G, i = 1, 2\}$. From now on, small Greek letters will always denote elements of Γ . Make Γ into a graph by defining α to be adjacent to β if and only if $\alpha \neq \beta$ and $\alpha \cap \beta \neq \emptyset$. Then G operates on Γ by right multiplication.

For $\delta \in \Gamma$, let $G_{\delta} = \operatorname{Stab}_{G}(\delta)$, let $G_{\delta}^{(n)}$ equal the largest normal sugroup of G_{δ} fixing all vertices of distance at most n from δ and let $\Delta(\delta)$ be the set of all vertices adjacent to δ .

LEMMA 2.10. Let X be any of our groups Θ or Ψ , $S_1 \in \text{Syl}_3(X)$ and $B_1 = N_X(S_1)$. Then B_1 is irreducible on $Z(S_1)$; in particular B_1 is irreducible on S_1 for $X \cong (P) \operatorname{SL}_2(9)$ or M_{11} and $S = Q_{\alpha}Q_{\beta}$.

PROOF: See [9].

LEMMA 2.11. The normaliser of a Sylow 3-subgroup is maximal in $SL_2(9)$.

PROOF: See [3, 8.3.2 and 11.3.2].

LEMMA 2.12. Let i = 1, 2. Then:

- (a) $G_{P_ix} = P_i^x$,
- (b) The edge-stabilisers in G are conjugate to B,
- (c) Let $\delta_i = P_i$. Then $\Delta(\delta_i) \cong P_i/B$ as a G_{δ_i} -set; in particular, G_{δ_i} is transitive on $\Delta(\delta_i)$,
- (d) Let (δ, λ) be an edge of λ ; then $G = \langle G_{\delta}, G_{\lambda} \rangle$,
- (e) G acts faithfully on Γ ,
- (f) Γ is connected.

PROOF: See [4, 2.1, 2.2 and 3.1]

0

Ο

NOTATION 2.13. Let d(,) denote the usual distance on the graph Γ . For $\delta \in \Gamma$ and $i \ge 1$,

$$\begin{split} \Delta^{(i)}(\delta) &= \left\{ \lambda \in \Gamma \mid d(\delta, \lambda) \leqslant i \right\}, \\ Q_{\delta} &= O_3(G_{\delta}), \\ Z_{\delta} &= \langle \Omega_1 Z(T) \mid T \in \operatorname{Syl}_3(G_{\delta}) \rangle, \\ V_{\delta} &= \langle Z_{\lambda} \mid \lambda \in \Delta(\delta) \rangle, \\ b_{\delta} &= \min_{\delta' \in \Gamma} \left\{ d(\delta, \delta') \mid Z_{\delta} \nleq G_{\delta'}^{(l)} \right\}, \\ b &= \min_{\delta' \in \Gamma} \{ b_{\delta'} \}, \\ G_{\delta\lambda} &= G_{\delta} \cap G_{\lambda} \text{ and } Q_{\delta\lambda} = Q_{\delta} \cap Q_{\lambda} \text{ if } \delta \in \Delta(\lambda). \end{split}$$

A pair of vertices (δ, δ') such that $Z_{\delta} \not\leq G_{\delta'}^{(l)}$ and $d(\delta, \delta') = b$ is called a critical pair.

The bounding of the parameter b which we just introduced, will allow us to deduce a considerable amount of information about P_1 and P_2 .

Lemma 2.14.

[5]

- (a) G acts edge- but not vertex-transitively on Γ ,
- (b) G_{δ} is finite,
- (c) $C_{G_{\delta}}(Q_{\delta}) \subseteq Q_{\delta}$,
- (d) if α is adjacent to β they $\operatorname{Syl}_3(G_\alpha \cap G_\beta) \subseteq \operatorname{Syl}_3(G_\alpha) \cap \operatorname{Syl}_3(G_\beta)$.

PROOF: See [4, p.73].

REMARK 2.15. Notice that as G acts edge-transitively, $b = \min\{b_{\alpha}, b_{\beta}\}$ for any pair of adjacent vertices α, β . Thus, we are allowed to choose α, β such that $b_{\alpha} = b \leq b_{\beta}$ and $\{G_{\alpha}, G_{\beta}\} = \{P_1, P_2\}$. In particular, $G_{\alpha} \cap G_{\beta} = B$ and $S \in \text{Syl}_3(G_{\alpha}) \cap \text{Syl}_3(G_{\beta})$.

Let $\alpha \in \Gamma$ be such that $d(\alpha, \alpha) = b$ and $Z_{\alpha} \notin G_{\alpha'}^{(l)}$. Let p be a path of length b from α to α . We label the vertices of p by

$$p = (\alpha, \alpha + 1, \ldots, \alpha + b) = (\alpha' - b, \ldots, \alpha' - 1, \alpha'),$$

that is, $\alpha + i$ (respectively $\alpha - i$) is the unique vertex in p with $d(\alpha, \alpha + i) = i$ (respectively $d(\alpha - i) = i$). furthermore, from 2.12 (c) we may assume that

$$\beta = \alpha + 1$$
 if $b \ge 1$.

Note also that if $Q_{\delta} = Q_{\lambda}$ for some $\delta \in \Delta(\lambda)$ then $Q_{\delta} \trianglelefteq \langle G_{\delta}, G_{\lambda} \rangle = G$, a contradiction. Hence

$$Q_{\delta} \neq Q_{\lambda} \ \forall \delta \in \Delta(\lambda).$$

LEMMA 2.16. Let (δ, λ) be an edge and let N be a subgroup of $G_{\delta, \lambda}$ such that $N_{G_{\mu}}(N)$ acts transitively on $\Delta(\mu)$ for $\mu \in {\delta, \lambda}$. Then N = 1.

PROOF: See [4, (3.2)].

Ο

LEMMA 2.17. For $\delta \in \Gamma$,

- (a) $Q_{\delta} \leq G_{\delta}^{(1)}$,
- (b) $Z_{\delta} \leq Z(Q_{\delta}) \cap V_{\delta}$; in particular, $b \geq 1$ and $Z_{\alpha} \not\leq Q_{\alpha'}$,
- (c) $Z_{\alpha'} \leq G_{\alpha}$ and $[Z_{\alpha}, Z_{\alpha'}] \leq Z_{\alpha} \cap Z_{\alpha'}$
- (d) $Z_{\alpha} \neq \Omega_1 Z(T), T \in \operatorname{Syl}_3(G_{\alpha}),$
- (e) If $S \in \text{Syl}_3(B)$ and $\Omega_1(Z(S))$ is centralised by a sugbroup R of G_β which acts trasitively on $\Delta(\beta)$ then $Z(L_\alpha) = 1$.

PROOF: See [9].

Remark 2.18.

