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Abstract

We show how the extremal behavior of d-variate Archimedean copulas can be deduced
from their stochastic representation as the survival dependence structure of an �1-
symmetric distribution (see McNeil and Nešlehová (2009)). We show that the extremal
behavior of the radial part of the representation is determined by its Williamson
d-transform. This leads in turn to simple proofs and extensions of recent results
characterizing the domain of attraction of Archimedean copulas, their upper and lower
tail-dependence indices, as well as their associated threshold copulas. We outline some
of the practical implications of their results for the construction of Archimedean models
with specific tail behavior and give counterexamples of Archimedean copulas whose
coefficient of lower tail dependence does not exist.
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1. Introduction

Archimedean copulas form an important class of dependence models which enjoy consid-
erable popularity in a number of fields, including biostatistics [9], [28], actuarial science, and
quantitative finance [16], [26], [31, Chapter 10]. This is mainly due to their connection with
frailty models and to the fact that they have an analytically tractable form, viz.

C(u1, . . . , ud) = ψ{ψ−1(u1)+ · · · + ψ−1(ud)}, (u1, . . . , ud) ∈ [0, 1]d ,
where ψ is a d-monotone function on (0,∞) such that ψ(0) = 1, ψ(x) → 0 as x → ∞,
and where, by convention, ψ−1(0) = inf{x ∈ [0,∞) : ψ(x) = 0}; see [23], [24], and [32,
Chapter 5]. Here, d-monotone means that ψ has d − 2 derivatives satisfying (−1)kψ(k) ≥ 0
on (0,∞) for 1 ≤ k ≤ d − 2, and that (−1)d−2ψ(d−2) is nonincreasing and convex.

In this paper we focus on Archimedean copulas from an extreme value perspective. This
issue has already received much attention in the literature; see [1], [5]–[7], [20], [21], and, in
particular, [8]. However, the extremal behavior of these copulas has hitherto been characterized
by the limiting behavior of either ψ or its inverse at the endpoints of their domain. Though
analytically convenient, these conditions provide only little probabilistic insight. It is also rather
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196 M. LARSSON AND J. NEŠLEHOVÁ

difficult to construct new Archimedean generators ψ that meet these conditions, or, in other
words, new Archimedean copula models that exhibit specific tail behavior.

The idea pursued here is to characterize extremal behavior of Archimedean copulas using
the stochastic representation recently developed in [24]. As shown by these authors, any
d-dimensionalArchimedean copula is the survival copula of a random vector X= (X1, . . . , Xd)

following an �1-norm symmetric distribution, i.e. X
d= RSd , where R is a random variable on

R+ = [0,∞)with Pr(R = 0) = 0 and Sd is an independent random vector which is uniformly
distributed on the simplex

Sd = {(x1, . . . , xd) ∈ R
d+ : x1 + · · · + xd = 1} ⊂ R

d+.

In addition, the Archimedean generator ψ is the Williamson d-transform of the distribution
function F of the radial part R, i.e.

ψ(x) =WdF (x) =
∫ ∞
x

(
1− x

r

)d−1

dF(r), x ∈ R+. (1)

In particular, ψ is the survival function of each component of X, i.e.

ψ(x) = Pr(X1 > x) = · · · = Pr(Xd > x)

for all x ∈ R+. The distribution function F may be retrieved from ψ by means of the inverse
Williamson d-transform, which is explicit. For any x ∈ R+, we have

F(x) =W−1
d ψ(x) = 1−

d−2∑
k=0

(−1)kxkψ(k)(x)

k! − (−1)d−1xd−1ψ
(d−1)
+ (x)

(d − 1)! , (2)

where ψ(d−1)
+ is the right-hand derivative of the convex function ψ(d−2).

The connection between Archimedean copulas and �1-norm symmetric distributions
provides a systematic way of generating the full range of d-variate Archimedean copulas
by specifying the distribution of the radial part R; see [25]. Although promising, this new
modeling approach requires a better understanding of the relationship between the properties
of the radial distribution and the dependence properties of the corresponding Archimedean
copula. The present paper contributes to these investigations by showing that tail properties of
an Archimedean copula are in fact characterized by extremal properties of its radial distribution.

It is first established in Section 2 that extremal behavior of the radial part can be conveniently
characterized by analytical properties of its Williamson d-transform. The results presented there
lead precisely to the conditions on ψ or its inverse that are known to characterize the extremal
behavior of the corresponding Archimedean copula. This fact sheds new light on many well-
known results pertaining to this class of copulas, which may thus be reproved and complemented
easily. In Section 3 we discuss domain of attraction results, in Section 4 we focus on threshold
copulas, and, finally, in Section 5 we consider coefficients of tail dependence. The latter section
also includes three examples outlining practical implications for constructing newArchimedean
models with targeted tail behavior. The first example introduces a new family of copulas whose
upper and lower tail-dependence coefficients are flexibly governed by separate parameters and
can attain all possible values; the two remaining examples are devoted to the construction of
Archimedean copulas whose lower tail-dependence coefficient does not exist. Technical proofs
from Section 2 are relegated to Appendices A and B.
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2. Extremal behavior of the radial part

Let R1, . . . , Rn be independent copies of a random variable R with distribution function F ,
and set

Mn = max(R1, . . . , Rn).