- (i) $Z_{\delta} \leq G_{\gamma} \ \forall \gamma \in \Delta^{(1)}(\delta), \ B = G_{\alpha\beta}, \ Z_{\alpha} \leq B, \ Z_{\beta} \leq B.$
- (ii) Also $\operatorname{Syl}_3(B) \subseteq \operatorname{Syl}_3(P_1) \cap \operatorname{Syl}_3(P_2)$.
- (iii) A Frattini argument gives that $L_{\delta}S = L_{\delta}$ and for $\mu \in \Delta(\delta)$, $G_{\delta} = L_{\delta}G_{\delta\mu}$.

A list of properties follows, the proofs of which can be found in [9].

LEMMA 2.19.

- (i) $[Z_{\alpha}, Z_{\alpha'}, Z_{\alpha'}] = 1.$
- (ii) $V_{\delta} \trianglelefteq G_{\delta} \forall \delta \in \Gamma$.
- (iii) Z_{α} normalises V_{α} .
- (iv) If $\beta > 2$ then V_{β} is Abelian.
- (v) If $Z_{\delta} \leq Z(L_{\delta})$ then $Z_{\delta} \leq Z_{\lambda} \quad \forall \lambda \in \Delta(\delta)$.
- (vi) $Z_{\alpha} \not\leq Z(L_{\alpha})$.
- (vii) If $Z_{\alpha'} \leq Z(L_{\alpha'})$ then α is not conjugate to α' .
- (viii) $Z_{\alpha} \cap Q_{\alpha'} \neq C_{Z_{\alpha}}(Z_{\alpha'})$ if and only if $Z_{\alpha'} \leq Z(L'_{\alpha})$.
- (ix) Let $\delta \in \{\alpha, \beta\}$ and A be a 3-subgroup of G_{δ} with $A \notin Q_{\delta}$. Then

$$O^{3}(L_{\delta}) \leq \langle A^{L_{\delta}} \rangle$$
 and $L_{\delta} = \langle A^{L_{\delta}} \rangle Q_{\delta}$.

Remark 2.20.

- (a) By 2.19 (vi), $Z_{\alpha} \not\leq Z(L_{\alpha})$ and so by 2.19 (ix) $C_{G_{\alpha}}(Z_{\alpha})/Q_{\alpha}$ is a 3-group.
- (b) If $Z_{\alpha'} \leq Q_{\alpha}$ then $[Z_{\alpha}, Z_{\alpha'}] = 1$ and so $Z_{\alpha} = C_{Z_{\alpha}}(Z_{\alpha'})$. Hence $Z_{\alpha} \cap Q_{\alpha'} \neq z_{\alpha}$ and $Z_{\alpha} \cap Q_{\alpha'} \neq C_{Z_{\alpha}}(Z_{\alpha'})$.
- (c) If $Z_{\alpha'} \not\leq Q_{\alpha}$ then by (a) $C_{Z_{\alpha}}(Z_{\alpha'}) = Z_{\alpha} \cap Q_{\alpha'}$ and since we have a complete symmetry between α and α' in this case, we get that

$$C_{Z'_{\alpha}}(Z_{\alpha}) = Z_{\alpha'} \cap Q_{\alpha}.$$

DEFINITION 2.21:

- (a) $\overline{L_{\delta}} = L_{\delta}/O_3(L_{\delta})$.
- (b) Let K be a complement for S in B and

$$K_{\alpha} = K \cap L_{\alpha}$$
 and $K_{\beta} = K \cap L_{\beta}$.

(c) Let $\delta \in \{a, \beta\}$. Let t_{δ} be an element of order 2 in K_{δ} with $t_{\delta}Q_{\delta}/Q_{\delta} \in Z(L_{\delta}/Q_{\delta})$ if L_{δ}/Q_{δ} is isomorphic to one of the groups $SL_2(9)$, $2 \cdot M_{12}$; otherwise let $t_{\delta} = 1$.

The following corollary will be useful for the proof of 3.6.

COROLLARY 2.22. If $\delta \in \Delta(\lambda)$, $t_{\delta} \neq 1$ and $L_{\lambda}/Q_{\lambda} \cong (P) \operatorname{SL}_2(9)$, M_{11} or $(2)M_{12}$ then t_{δ} does not centralise S/Q_{λ} .

PROOF: See [9].

3. The CASE
$$[Z_{\alpha}Z_{\alpha'}] \neq 1$$

In this section we work under the hypothesis $Z_{\alpha'} \notin Q_{\alpha}$. Notice that under this hypothesis, we have a complete symmetry between α and α' , so $Z_{\alpha'} \notin Z(L_{\alpha'})$.

PROPOSITION 3.0. The hypothesis of this section leads to a contradiction.

LEMMA 3.1.

(a)
$$Z_{\alpha} \cap Q_{\alpha'} = C_{Z_{\alpha}}(Z_{\alpha'})$$
; in particular b is even,
(b) $Z_{\alpha'} \cap Q_{\alpha} = C_{Z_{\alpha'}}(Z_{\alpha})$,

PROOF: See [9].

DEFINITION 3.2: $\varepsilon = 1$ if $Z_{\beta} \neq \Omega_1 Z(S)$ and $\varepsilon = 2$ if $Z_{\beta} = \Omega_1 Z(S)$.

LEMMA 3.3.

- (a) $L_{\alpha}/Q_{\alpha} \cong L_{\alpha'}/Q_{\alpha'} \cong SL_2(9)$ and Z_{α} is an FF-module for L_{α}/Q_{α} .
- (b) Z_α = [Z_α, L_α] ⊕ Ω₁Z(L_α) and [Z_α, L_α] is the unique natural SL₂(9)module for L_α/Q_α.

PROOF: (a) Since $[Z_{\alpha}, Z_{\alpha'}, Z_{\alpha'}] = 1$ and $[Z_{\alpha}, Z_{\alpha'}] \neq 1$ and as $Z_{\alpha} \not\leq Q_{\alpha'}$ we get that $L_{\alpha'}/Q_{\alpha'}$ cannot be 3-stable. Similarly L_{α}/Q_{α} is not 3-stable. Hence

$$L_{\alpha}/Q_{\alpha} \cong L_{\alpha'}/Q_{\alpha'} \cong \mathrm{SL}_2(9).$$

Without loss of generality we may assume that

$$|Z_{\alpha}Q_{\alpha'}/Q_{\alpha'}| \leq |Z_{\alpha'}Q_{\alpha}/Q_{\alpha}|.$$

Let $V = Z_{\alpha}$ and $A = Z_{\alpha'}Q_{\alpha}/Q_{\alpha}$. Then

$$|V/C_V(A)| = |Z_{\alpha}/X_{Z_{\alpha}}(Z_{\alpha'})| = |Z_{\alpha}/Z_{\alpha} \cap Q_{\alpha'}| = |Z_{\alpha}Q_{\alpha'}/Q_{\alpha'}| \leq |Z_{\alpha'}Q_{\alpha}/Q_{\alpha}| = |A|.$$

Therefore Z_{α} is an FF-module for L_{α}/Q_{α} .