The variableR is said to be in the maximum domain of attraction of an extreme value distribution
H , denoted either F ∈M(H) or R ∈M(H), if and only if there exist sequences (an) and (bn)
of reals with bn > 0 such that

lim
n→∞Pr

(
Mn − an
bn

≤ x
)
= H(x) (3)

holds for all x ∈ R. Here, H is either the Fréchet (�α), the Gumbel (�), or the Weibull
(�α) distribution with parameter α > 0. Conditions in terms of F or F−1 ensuring that
F ∈M(H) are standard; see, e.g. [12, Chapter 1.2], [14, Chapter 3.3], and [29, Chapter 1]. As
is well known, the concept of regular variation is key in this context. A measurable function
f : R+ → R+ is called regularly varying with index ρ ∈ R if, for any x > 0,

lim
t→∞

f (tx)

f (x)
= xρ.

The class of regularly varying functions with index ρ is denoted by Rρ .
Extensions of the concept of regular variation also play an important role. For a measurable

function a : R → (0,∞), let �a denote the class of all nonincreasing and right-continuous
functions f : R→ [0,∞) that satisfy

lim
x↑xf

f {x + a(x)t}
f (x)

= e−t , t ∈ R, (4)

where xf ≤ ∞ is the upper endpoint of f , i.e. xf = inf{x : f (x) = 0}. The function a is
referred to as the auxiliary function of f . To simplify the notation, write f ∈ � if f ∈ �a
for some a. Finally, a nondecreasing function g is called 	-varying if 1/g ∈ �, whereas
a nonincreasing and nonnegative function h is called 
-varying if its left-continuous inverse
h← is 	-varying. For more details on these classes of function, see [3, Chapter 3] and [29,
Chapter 0.4.3]. Their significance originates from the fact that a distribution function F lies in
M(�) if and only if F̄ ∈ �; see Proposition 0.10 of [29].

In order to study the tail behavior of Archimedean copulas, extremal behavior of the radial
part needs to be characterized by its Williamson d-transform. This is done in Theorem 1 below,
whose proof may be found in Appendix A.

Theorem 1. Let R be a strictly positive random variable with distribution function F , upper
endpoint xF = sup{x ∈ R : F(x) < 1}, and Williamson d-transformψ for some integer d ≥ 2.
Then the following statements hold for any α > 0.

(a) R ∈M(�α) if and only if ψ ∈ R−α .

(b) R ∈M(�α) if and only if ψ(xF − x−1) ∈ R−α−d+1.

(c) R ∈M(�) if and only if ψ ∈ �.

Note that, by (1) and (2), the upper endpoint xF of F is precisely ψ−1(0).
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198 M. LARSSON AND J. NEŠLEHOVÁ

Remark 1. A side result that emerges from the proof of Theorem 1(a) is that ψ is in fact
the survival function of RY , where Y is a Beta(1, d − 1) random variable independent of R.
Statements (a)–(c) of Theorem 1 may thus be rephrased as follows: R ∈M(�α) if and only if
RY ∈ M(�α); R ∈ M(�α) if and only if RY ∈ M(�α+d−1); and R ∈ M(�) if and only if
RY ∈M(�).

It may further be seen from the proof of Theorem 1(c) that, when R ∈M(�),

a1(x) =
∫ xF
x
F̄ (t) dt

F̄ (x)
, a2(x) =

∫ xF
x
ψ(t) dt

ψ(x)
, x ∈ (0,∞),

are possible auxiliary functions for both F̄ and ψ . That is, F̄ and ψ are elements of �ai
for i = 1, 2. The arguments in Appendix A also show that R ∈ M(�α) if and only if
(−1)d−1ψ

(d−1)
+ (xF − x−1) ∈ R−α .

In addition to Theorem 1, it is useful to characterize the behavior of R at 0 in terms of its
Williamson d-transform. A suitable way to proceed is to consider the extremal behavior of 1/R.
This is the purpose of the following result, proven in Appendix B.

Theorem 2. LetR be a strictly positive random variable with Williamson d-transformψ . Then
the following statements hold.

(a) 1/R ∈M(�α) for α ∈ (0, 1) if and only if 1− ψ(x−1) ∈ R−α .

(b) 1− ψ(x−1) ∈ R−1 if either

(i) 1/R ∈M(�α) for α ∈ [1,∞);
(ii) 1/R ∈M(�); or

(iii) 1/R ∈M(�α) for α > 0.

Remark 2. In view of Theorem 2, we may wonder what happens if 1 − ψ(x−1) ∈ R−α for
some α > 1. Because ψ is d-monotone, however, this cannot occur. For,

α > 1 
⇒ lim
x↓0

1− ψ(x/2)
1− ψ(x) = 2−α < 2−1.

In turn, this would imply the existence of an x0 ∈ (0,∞) such thatψ(x/2) > {ψ(0)+ψ(x)}/2
whenever x ∈ (0, x0), which would contradict the convexity of ψ . Similarly, in the context of
Theorem 1(b),ψ(xF −x−1) ∈ R−α for 0 < α < d−1 cannot occur either; see Proposition 4.9
of [22].

In some cases, it is easier to work with the inverse generator ϕ = ψ−1 rather than ψ . The
following result shows that extremal properties of R and 1/R may be characterized just as well
in terms of ϕ.

Proposition 1. Let ψ be a d-monotone Archimedean generator for some d ≥ 2. Set ϕ = ψ−1

and xF = ψ−1(0). Then the following statements hold for any α > 0.

(a) ψ ∈ R−α if and only if ϕ(x−1) ∈ R1/α .

(b) ψ(xF − x−1) ∈ R−α−d+1 if and only if {xF − ϕ(x−1)} ∈ R−1/(α+d−1).

(c) ψ ∈ � if and only if ϕ(x−1) is 
-varying.

(d) 1− ψ(x−1) ∈ R−α for α ∈ (0, 1] if and only if ϕ(1− x−1) ∈ R−1/α .
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Proof. To show (a), first note that, if ψ ∈ R−α , 1/ψ is invertible and 1/ψ ∈ Rα . Thus,
Theorem 1.5.12 of [3] implies that (1/ψ)−1 ∈ R1/α . However, for anyx ∈ (0,∞), (1/ψ)−1(x)

is precisely ϕ(1/x). The converse may be shown by reverting the argument.
The proofs of parts (b) and (d) are analogous to that of (a). Part (c) is a direct consequence

of the definition of 
-variation, since ϕ(x−1) = (1/ψ)−1(x).

3. Extremal behavior of Archimedean copulas

Recall that a d-dimensional extreme value copula C0 may be expressed as

C0(u1, . . . , ud) = exp

[
log(u1 · · · ud)A

{
log(u1)

log(u1 · · · ud) , . . . ,
log(ud−1)

log(u1 · · · ud)
}]
,

where the function A is the so-called Pickands dependence function; see [15], [26, p. 312],
and [33]. That is,A : {x ∈ [0, 1]d−1 : x1+· · ·+xd−1 ≤ 1} → [0,∞) is a function of the form

A(x1, . . . , xd−1) =
∫

Sd

max

{
w1x1, . . . , wd−1xd−1, wd

(
1−

d−1∑
j=1

xj

)}
dµ(w1, . . . , wd),

where µ is a measure on Sd satisfying
∫
Sd
wj dµ(w) = 1 for all 1 ≤ j ≤ d.

A d-dimensional copula C is said to be in the maximum domain of attraction of an extreme
value copula C0, denoted C ∈M(C0), whenever

lim
n→∞C

n(u
1/n
1 , . . . , u

1/n
d ) = C0(u1, . . . , ud)

holds for any (u1, . . . , ud) in [0, 1]d . The purpose of this section is to establish conditions under
which C ∈ M(C0) holds and to identify the limits C0 in the case when C is a d-dimensional
Archimedean copula or its survival counterpart. Here, a survival copula C̄ of a copula C is
the distribution function of the vector 1 − U , where U is distributed as C. These issues are
addressed in turn in Sections 3.1 and 3.2.

3.1. Extremal behavior of C

Assume that C is a d-dimensional Archimedean copula with generator ψ . Recall that C
is then the survival copula of an �1-norm symmetric random vector X = (X1, . . . , Xd) with
radial part R whose Williamson d-transform is ψ .

Now consider n independent replicates Xi = (Xi1, . . . , Xid) of X, 1 ≤ i ≤ n, and define
Wn = (Wn1, . . . ,Wnd) to be the vector of the componentwise minima, i.e.

Wnj = min(X1j , . . . , Xnj ), 1 ≤ j ≤ d.
As shown in [24], the survival function of X is given by

Pr(X1 > x1, . . . , Xd > xd) = ψ(x1 + · · · + xd) = ψ(‖x‖)
for any x = (x1, . . . , xd) ∈ R

d+. Consequently, the survival function of Wn is

Pr(Wn1 > x1, . . . ,Wnd > xd) = ψn(‖x‖), x ∈ R
d+. (5)

As the latter is a mere function of ‖x‖, Wn is again �1-norm symmetric; see Proposition 3.3
of [24]. This has the following implication, which can be traced back to [5] and [17].
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Proposition 2. Letψ be a d-monotone generator for some d ≥ 2 such that 1−ψ(x−1) ∈ R−α
for α ∈ (0, 1]. Then C ∈M(CGu

1/α), where CGu
θ is the Gumbel copula with parameter θ ≥ 1,

i.e. an Archimedean copula with generator ψGu
θ (x) = exp[−x1/θ ], or, equivalently, an extreme

value copula with Pickands dependence function AGu
θ (x1, . . . , xd−1) = {xθ1 + · · · + xθd−1 +

(1− x1 − · · · − xd−1)
θ }1/θ .