(b) Follows from 2.8.

By 3.3, L_{α} fixes some symplectic form on Z_{α} with $\Omega_1 Z(L_{\alpha})$ in its radical. In what follows " \perp " and "singular" is meant with respect to that form on Z_{α} (or also on $Z_{\alpha'}$).

LEMMA 3.4. Let $X \leq G_{\alpha'}$. Then $C_{Z'_{\alpha}}(X)^{\perp} = [Z_{\alpha'}, X] + \Omega_1 Z(L_{\alpha'})$. **PROOF:** See [2, 22.1]. **DEFINITION 3.5:** Let $\Lambda(\alpha, \alpha') = \Lambda = \Delta(\alpha) \setminus \{\beta\}$. It is clear that $\Lambda \neq \emptyset$. **LEMMA 3.6.** $\varepsilon = 2$. In particular Z_{α} is a natural SL₂ (9)-module and $Z_{\beta} \leq Z_{\alpha}$. **PROOF:** Suppose $\varepsilon = 1$. Let $\alpha - 1 \in \Lambda$.

If $Z_{\alpha-1} \not\leq Q_{\alpha'-1}$ then $(\alpha-1, \alpha'-1)$ has the same properties as (α, α') , which can't happen as the vertices alternate in terms of 3-stability. Hence

$$Z_{\alpha-1} \leqslant Q_{\alpha'-1} \leqslant G_{\alpha'-1}^{(1)} \leqslant G_{\alpha'}$$

and

$$[Z_{\alpha-1}, Z_{\alpha'} \cap Q_{\alpha}, Z_{\alpha'} \cap Q_{\alpha}] \leq [G_{\alpha'}, Z_{\alpha'}, Z_{\alpha'}] = 1$$

Now, 3-stability of $G_{\alpha-1}$ implies $[Z_{\alpha-1}, Z_{\alpha'} \cap Q_{\alpha}] = 1$ which gives

$$C_{Z_{\alpha'}}(Z_{\alpha}) = Z_{\alpha'} \cap Q_{\alpha} \leq C_{Z_{\alpha'}}(Z_{\alpha-1}).$$

Hence

$$C_{Z_{\alpha'}}(Z_{\alpha-1})^{\perp} \leqslant C_{Z_{\alpha'}}(Z_{\alpha})^{\perp}$$

and by 3.4,

$$[Z_{\alpha'}, Z_{\alpha-1} \leqslant [Z_{\alpha'}, Z_{\alpha}].$$

Since $Z_{\alpha-1}Z_{\alpha}$ is normalised by $Z_{\alpha'}$ and by $G_{\alpha-1} \cap G_{\alpha}$ we get by choice of $\alpha-1$ that $Z_{\alpha-1}Z_{\alpha} \trianglelefteq G_{\alpha}$ and therefore

$$C_{G_{\alpha}}(Z_{\alpha-1}Z_{\alpha}) \trianglelefteq G_{\alpha}.$$

By [9] now, $O^3(C_{G_{\alpha}}(Z_{\alpha-1}Z_{\alpha})) = Q_{\alpha} \cap Q_{\alpha-1}$ and so we conclude that

$$Q_{\alpha-1}\cap Q_{\alpha} \trianglelefteq G_{\alpha} \text{ and } Q_{\beta}\cap Q_{\alpha} \trianglelefteq G_{\alpha}.$$

Let $L = \langle Q_{\beta}^{G_{\alpha}} \rangle$. As $[Q_{\beta}, Q_{\alpha}] \leq Q_{\beta} \cap Q_{\alpha} \leq G_{\alpha}$, $[L, Q_{\alpha}] \leq Q_{\alpha} \cap Q_{\beta} \leq Q_{\beta}$. Recall the definition of t_{α} (see 2.21) now. Since $Q_{\beta} \leq Q_{\alpha}$ 2.19 (ix) implies that $t_{\alpha} \in O^{3}(L_{\alpha}) \leq L$. Hence

$$[t_{\alpha}, Q_{\alpha}] \leqslant Q_{\alpha} \cap Q_{\beta} \leqslant \langle t_{\alpha} \rangle (Q_{\alpha} \cap Q_{\beta}) \trianglelefteq \langle t_{\alpha} \rangle Q_{\alpha}$$

and

$$O^2(\langle t_{oldsymbol{lpha}}
angle(Q_{oldsymbol{lpha}} \cap Q_{oldsymbol{eta}})) \leqslant \langle t_{oldsymbol{lpha}}
angle(Q_{oldsymbol{lpha}} \cap Q_{oldsymbol{eta}}))$$

Thus

$$[t_{\alpha}^{S}] \leq \langle t_{\alpha}S \rangle \cap Q_{\alpha} \leq O^{2}(\langle t_{\alpha}\rangle Q_{\alpha}) \cap Q_{\alpha} \leq (\langle t_{\alpha}\rangle Q_{\alpha} \cap Q_{\beta}) \cap Q_{\alpha} \leq Q_{\alpha} \cap Q_{\beta} \leq Q_{\beta}.$$

Hence t_{α} centralises S/Q_{β} , a contradiction by 2.22. Thus $\varepsilon = 2$. So $Z_{\beta} = \Omega_1 Z(L_{\beta}) = \Omega_1 Z(S)$ and by 2.17(e), $\Omega_1 Z(L_{\alpha}) = 1$. The last statement of the lemma follows from 3.3(b).

Lemma 3.7. $Z_{\beta} = C_{Z_{\alpha}}(Z_{\alpha'}) = [Z_{\alpha}, Z_{\alpha'}] + \Omega_1 Z(L_{\alpha}) = [Z_{\alpha}, Q_{\beta}] + \Omega_1 Z(L_{\alpha}) = C_{Z_{\alpha}}(Q_{\beta}) = C_{Z_{\alpha}}(S).$

PROOF: As $\varepsilon = 2$, $[Z_{\alpha}, L_{\alpha}]$ is 2-dimensional over GF(9). Hence $[Z_{\alpha}, L_{\alpha}]$, $C_{Z_{\alpha}}(Z_{\alpha'})$, $[Z_{\alpha}, Z_{\alpha'}]$, $[Z_{\alpha}, Q_{\beta}]$ and $C_{[Z_{\alpha}, L_{\alpha}]}(Q_{\beta})$ are all 1-dimensional over GF(9). Moreover $[Z_{\beta}, Q_{\beta}] = 1 = [Z_{\beta}, Z_{\alpha'}]$ and the lemma follows.

LEMMA 3.8. Let $\alpha - 1 \in \Lambda$. Then $\langle G_{\alpha-1,\alpha}, Z_{\alpha'} \rangle G_{\alpha}$.