Proof. In order to fit into the framework of the classical multivariate extreme value theory,
consider the sequence −Xi , 1 ≤ i ≤ n. It is immediate that −Wn is then the vector of
the corresponding componentwise maxima. Furthermore, the margins of −X share the same
distribution function G(x) = ψ(−x), x ∈ (−∞, 0]. As 1 − ψ(x−1) ∈ R−α by assumption,
G ∈M(�α); see [14, Chapter 3.3.2] and [29, Chapter 1.3]. Thus, by (3) and Proposition 1.13
of [29], there exists a sequence (bn) of reals with bn > 0 such that

lim
n→∞Pr

(
−Wn1

bn
≤ x

)
= lim
n→∞ψ

n(−bnx) = �α(x) = exp[−(−x)α]

whenever x < 0. This implies that ψn(−bn‖x‖) tends to ψGu
1/α(−‖x‖) as n → ∞ for every

x ∈ (−∞, 0)d . Thus, by (5), −Wn/bn converges weakly to −W , where W is an �1-norm
symmetric random vector with survival function ψGu

1/α(−‖x‖), x ∈ R
d+, and survival copula

CGu
1/α . By Theorem 7.48 of [26] we then have C ∈M(CGu

1/α).

Remark 3. In view of Theorem 2, the conditions of Proposition 2 are met if the radial part
of C satisfies either 1/R ∈ M(�), 1/R ∈ M(�α), or 1/R ∈ M(�α) for some α > 0. As
Pr(1/R > x) = Pr(−R > −1/x), this is equivalent to −R ∈ M(�α) or −R ∈ M(�).
Furthermore, it is of interest to note that if 1/R ∈ M(�α) for some α ≥ 1, 1/R ∈ M(�),
or 1/R ∈ M(�α) for α > 0, then Theorem 2 implies that 1 − ψ(x−1) ∈ R−1. Thus, the
Archimedean copula with generator ψ is in the maximum domain of attraction of the Gumbel
copula with parameter θ = 1, which is the independence copula 
(u1, . . . , ud) = u1 · · · ud .

The fact that the Gumbel family appears in the limit is not surprising in view of the following
observation. Assume that C is extreme value, which implies that

ψn{ψ−1(u
1/n
1 )+ · · · + ψ−1(u

1/n
d )} = ψ{ψ−1(u1)+ · · · + ψ−1(ud)}

holds for every u1, . . . , ud ∈ [0, 1] and n ∈ N. Hence, the �1-norm symmetric vectors Wn and
X share the same survival copula for every n ∈ N. By Proposition 2.14 of [22], this is possible
if and only if there exist positive constants bn > 0 such that

ψ(x) = ψn(bnx)

for any x ≥ 0 and n ∈ N. However, this means that the distribution function G(x) =
ψ(−x), x ≤ 0, is max-stable by the Fisher–Tippett theorem; see, e.g. [14, Theorem 3.2.3].
Because its upper endpoint is finite,G has to be the Weibull distribution�α(x) = exp[−(−x)α].
In addition, as argued in Section 2, its parameter must satisfy α ≤ 1. This implies that
ψ(x) = exp[−xα], where the right-hand side is the Gumbel generator ψGu

1/α . In summary, this
gives the following result, first obtained in [17].

Corollary 1. The Gumbel copulas CGu
θ with parameter θ ≥ 1 are the only copulas that are

both Archimedean and extreme value.
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3.2. Extremal behavior of C̄

Assume, as in Section 3.1, that C is an Archimedean copula with generator ψ and radial
part R. Let X = RSd be an �1-norm symmetric random vector whose survival copula is C.
Given n independent replicates X1, . . . ,Xn of X, define Mn = (Mn1, . . . ,Mnd) as the vector
of the componentwise maxima, viz.

Mnj = max(X1j , . . . , Xnj ), 1 ≤ j ≤ d.
It is not difficult to see that, unlike the vector Wn of componentwise minima, Mn is no longer

�1-norm symmetric. Its limiting behavior can nonetheless be established using multivariate
regular variation if R is regularly varying. This leads to the following result, previously stated
in [5] for the bivariate case.

Proposition 3. LetC be an Archimedean copula with radial partR ∈M(�α) for some α > 0.
Then C̄ ∈M(CGa

1/α), where CGa
θ is the Galambos copula with parameter θ > 0, i.e. an extreme

value copula with Pickands dependence function

AGa
θ (x1, . . . , xd−1) = 1

cθd

∫
Sd

max

{
x1w

1/θ
1 , . . . , xd−1w

1/θ
d−1,

(
1−

d−1∑
j=1

xj

)
w

1/θ
d

}
dσ(w),

where σ is the uniform distribution on Sd , cθd = (d− 1)B(1/θ + 1, d− 1), and B(·, ·) denotes
the beta function.

Proof. First note that ‖X‖ = R is independent of X/‖X‖ d= Sd . Consequently, by Propo-
sition 1.11 of [29] there exists a sequence (an) of reals an > 0 such that, for any Borel set
A ⊆ Sd and r > 0,

lim
n→∞ nPr

(
‖X‖ > anr,

X

‖X‖ ∈ A
)
= lim
n→∞ nPr(R > anr)Pr(Sd ∈ A)
= r−α Pr(Sd ∈ A).

In particular, therefore, Corollary 5.18 of [29] and Proposition 6.4 of [30] imply that X is in the
maximum domain of attraction of the multivariate extreme value distribution H of the form

H(x1, . . . , xd) = exp

[
−c

∫
Sd

max

(
wα1

xα1
, . . . ,

wαd

xαd

)
dσ(w)

]
.

Here, the sequence (an) can be chosen in a way that c = 1.
Next, observe that the univariate margins of H are given by

Hj(xj ) = exp

[
−x−αj

∫
Sd

wαj dσ(w)

]
= exp[−(d − 1)B(α + 1, d − 1)x−αj ]

for every 1 ≤ j ≤ d . Noting that (d − 1)B(α + 1, d − 1) = c(1/α)d , it is straightforward to
verify that the copula of H is indeed the Galambos copula CGa

1/α . Consequently, Theorem 7.48
of [26] implies that C̄ ∈M(CGa

1/α), as claimed.

Example 1 justifies attaching the name of Galambos to the family of multivariate extreme
value copulas CGa

θ , which also appears in [2].
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202 M. LARSSON AND J. NEŠLEHOVÁ

Example 1. In the bivariate case, cθ2 = 1/(1/θ + 1). Furthermore, for any x ∈ [0, 1],

AGa
θ (x) =

(
1

θ
+ 1

) ∫
S2

max{w1/θ
1 x,w

1/θ
2 (1− x)} dσ(w1, w2)

=
(

1

θ
+ 1

) ∫ 1

0
max{w1/θx, (1− w)1/θ (1− x)} dw

=
(

1

θ
+ 1

)
(1− x)

∫ K

0
(1− w)1/θ dw +

(
1

θ
+ 1

)
x

∫ 1

K

w1/θ dw,

where K = (1− x)θ/{xθ + (1− x)θ }. A straightforward calculation yields

AGa
θ (x) = 1− {x−θ + (1− x)−θ }−1/θ , x ∈ [0, 1],

which is the Pickands dependence function of the bivariate Galambos copula; see, e.g.
Example 7.47 of [26].

If R is either in the Gumbel or Weibull domain of attraction, the following holds.

Proposition 4. Assume that C is an Archimedean copula with generator ψ whose radial part
satisfies either R ∈ M(�) or R ∈ M(�α) for some α > 0. Then C̄ ∈M(
), where 
 is the
independence copula.

Proof. Let X be the �1-norm symmetric random vector whose survival copula is C. First
consider the case where ψ−1(0) <∞. Then, clearly,

lim
t→xF

Pr(Xi > t, Xj > t)

ψ(t)
= lim
t→xF

ψ(2t)

ψ(t)
= 0, 1 ≤ i < j ≤ d.

This property remains valid even if xF = ∞ and R ∈ M(�) because then ψ ∈ � by
Theorem 1(c) and, consequently,ψ is rapidly varying. Since all the margins of X are identically
distributed, Proposition 5.27 of [29] implies that X is in the maximum domain of attraction of
either�(x1) · · ·�(xd) or�α(x1) · · ·�α(xd) depending on whetherR ∈M(�) orR ∈M(�α).
In any case, C̄ ∈M(
) by Theorem 7.48 of [26].

4. Threshold copulas

The purpose of this section is to examine the limiting threshold copulas of an Archimedean
copula C. Sections 4.1 and 4.2 consider lower and upper threshold copulas, respectively.

4.1. Limiting lower threshold copulas

Let U be a random vector distributed as a d-dimensional Archimedean copula C with
generator ψ , and let X be an �1-norm symmetric random vector with radial part R whose
survival copula is C. Given v ∈ [0, 1]d with C(v) > 0, the lower threshold copula C�v is
defined as the copula of the conditional distribution function

Pr(U1 ≤ u1, . . . , Ud ≤ ud | U1 ≤ v1, . . . , Ud ≤ vd), ui ∈ [0, vi], 1 ≤ i ≤ d.
If ψ−1(0) = ∞, the limiting lower threshold (LLT) copula of C is given as the limit of

C�v as v → 0, provided it exists. If ψ is nonstrict, i.e. ψ−1(0) < ∞, the so-called zero
set L(0) = {u ∈ (0, 1)d : C(u) = 0} is nonempty. In this case, the LLT copula of C is
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the limit (if it exists) of C�v as v approaches some v0 on the boundary of the zero set, i.e.
v0 ∈ {u ∈ (0, 1)d : ψ−1(u1)+ · · · +ψ−1(ud) = ψ−1(0)}. The LLT copula could in principle
depend on v0 or the rate of convergence of v to v0; however, as will soon become clear, this is
of no concern if C is Archimedean.