PROOF: Lemma 3.7 implies $[Z_{\alpha-1}, Z_{\alpha'}] \neq 1$ and so $Z_{\alpha'} \notin G_{\alpha-1,\alpha}$. By 2.10, $G_{\alpha-1,\alpha}$ is maximal in G_{α} and so $\langle G_{\alpha-1,\alpha}, Z_{\alpha'} \rangle = G_{\alpha}$.

REMARK 3.9. The following are equivalent:

(i) $Z_{\alpha-1}, \not\perp [Z_{\alpha}, Z_{\alpha'}];$ (ii) $C_{Z_{\alpha-1}}(Z_{\alpha'}) = 1;$

Define now Y^{\bullet}_{β} and Y_{β} by

$$Y^{\bullet}_{\beta}/Z_{\beta} = \langle C_{Z_{\delta}/Z_{\beta}}(Q_{\beta}) \mid \delta \in \Delta(\beta) \rangle$$

and

$$Y_{\beta} = C_{Z_{\alpha}} \big(O^3(L_{\beta}) \big).$$

Note that $[Y^{\bullet}_{\beta}, Q_{\beta}] \leq Z_{\beta}$.

LEMMA 3.10. b = 2.

PROOF: Suppose b > 2. Then, by 3.7 $C_{Z_{\alpha}/Z_{\beta}}(Q_{\beta}/Z_{\beta}) = Z_{\alpha}$. As by [9] $Y_{\beta}^{\bullet} \leq Z_{\alpha}$ for b > 2 we get

$$Z_{\alpha} \leqslant Y_{\beta}^{\bullet} \leqslant Z_{\alpha}$$

whence

$$Z_{\alpha} = Y_{\beta}^{\bullet} \trianglelefteq \langle G_{\alpha}, G_{\beta} \rangle,$$

a contradiction.

PROOF OF THE PROPOSITION: Since $[t_{\alpha}, K] \leq Q_{\alpha} \cap K = 1$ we have $[t_{\alpha}, K_{\beta}] = 1$ and the order of t_{α} is 2. By [9], t_{α} induces an inner automorphism on L_{β}/Q_{β} .

By 2.22 t_{α} does not centralise L_{β}/Q_{β} . Also, as t_{α} is an inner automorphism we can pick $t \in K_{\beta}$ which acts on the same way on L_{β}/Q_{β} , that is, pick $t \in K_{\beta}$ so that $x_{\beta} = t_{\alpha}t$ and x_{β} centralises L_{β}/Q_{β} .

I now claim that the order of t is 2 as well. By choice of t,

$$|t| = |tQ_{\alpha}/Q_{\alpha}|$$

and the image of t in $L_{\beta}/\langle t_{\beta}\rangle Q_{\alpha} \cong L_{\beta}\langle x_{\beta}\rangle/\langle t_{\beta}, x_{\beta}\rangle Q_{\alpha}$ is t_{α} which has order two. Hence the claim holds if $t_{\beta} = 1$ and so we are done for the cases $PSL_2(9)$, M_{11} or M_{12} . The only problem could appear in $2 \cdot M_{12}$ since when we lift M_{12} to $2 \cdot M_{12}$ the order of t could become 4. But this does not happen by 2.1(b). Moreover in any case x_{β} centralises L_{β}/Q_{β} and the order of x_{β} is also one or two.

Now t_{α} acts non-trivially on Z_{α} which is irreducible for L_{α} so t_{α} inverts Z_{α} . K_{α} acts on Y_{β} faithfully and K_{β} centralises Y_{β} so $[K_{\alpha}, K_{\beta}] = 1$.

As $Z_{\beta} \leqslant Y_{\beta}$ and $\left|Z_{\beta}^{2}\right| = \left|Z_{\alpha}\right|$ for $L_{\alpha}/Q_{\alpha} \cong \mathrm{SL}_{2}(9)$, we get that $\left|Z_{\alpha}\right| \leqslant \left|Y_{\beta}\right|^{2}$.

 K_{α} acts on Y_{β} faithfully and K_{β} centralises Y_{β} so $[K_{\alpha}, K_{\beta}] = 1$. Since K_{α} centralises t and K_{α} centralises t_{α} we get that K_{α} centralises x_{β} . Thus $[x_{\beta}, K_{\alpha}] = 1$. Now define $Y_{\beta} = C_{Z_{\alpha}}(O^{2}(L_{\beta}))$. Let $A = Z_{\beta}$.

Since t centralises Y_{β} and t_{α} inverts Y_{β} , x_{β} inverts Y_{β} and so x_{β} inverts A. This means that if x_{β}^{\bullet} is the image of x_{β} in Aut (A) then $x_{\beta}^{\bullet} \in Z(\text{Aut}(A))$ and so $[N_{G_{\alpha}}(A), x_{\beta}^{\bullet}]$ centralises A.

Let $L = N_{L_{\alpha}}(A)$ and $Q = C_{L_{\alpha}}(A)$. Since Z_{α} is a natural $SL_2(9)$ -module, $L/C_L(A) \cong GL_F(A)$ where F = GF(9) and L acts irreducibly on A. Since $A = A^{\perp}$, $[Z_{\alpha}, Q] \leq A^{\perp} = A$. Hence $[Z_{\alpha}, Q, Q] = 1$ and Q is a 3-group. So $Q = O_3(L)$. Now $[L, x_{\beta}] \leq Q$ and so by a Frattini argument $L = C_L(x_{\beta})Q$. Hence $C_L(x_{\beta})$ acts irreducibly on A and on Z_{α}/A (which is isomorphic to the dual of A). In particular x_{β} inverts or centralises Z_{α}/A . Since

$$V_{\beta} = \langle Z_{\alpha}^{G_{\beta}} \rangle = \left\langle Z_{\alpha}^{C_{G_{\beta}}(x_{\beta})} \right\rangle$$

we conclude that x_{β} inverts or centralises V_{β}/A .

Note that x_{β} inverts A so if x_{β} inverts V_{β}/A , x_{β} inverts V_{β} and V_{β} is Abelian, a contradiction to $1 \neq [Z_{\alpha}, Z_{\alpha'}] \leq V_{\beta}$.

[10]

If x_{β} centralises V_{β}/A then $V_{\beta} = C_{V_{\beta}}(Z_{\beta})A = C_{V_{\beta}}(Z_{\beta}) \times A$. Hence $V_{\beta}^{\bullet} \leq (C_{V_{\beta}}(Z_{\beta}))^{\bullet}$ (as $A \leq \bigcap_{g \in G_{\beta}} Z_{\alpha}^{g} \leq Z(V_{\beta})$) and so

$$V_{\beta'}^{\bullet} \cap Z_{\beta} \leq \left(C_{V_{\beta}}(Z_{\beta}) \right)^{\bullet} \cap A = 1.$$

Hence $C_{V_{\beta'}}(S) = 1$ and $V_{\beta'} = 1$, again a contradiction.

4. The case
$$[Z_{\alpha}, Z_{\alpha'}] = 1$$

In this section we will deal with the case $Z_{\alpha'} \leq Q_{\alpha}$.

It follows from the hpothesis that there is no symmetry between α and α' any more. Also $[Z_{\alpha}, Z_{\alpha'}] \leq [Z_{\alpha}, Q_{\alpha}] = 1$ gives

$$C_{Z_{\alpha}}(Z_{\alpha'}) = Z_{\alpha}.$$

Now notice that $Z_{\alpha} \cap Q_{\alpha'} \neq Z_{\alpha}$ (otherwise we get $Z_{\alpha} \leq Q_{\alpha'}$, a contradiction). Hence, $C_{Z_{\alpha}}(Z_{\alpha'}) \neq Z_{\alpha} \cap Q_{\alpha'}$ and by 2.19 (viii), $Z_{\alpha'} \leq Z(L_{\alpha'})$, α and α' are not conjugate and b is odd. Therefore we have

$$Z_{\beta} = \Omega_1 Z(L_{\beta})$$
 and $Z_{\alpha'} = \Omega_1 Z(L_{\alpha'})$.

LEMMA 4.1. $L_{\alpha'}/Q_{\alpha'} \cong L_{\beta}/Q_{\beta} \cong SL_2(9)$.

PROOF: If b > 1 then $[V_{\alpha'}, Z_{\alpha}, Z_{\alpha}] \leq [V_{\alpha'}, V_{\beta}, V_{\beta}] \leq [V_{\beta}, V_{\beta}] = 1$ by 2.19 (iv), so, since $Z_{\alpha} \leq Q_{\alpha'}$, we conclude that L_{β}/Q_{β} is not 3-stable and the claim follows by 2.5.

If b = 1, $Z_{\alpha} \leq Q_{\beta}$ and $[Q_{\beta}, Z_{\alpha}, Z_{\alpha}] = 1$ (by [9]) again imply that L_{β}/Q_{β} is not 3-stable and the claim follows by 2.5.

NOTATION 4.2. For $\gamma \in \Gamma$ let $D_{\gamma} = C_{Q_{\gamma}}(O^{3}(L_{\gamma}))$. LEMMA 4.3. $Z(L_{\alpha}) = D_{\alpha} = 1$. PROOF: See [9]

PROPOSITION 4.4. b=1.

PROOF: Assume that b > 1. Since b is odd, $b \ge 3$.

4.4.1. V_{β} has a unique non-central L_{β} -composition factor; moreover, this composition factor is the natural module for L_{β}/Q_{β} .

PROOF: By [9], $[V_{\beta} \cap Q_{\alpha'}, V_{\alpha'}] = 1$ and hence $V_{\beta} \cap Q_{\alpha'} \leq C_{V_{\beta}}(V_{\alpha'})$. By a similar argument we also have that $V_{\alpha'} \cap Q_{\beta} \leq C_{V_{\alpha'}}(V_{\beta})$. Without loss of generality, assume

$$|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| \leq |V_{\alpha'}Q_{\beta}/Q_{\beta}|.$$

P. Papadopoulos

Now let X = Y/Z be a non-central chief factor in V_{β} . As

$$C_Y(V_{\alpha'})Z/Z \leqslant C_{Y/Z}(V_{\alpha'})$$

we get that

$$\begin{aligned} |X/C_X(V_{\alpha'})| &= |Y/Z/C_{Y/Z}(V_{\alpha'})| \leq |Y/Z/C_Y(V_{\alpha'})Z/Z| \\ &= |Y/C_Y(V_{\alpha'})Z| \leq |Y/C_Y(V_{\alpha'})| = |Y/Y \cap C_{V_\beta}(V_{\alpha'})| \\ &= |Y \cdot C_{V_\beta}(V_{\alpha'})/C_{V_\beta}(V_{\alpha'})| \leq |V_\beta/C_{V_\beta}(V_{\alpha'})| \\ &\leq |V_\beta Q_{\alpha'}/Q_{\alpha'}| \leq |V_{\alpha'}Q_\beta/Q_\beta| \end{aligned}$$

so X is an FF-module; similarly, the direct sum of the L_{β} chief factors on V_{β} is still an FF-module for L_{β}/Q_{β} and the lemma follows by 2.6.

4.4.2. $[V_{\beta}, Q_{\beta}] \leq D_{\beta}$.

PROOF: Assume that $[V_{\beta}, Q_{\beta}] \notin D_{\beta}$. Then by 4.4.1, $Z_{\alpha}[V_{\beta}, Q_{\beta}]$ is normalised by $G_{\alpha\beta}O^{3}(L_{\beta}) = G_{\beta}$ and we get that $Z_{\alpha}[V_{\beta}, Q_{\beta}] = V_{\beta}$. Hence $V_{\beta}/Z_{\alpha} = [V_{\beta}/Z_{\alpha}, Q_{\beta}]$. Since Q_{β} is a 3-group acting on the 3-group V_{β}/Z_{α} in the above manner, we conclude that $V_{\beta}/Z_{\alpha} = 1$. Therefore $V_{\beta} = Z_{\alpha}$, a contradiction. Hence $[V_{\beta}, Q_{\beta}] \leq D_{\beta}$.

4.4.3. Let $Q_{\beta}^{*} = [Q_{\beta}, O^{3}(L_{\beta})]$. By 4.4.2, $[V_{\beta}, Q_{\beta}^{*}] \leq [V_{\beta}, Q_{\beta}] \leq D_{\beta}$. Note that $Q_{\beta}^{*} \leq O^{3}(L_{\beta})$ and therefore

 $[V_{\beta}, Q_{\beta}^*, Q_{\beta}^*] \leq [D_{\beta}, Q_{\beta}^*] \leq [D_{\beta}, O^3(L_{\beta})] = 1.$

Hence $[Z_{\alpha}, Q_{\beta}^{*}, Q_{\beta}^{*}] = 1$ and 3-stability of L_{α} gives that $[Z_{\alpha}, Q_{\beta}^{*}] = 1$ whence $Q_{\beta}^{*} \leq Q_{\alpha}$.