As ψ−1 is strictly decreasing on (0, 1], C�v is the survival copula of Hz, where

H̄z(x) = Pr(X1 ≥ x1 + z1, . . . , Xd ≥ xd + zd | X1 ≥ z1, . . . , Xd ≥ zd)
= ψ(‖x‖ + ‖z‖)

ψ(‖z‖)
for z = (ψ−1(v1), . . . , ψ

−1(vd)) and x ∈ R
d+. Because H̄z(x) is a function of ‖x‖ alone, H̄z

is again �1-norm symmetric. This leads to the following result, which extends [21].

Proposition 5. Let C be a d-dimensional Archimedean copula with generator ψ and radial
partR. Furthermore, letCCl

θ be the Clayton copula, i.e. an Archimedean copula with generator
ψCl
θ (x) = (1+ θx)−1/θ

+ , θ ≥ −1/(d − 1). Then the following statements hold.

(a) If R ∈M(�α) for α > 0, the LLT copula of C is CCl
1/α .

(b) If R ∈M(�), the LLT copula of C is 
.

(c) If R ∈M(�α) for α > 0, the LLT copula of C is CCl
−1/(α+d−1).

Proof. Let Ḡθ (x) denote the survival function of the generalized Pareto distribution [14,
Chapter 3.4]. Observe that, for x > 0, Ḡθ (x) = e−x if θ = 0 and Ḡθ (x) = ψCl

θ (x) otherwise.
Next, note that H̄z(x) is the excess distribution ofψ at ‖x‖with threshold ‖z‖. By the Pickands–
Balkema–de Haan theorem [14, Theorem 3.4.5] and Theorem 1, there exists a positive and
measurable function β such that

lim
‖z‖↑ψ−1(0)

H̄z{x β(‖z‖)} = Ḡθ (‖x‖), x ∈ R
d+,

where θ = 1/α in case (a), θ = 0 in case (b), and θ = −1/α in case (c). Because copulas are
invariant with respect to scaling, the survival copula of H̄z{x β(‖z‖)} is again C�v . Since the
margins of both H̄z{x β(‖z‖)} and Ḡθ (‖x‖) are continuous, this implies that, as ‖z‖ ↑ ψ−1(0),
C�v converges to the survival copula of Ḡθ (‖x‖), which is precisely the Clayton copula CCl

θ , as
claimed. In addition, if v tends to an arbitrary v0 ∈ {u ∈ (0, 1)d : ψ−1(u1)+· · ·+ψ−1(ud) =
ψ−1(0)}, ‖z‖ ↑ ψ−1(0).

4.2. Limiting upper threshold copulas

Limiting upper threshold copulas of Archimedean copulas turn out to be less tractable. In
this section we discuss only partial results under two additional assumptions. Firstly, let the
radial part R of an Archimedean copula C be such that

inf{x ∈ R : Pr(R ≤ x) > 0} = 0. (6)

This condition guarantees that if U is a random vector distributed as C,

Pr(U1 > v1, . . . , Ud > vd) > 0, (v1, . . . , vd) ∈ (0, 1)d .

Secondly, only thresholds of the form v = (v, . . . , v) for some v ∈ (0, 1)will be considered.
For any such v, the upper threshold copula Cuv of C may be defined as the copula of the
conditional distribution with survival function

Pr(U1 > u1, . . . , Ud > ud | U1 > v, . . . , Ud > v), ui ∈ [v, 1], 1 ≤ i ≤ d.
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The limiting upper threshold (LUT) copula of C is then the limit of Cuv as v → 1, provided it
exists.

Using the same notation as in Section 4.1 and setting z = ψ−1(v), it is easily seen that Cuv
is the survival copula of the conditional distribution

Kz(x1, . . . , xd) = Pr(X1 ≤ x1, . . . , Xd ≤ xd | X1 ≤ z, . . . , Xd ≤ z),
where xi ∈ [0, z], 1 ≤ i ≤ d . Because the support of Kz is [0, z]d , Kz cannot be �1-norm
symmetric. Nonetheless, its limit as z→ 0 can be computed under suitable conditions on the
radial part. This leads to the following result, which is in agreement with [8].

Proposition 6. Let C be an Archimedean copula with generator ψ , and assume that its radial
part satisfies 1/R ∈ M(�α) for α ∈ (0, 1). Then the LUT copula of C is the survival copula
of the distribution function defined for all x1, . . . , xd ∈ [0, 1] by

K(x1, . . . , xd) =
∑d
k=1(−1)k−1 ∑

1≤i1<···<ik≤d (xi1 + · · · + xid )α∑d
k=1

(
d
k

)
(−1)k−1kα

.

Proof. First note that, if 1/R ∈M(�α) holds, condition (6) is automatically fulfilled. Using
the inclusion–exclusion principle, we can further see that

Pr(X1 ≤ x1, . . . , Xd ≤ xd) = 1+
d∑
k=1

(−1)k
∑

1≤i1<···<ik≤d
ψ(xi1 + · · · + xid )

=
d∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤d
{1− ψ(xi1 + · · · + xid )}.

This means that, for xi ∈ (0, 1), 1 ≤ i ≤ d ,

Kz(zx1, . . . , zxd) =
∑d
k=1(−1)k−1 ∑

1≤i1<···<ik≤d [1− ψ{z(xi1 + · · · + xid )}]∑d
k=1(−1)k−1

(
d
k

){1− ψ(kz)}
=

∑d
k=1(−1)k−1 ∑

1≤i1<···<ik≤d [1− ψ{z(xi1 + · · · + xid )}]/{1− ψ(z)}∑d
k=1(−1)k−1

(
d
k

){1− ψ(kz)}/{1− ψ(z)} .

Recalling that 1− ψ(x−1) ∈ R−α for α ∈ (0, 1) by Theorem 2, we conclude that

lim
z↓0

Kz(zx1, . . . , zxd) = K(x1, . . . , xd), xi ∈ (0, 1), 1 ≤ i ≤ d.

Consequently, the survival copula of the distribution function Kz(zx1, . . . , zxd), xi ∈ (0, 1),
1 ≤ i ≤ d, converges to the survival copula of K . Because copulas are invariant with respect
to strictly monotone transformations of the margins, the former is Cuv .

Although the margins of K are identical, the inverse of their distribution function is not
available in closed form. As a consequence, neither the copula nor the survival copula of K is
algebraically tractable. This happens already when d = 2. Indeed,

K(x1, x2) = xα1 + xα2 − (x1 + x2)
α

2− 2α
, (x1, x2) ∈ [0, 1]2,

with identical margins equal to {1+ xα − (1+ x)α}/(2− 2α) for all x ∈ [0, 1].
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5. Coefficients of lower and upper tail dependences

For a bivariate copula C, coefficients of lower and upper tail dependences are defined
in [19] by

λL = lim
q→0

C(q, q)

q
, λU = lim

q→1

1− 2q + C(q, q)
1− q ,

provided the limits exist. If C is a d-dimensional Archimedean copula with generator ψ , all its
bivariate margins are also Archimedean with the same generator. It is easy to check that their
coefficients of upper and lower tail dependence are given by

λL =
{

lim
x→∞ψ(2x)/ψ(x) if ψ−1(0) = ∞,
0 otherwise,

λU = 2− lim
x→0

1− ψ(2x)
1− ψ(x) .

These expressions show that λL and λU are related to the regular variation of ψ at∞ and
1− ψ at 0, respectively. The next result, which follows directly from Theorems 1 and 2, links
these coefficients with the extremal behavior of R.

Corollary 2. Let C be a d-dimensional Archimedean copula with generator ψ and radial
part R. Then the following statements hold.

(a) If R ∈M(�α) then λL = 2−α .

(b) If R ∈M(�α) or R ∈M(�), then λL = 0.

(c) If 1/R ∈M(�α) for α ∈ (0, 1) then λU = 2− 2α .

(d) If 1/R ∈M(�α), 1/R ∈M(�), or 1/R ∈M(�α) for α ≥ 1, then λU = 0.

The same expressions for λL and λU were previously obtained in [8] under conditions on the
inverse ofψ . However, Theorems 1 and 2 combined with Proposition 1 easily relate Corollary 2
to the results of Sections 3 and 4 of [8].

Remark 4. The statement in Corollary 2(a) can be compared to similar results on the tail-
dependence coefficients of elliptical copulas. These dependence structures are copulas of
elliptical distributions, whose stochastic representation is similar to the �1-norm symmetric
distributions. More specifically, a random vector X follows an elliptical distribution with
mean µ, positive definite covariance matrix �, and generator φ if and only if X

d= µ+ TAU ,
where A is a d×d matrix such that AA� = �, and T is a nonnegative random variable indepen-
dent of a random vector U , uniformly distributed on the unit hypersphere {x ∈ R

d : x�x = 1}.
Under suitable regularity conditions on �, it was shown in [18] that, if T ∈ M(�α), the
coefficient of lower tail dependence of any bivariate margin (Xi,Xj ) of X is positive and
depends only on α and ρij = �ij /

√
�ii�jj . Because elliptical copulas are radially symmetric,

λU(Xi,Xj ) = λL(Xi,Xj ), which is not the case for Archimedean copulas.

Commonly used families of Archimedean copulas have the property that either λL = λU or
that only one of the coefficients is nonzero. The following example shows how this fact, which
is often restrictive in applications, may be overcome using Corollary 2.