4.4.4. The hypothesis that b > 1 gives a contradiction.

PROOF: By 4.4.3, Q_{β}^{*} centralises Z_{α} and so it centralises $\langle Z_{\alpha}^{G_{\beta}} \rangle = V_{\beta}$ as well. Since $[t_{\beta}, Q_{\beta}] \leq Q_{\beta}^{*}, t_{\beta}$ is the unique involution in $t_{\beta}Q_{\beta}/Q_{\beta}^{*}$ and so $t_{\beta}Q_{\beta}^{*} \in Z(L_{\beta}/Q_{\beta}^{*})$. In particular, L_{β} normalises $[V_{\beta}, t_{\beta}]$. By 4.4.1, $[V_{\beta}, t_{\beta}] \neq 1$ and so $C_{[V_{\beta}, t_{\beta}]}(S) \neq 1$. Hence

$$Z_{\beta} \cap [V_{\beta}, t_{\beta}] \neq 1.$$

On the other hand, since

$$V_{\beta} - C_{V_{\beta}}(t_{\beta}) \times [V_{\beta}, t_{\beta}]$$

and $[Z_{\beta}, t_{\beta}] \leq [Z_{\beta}, L_{\beta}] = 1$, we have a contradiction.

NOTATION 4.5. For $\gamma \in \Gamma$ let F_{γ} be a normal 3-subgroup of L_{γ} minimal with respect to the property $F_{\gamma} \not\leq D_{\gamma}$.

REMARK 4.6. As F_{γ} is a 3-group we get $F_{\gamma} \leq Q_{\gamma}$ and $F_{\gamma'} \neq F_{\gamma}$. Also, the definition implies $F_{\gamma} \neq 1$. Since Q_{γ} is a 3-group acting on the 3-group $F_{\gamma}, F_{\gamma} \neq [F_{\gamma}, Q_{\gamma}]$ and by minimality of F_{γ} , $[F_{\gamma}, Q_{\gamma}] \leq D_{\gamma}$. Also it is clear from the definitions that $F_{\beta} = [F_{\beta}, O^3(L_{\beta})] \leq O^3(L_{\beta})$ and therefore:

$$[D_{\beta}, F_{\beta}] \leq [D_{\beta}, O^{3}(L_{\beta})] = 1.$$

LEMMA 4.7. $F_{\beta} \leq Q_{\alpha}$ and $D_{\beta} \leq Q_{\alpha}$.

PROOF: See [9].

[13]

LEMMA 4.8. Q_{α} is elementary Abelian, $[Q_{\alpha}, O^{3}(L_{\alpha})]$ is an irreducible L_{α} module and $F_{\alpha} = Z_{\alpha} = [Q_{\alpha}, O^{3}(L_{\alpha})]$. In particular, $\phi(D_{\beta}) = 1$.

PROOF: See [9].

COROLLARY 4.9. $C_{G_{\alpha}}(Q_{\alpha}) = Q_{\alpha}$. In particular, if $X \leq G_{\alpha}$ then $Z \cap Q_{\alpha} =$ $C_X(Q_\alpha)$.

PROOF: See [9].

PROPOSITION 4.10. $\Theta \ncong (2) \cdot M_{12}$; in particular, $\Theta \cong PSL_2(9)$ or M_{11} .

PROOF: By 4.1, $L_{\beta}/Q_{\beta} \cong SL_2(9)$. Also from $Q_{\alpha}Q_{\beta} = S$ we get

$$[F_{\beta}Q_{\alpha}/Q_{\alpha}, S] = [F_{\beta}Q_{\alpha}/Q_{\alpha}, Q_{\beta}]$$

and as $[F_{\beta}Q_{\beta}] \leq D_{\beta} \leq Q_{\alpha}$ (see 4.6 and 4.7) 23 conclude that

 $[F_{\beta}Q_{\alpha}/Q_{\alpha}, Q_{\beta}] = 1.$

Hence $F_{\beta}Q_{\alpha}/Q_{\alpha} \leq Z(S/Q_{\alpha})$.

Since $|S/Q_{\alpha}| = 3^3$ and S/Q_{α} is not Abelian we get that

$$\left|Z(S/Q_{\alpha})\right| = 3$$

and therefore $F_{\beta}Q_{\alpha}/Q_{\alpha} = Z(S/Q_{\alpha})$. But $F_{\beta} \leq G_{\alpha}$ and therefore 4.9 gives $|F_{\beta}/C_{F_{\beta}}(Q_{\alpha})| = 3$. In particular F_{β}/D_{β} is an FF-module for L_{β}/Q_{β} . As $L_{\beta}/Q_{\beta} \cong$ $\mathrm{SL}_2(9)$, by 2.8, F_{eta}/D_{eta} is a natural $\mathrm{SL}_2(9)$ -module, a contradiction to $\left|F_{eta}/C_{F_{eta}}(Q_{lpha})\right| =$ 3.

REMARK 4.11. Since a Sylow 3-subgroup of Θ is elementary Abelian we have

$$\Phi(Q_{\beta}) \leqslant Q_{\alpha}.$$

Similarly $\Phi(Q_{\alpha}) \leq Q_{\beta}$.

0

0

Π

78

LEMMA 4.12. If $N \leq S$, $N \leq B$, $\delta \in \{\alpha, \beta\}$ then $N \leq Q_{\delta}$ or $NQ_{\delta} = S$. In particular, $S = Z_{\alpha}Q_{\beta}$.

PROOF: See [9].

LEMMA 4.13. Let $X_{\beta} = \bigcap_{\delta \in \Delta(\beta)} Q_{\delta}$. Then:

- (a) Q_{β}/X_{β} is an irreducible G_{β} -module,
- (b) $[Q_{\beta}/D_{\beta}, t_{\beta}] = Q_{\beta}/D_{\beta}$ and $C_{Q_{\beta}/D_{\beta}} = 1$,
- (c) $C_{Q_{\beta}}(t_{\beta}) \leq D_{\beta}$ and
- (d) $X_{\beta} = D_{\beta}$.

PROOF: Let $X_{\beta} < A \leq Q_{\beta}$ with $A \trianglelefteq G_{\beta}$. Then $A \nleq Q_{\alpha}$ (since if $A \leq Q_{\alpha}$ and $\gamma = \beta^{g}$ with $g \in G_{\beta}$ then since $A \trianglelefteq G_{\beta}$ we get

$$A + A^g \leqslant Q^g_\beta = Q_\beta{}^{\mathrm{g}} = Q_\gamma$$

which gives $A \leq X_{\beta}$, a contradiction). Hence by 8.2, $AQ_{\alpha} = S$ and therefore $[Z_{\alpha}, Q_{\beta}] \leq [Z_{\alpha}, A] \leq A$. By 4.11 $Q_{\beta'} \leq X_{\beta}$ and so

$$[L_{\beta}, Q_{\beta}] = \left[\langle Z_{\alpha}^{G_{\beta}} \rangle Q_{\beta}, Q_{\beta} \right] \leqslant A.$$

Let $\widetilde{\mathcal{Q}}_{\beta} + Q_{\beta}/X_{\beta}$. Then $\widetilde{\mathcal{Q}}_{\beta}$ is Abelian. Now $\widetilde{\mathcal{Q}} = \mathcal{C}_{\widetilde{\mathcal{Q}}_{\beta}}(t_{\beta}) \times [\widetilde{\mathcal{Q}}_{\beta}, t_{\beta}]$ and both parts are normalised by L_{β} .

If $C_{\widetilde{\mathcal{Q}}_{\beta}}(t_{\beta}) \neq 1$, we may assume $A = C_{\mathcal{Q}_{\beta}}(t_{\beta})X_{\beta}$ (since then $A \leq Q_{\beta}, A \leq G_{\beta}$ and as $C_{\widetilde{\mathcal{Q}}_{\beta}}(t_{\beta}) \neq 1$ we also have $X_{\beta} \neq A$). Hence

$$\widetilde{A} = \mathcal{C}_{\widetilde{\mathcal{Q}}_{\beta}}(t_{\beta})$$

and we get $[[\tilde{Q}_{\beta}, t_{\beta}], t_{\beta}] \leq [[L_{\beta}, Q_{\beta}], t_{\beta}] \leq [A, t_{\beta}, t_{\beta}] = 1$. Hence (element of order 2 acting on a 3-group) $[\tilde{Q}_{\beta}, t_{\beta}] = 1$, a contradiction to $[\tilde{Q}_{\beta}, Q_{\alpha}, Q_{\alpha}] = 1$ and the 3-stability of $L_{\beta}/\langle t_{\beta}Q_{\beta}\rangle$. Therefore $C_{\widetilde{Q}_{\beta}}(t_{\beta}) = 1$ and $\widetilde{Q}_{\beta} = [\tilde{Q}_{\beta}, t_{\beta}] = [\tilde{Q}_{\beta}, L_{\beta}]$. Thus $\widetilde{Q}_{\beta} \leq [L_{\beta}, \widetilde{Q}_{\beta}] \leq \widetilde{A}$ which implies $\widetilde{A} = \widetilde{Q}_{\beta}$ and Q_{β}/X_{β} is an irreducible G_{β} -module.

Now by 4.7, $D_{\beta} \leq Q_{\alpha}$ and as $D_{\beta} \leq G_{\beta}$ we get $D_{\beta} \leq X_{\beta}$. But $[X_{\beta}, Z_{\alpha}] \leq [Q_{\alpha}, Z_{\alpha}] = 1$ and $Z_{\alpha} \leq Q_{\beta}$ give $X_{\beta} \leq D_{\beta}$. Hence $X_{\beta} = D_{\beta}$.

LEMMA 4.14. There is $g \in G_{\beta}$ such that $t_{\beta} \in \langle Z_{\alpha}, Z_{\alpha}^{g} \rangle Q_{\beta}$.

PROOF: If $\Psi \cong 2 \cdot A_5$ it is clear since in this case

$$L_{\beta} = \langle Z_{\alpha}, \, Z^{g}_{\alpha} \rangle Q_{\beta}$$

for some $g \in G_{\beta}$ and $t_{\beta} \in L_{\beta}$ by definiton. Since inside $SL_2(9)$ we can generate a $2 \cdot A_5$ this case is also clear.

[14]

NOTATION 4.15. $\overline{Q_{\gamma}} = Q_{\gamma}/D_{\gamma}$.

[15]

LEMMA 4.16. $|\overline{\mathcal{Q}_{\beta}}| = 3^4$.

PROOF: By 4.14, pick $g \in G_{\beta}$ such that

$$t_{\beta} \in \langle Z_{\alpha}, Z_{\alpha}^{g} \rangle Q_{\beta}.$$

Since $|Q_{\beta}/C_{Q_{\beta}}(Z_{\alpha})| = |Q_{\beta}Q_{\alpha}/Q_{\alpha}| + |S/Q_{\alpha}| = 3^2$, we get

$$\left|\overline{\mathcal{Q}_{\beta}}/C_{\overline{\mathcal{Q}_{\beta}}}(t_{\beta})\right| \leqslant 3^{4}.$$

By 4.13(b), $C_{\overline{Q_{\beta}}}(t_{\beta}) = 1$ and therefore $|\overline{Q_{\beta}}| \leq 3^4$. Suppose $|\overline{Q_{\beta}}| < 3^4$. Since 5 does not divide |GL 3(3)| we conclude that $L_{\beta}/Q_{\beta} \ncong SL_2(9)$, and contradiction. Hence 0 $|\overline{\mathcal{Q}}_{\beta}| = 3^4$.

LEMMA 4.17.
$$|[Z_{\alpha}, \overline{Q_{\beta}}]| = |\overline{Q_{\alpha\beta}}| = |\overline{Q_{\beta} \cap Z_{\alpha}}| = 9.$$

PROOF: If $|[Z_{\alpha}, \overline{Q_{\beta}}]| = 3$, then, with same argument as before, we get

$$\left|\overline{\mathcal{Q}_{\beta}}\right| = \left|\left[\overline{\mathcal{Q}_{\beta}}, t_{\beta}\right]\right| \leq 3^{2},$$

a contradiction. Hence

$$9 \leqslant \left| \left[Z_{\alpha}, \overline{\mathcal{Q}_{\beta}} \right] \right| \leqslant \left| \overline{|CQ_{\beta} \cap A_{\alpha}|} \leqslant \left| \overline{\mathcal{Q}_{\alpha\beta}} \right| \leqslant 9$$

and the lemma is proved.

LEMMA 4.18. $D_{\beta} = Z_{\beta}$.

PROOF: First, show $D_{\beta} \leq Z_{\beta}$. Let $L = \langle Z_{\alpha}^{G_{\beta}} \rangle$. Then by 2.19 (ix), $O^{3}(L_{\beta}) \leq L$ and $L_{\beta} = LQ_{\beta}$. Since $\overline{Q_{\beta}}$ is irreducible for G_{β} we get $[\overline{Q_{\beta}}, L] = 1$ or $\overline{Q_{\beta}}$. If $[\overline{\mathcal{Q}_{\beta}}, L] = 1$ then $[\mathcal{Q}_{\beta}, L] \leq D_{\beta}$ so $[\mathcal{Q}_{\beta}, O^{3}(L_{\beta})] = 1$ a contradiction. Therefore $[\overline{\mathcal{Q}_{\beta}}, L] = \overline{\mathcal{Q}_{\beta}}$ which gives $[Q_{\beta}, L]D_{\beta} = Q_{\beta}$.

Also, as $L \trianglelefteq G_{\beta}$, we have $Q_{\beta} \leqslant N_{G_{\beta}}(L)$. Hence $[Q_{\beta}, L] \subseteq L, Q_{\beta} \leqslant D_{\beta}L$ and $L_{\beta} = LD_{\beta}$. But from 4.9 now, $[D_{\beta}, D_{\beta}] \leqslant \Phi(D_{\beta}) = 1$. As $D_{\beta} \leqslant Q_{\alpha}$, $[L, D_{\beta}] = 1$ so D_{β} and L both centralise D_{β} . But then, we also get $[D_{\beta}, L_{\beta}] = [D_{\beta}, LD_{\beta}] = 1$. Thus $D_{\beta} \leq Z(L_{\beta}) \leq Z_{\beta}$. Therefore $D_{\beta} \leq Z_{\beta}$.

Since
$$Z_{\beta} = \Omega_1 Z(L_{\beta}) \leq C_{\mathcal{Q}_{\beta}} (O^3(L_{\beta})) D_{\beta}$$
 the lemma follows.

LEMMA 4.19. $Q_{\alpha} \cap Q_{\beta} = Z_{\alpha} \cap Q_{\beta}$.

PROOF: It is enough to show that $Q_{\alpha} \cap Q_{\beta} \leq Z_{\alpha} \cap Q_{\beta}$. Let $X \in Q_{\alpha} \cap Q_{\beta}$. Then $xD_{\beta} \in Q_{\alpha} \cap Q_{\beta}/D_{\beta} = \overline{Q_{\alpha\beta}} = \overline{Q_{\beta} \cap Z_{\alpha}} = Z_{\alpha} \cap Q_{\beta}/D_{\beta}$. Therefore, $xD_{\beta} = yD_{\beta}$, where $y \in Z_{\alpha} \cap Q_{\beta}$. Then x = yd, $d \in D_{\beta}$. 2.19 (v) gives

$$Z_{\beta} \leq Z_{\alpha}$$

0

П

By 4.18, $D_{\beta} = Z_{\beta} \leq Z_{\alpha}$. Therefore $x \in Z_{\alpha}$ and hence $x \in Z_{\alpha} \cap Q_{\beta}$. COROLLARY 4.20. $Q_{\alpha} = Z_{\alpha}$.

PROOF: Since $Q_{\alpha} \subseteq S = Z_{\alpha}Q_{\beta}$ we get $Q_{\alpha} \subseteq Z_{\alpha}Q_{\beta} \cap Q_{\alpha} = Z_{\alpha}(Q_{\alpha} \cap Q_{\beta})$ and hence $Q_{\alpha} = Z_{\alpha}(Q_{\alpha} \cap Q_{\beta}) = Z_{\alpha}$.

LEMMA 4.21.

- (1) $Q_{\alpha} = Z_{\alpha}$ is irreducible as an L_{α} -module
- (2) If $\Theta \cong \text{PSL}_2(9)$ then $|Z_{\alpha}| = 3^6$, $|Z_{\beta}| = 3^2$ and $|Q_{\beta}| = 3^6$; moreover $(L_{\alpha}, L_{\beta}) \sim (3^6 \text{PSL}_2(9), 3^{1+1+4} \text{SL}_2(9))$.
- (3) If $\Theta \cong M_{11}$ then $|Z_{\alpha}| = 3^5$, $|Q_{\beta}| = 3^5$ and $|Z_{\beta}| = 3$; moreover $(L_{\alpha}, L_{\beta}) \sim (3^5 M_{11}, 3^{1+4} \operatorname{PSL}_2(9))$.

PROOF: 2.19 (v) and 4.18 give $D_{\beta} = Z_{\beta} \leq Z_{\alpha}$. Hence

$$|Z_{\alpha}/Z_{\beta}| = |Z_{\alpha}Q_{\beta}/Q_{\beta}| |Z_{\alpha} \cap Q_{\beta}/Z_{\alpha} \cap D_{\beta}| = |Z_{\alpha}Q_{\beta}/Q_{\beta}| |Z_{\alpha} \cap Q_{\beta}/Z_{\beta}|.$$

Recall now 4.17 to get $|Z_{\alpha} \cap Q_{\beta}/Z_{\beta}| = 3^2$ and hence

$$|Z_{\alpha}/Z_{\beta}| = 3^2 |Z_{\alpha}Q_{\beta}/Q_{\beta}| = 3^2 |S/Q_{\beta}|.$$

Since $S/Q_{\beta} \in Syl_3(\Psi)$ we get that

$$|S/Q_{\beta}| = 3^2.$$

Hence $|Z_{\alpha}/Z_{\beta}| 3^4$; in particular, $|Z_{\alpha}/Z_{\beta}| \leq 3^4$. Since by [9] we can generate L_{α} by two Sylow 3-subgroups we get $|Z_{\alpha}| \leq 3^8$.

By 4.8, Z_{α} is irreducible as an L_{α} -module.

CASE $\Theta \cong \text{PSL}_2(9)$. Then by 2.8 $|Z_{\alpha}| = 3^4$ or 3^6 and since $|Z_{\alpha}/Z_{\beta}| = 3^4$ we get that $|Z_{\alpha}| = 3^6$ and $|Z_{\beta}| = 3^2$.

CASE $\Theta \cong M_{11}$. 2.8 gives that $|Z_{\alpha}| = 3^5$ and $|Z_{\beta}| = 3$.

Notice now that in both cases, D_{β} is central as by 4.18 we have $D_{\beta} = Z_{\beta}$. Moreover if $\Theta \cong \text{PSL}_2(9)$ then $|D_{\beta}| = 3$ and if $\Theta \cong M_{11}$ then $|D_{\beta}| = 3^2$. Finally, in both cases, $|Q_{\beta}/Z_{\beta}| = 3^4$ and hence Q_{β}/Z_{β} is an irreducible L_{β} -module. This completes the proof of the lemma.

PROOF OF THEOREM: It follows from 4.10 and 4.21.

References

 J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of finite groups (Oxford University Press, Oxford, 1986).

[16]

Ο

Two amalgams on six letters

- [2] M. Aschbacher, Finite group theory (Cambridge University Press, Cambridge, 1993).
- [3] R.W. Carter, Simple groups of Lie type (John Wiley and Sons Inc., New York, 1989).
- [4] A. Delgado and B. Stellmacher, 'Weak (B,N)-pairs of rank 2', in Groups and graphs: new results and methods, (A. Delgado, D. Glodschmidt and B. Stellmacher, Editors) (DMV Seminar Bd 6, Basel, Boston, Stuttgart, 1985).
- [5] D. Gorenstein, Finite groups (Chelsea Publishing Co., New York, 1980).
- [6] P.J. Greenberg, *Mathieu groups* (Courant Institute of Mathematical Sciences, New York University, 1973).
- [7] G.D. James, 'The modular character of the Mathieu Groups', J. Algebra 27 (1973), 57-111.
- [8] U. Meierfrankenfeld, 'Pushing up Sp(4,q)', J. Algebra 112 (1988), 467-477.
- P. Papadopoulos, 'Some SL₂ (3) amalgams in characteristic 3', Bull. Greek Math. Soc. (to appear).
- [10] E. Witt, 'Die 5-fach transitiven Gruppen von Mathieu', Abl. Math. Hamburg 12 (1937), 256-246.

Technological Education Institution of Thesaloniki Greece

[17]