Example 2. Consider a radial part R whose distribution function is given by

Fα,κ(x) =
{
xκ/2 if x ≤ 1,

1− x−α/2 if x > 1,
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Figure 1: Samples from Cα,κ with α = 1
3 , κ = 1

2 (left) and α = 2
3 , κ = 1

4 (right).

with parameters κ > 0 and α > 0. It is easy to see that R ∈ M(�α) while 1/R ∈ M(�κ).
As a consequence, the coefficients of tail dependence for a bivariate Archimedean copula Cα,κ
with radial distribution Fα,κ are λL = 2−α and λU = 2− 2min(κ,1). This means that, for this
family of copulas, all possible combinations of the values of λL and λU are attainable. Figure 1
shows samples of size 2000 from Cα,κ with parameters such that λL ≈ 0.794 and λU ≈ 0.586
(left panel) and λL ≈ 0.629 and λU ≈ 0.811 (right panel).

The coefficients of tail dependence exist for all commonly encountered families of
Archimedean copulas (see, e.g. [27, Example 5.22] and Tables 1 and 2 of [8]). With the
relatively strong d-monotonicity condition on ψ in mind, it is tempting to conjecture that such
is always the case. What follows next are two intricate counterexamples.

Example 3. Fix d ≥ 2, and define a function

ψa(x) = 1+ a sin{log(1+ x)}
1+ x , x ∈ R+,

with parameter a < 1. As shown next, ψa is a d-monotone Archimedean generator for suitable
choices of a. Clearly, ψa(0) = 1, limx→∞ ψa(x) = 0, and ψa(x) > 0 for all x ≥ 0.
Furthermore, it is easily established by induction that, for any k ≥ 0,

ψ(k)a (x) = (−1)k
k! + ack sin{ϕk + log(1+ x)}

(1+ x)k+1 , x ≥ 0.

Here, ck and ϕk are constants given recursively by c0 = 1, ck = ck−1
√
k2 + 1 and ϕ0 = 0,

ϕk = ϕk−1 + arctan(1/k). Because the sine function is bounded below by −1, the condition
(−1)kψ(k)a (x) ≥ 0 holds for all x > 0 whenever 0 < a ≤ k!/ck . Since c0 < c1 < · · · < cd ,
choosing a ∈ (0, 1/cd) ensures that ψa is a d-monotone generator.

To show that ψa is not regularly varying at ∞, consider the sequence xn = enπ which
diverges as n→∞. Then ψ(cxn)/ψ(xn) = f (xn)(1+ xn)/(1+ cxn), where

f (xn) = 1+ a sin{log(1+ cxn)}
1+ a sin{log(1+ xn)}

= 1+ a sin{nπ + log(e−nπ + c)}
1+ a sin{nπ + log(e−nπ + 1)}

= 1+ a(−1)n sin{log(e−nπ + c)}
1+ a(−1)n sin{log(e−nπ + 1)} .
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It is easily seen that the limit of f (xn) as n → ∞ does not exist. Indeed, f (x2n) → 1 +
a sin(log c), while f (x2n+1)→ 1− a sin(log c) as n→∞. In particular, therefore, the limit
of ψ(cxn)/ψ(xn) as n → ∞ does not exist unless log c = mπ for some integer m ≥ 1.
Consequently, ψa for a ∈ (0, 1/cd) generates an Archimedean copula in dimension d whose
bivariate margins do not have a coefficient of lower tail dependence.

The next example shows that even the stronger requirement of complete monotonicity of ψ
is not enough to guarantee the existence of the coefficient of lower tail dependence.

Example 4. Define f (x) = K∑∞
k=0 1(2−2k−1,2−2k](x), where the constant K is chosen so that∫∞

0 f (x) dx = 1, and set F(x) = ∫ x
0 f (y) dy. Now let ψ be the Laplace transform of F ; by

construction, ψ is a completely monotone Archimedean generator. We readily compute that

ψ(t) = K

t

∞∑
k=0

(exp[−t2−2k−1] − exp[−t2−2k]),

and, hence, for an arbitrary c > 0,

ψ(ct)

ψ(t)
= 1

c

∑∞
k=0(exp[−ct2−2k−1] − exp[−ct2−2k])∑∞
k=0(exp[−t2−2k−1] − exp[−t2−2k]) .

It turns out that, for c = 2, the limit as t →∞ of the ratio ψ(2t)/ψ(t) does not exist, which
implies that the bivariate Archimedean copula generated by ψ does not have a coefficient of
lower tail dependence. This fact is established below by showing that the limits of ψ(2 ·)/ψ
along the subsequences tn = 22n and sn = 22n+1 differ.

First, the sum in the expression for ψ(tn) may be rewritten as

∞∑
k=0

(exp[−tn2−2k−1] − exp[−tn2−2k])

=
∞∑
k=n
(exp[−22n−2k−1] − exp[−22n−2k])+

n−1∑
k=0

(exp[−22n−2k−1] − exp[−22n−2k]).

The first sum on the right-hand side equals
∑∞
k=0(exp[−2−2k−1] − exp[−2−2k]); setting j =

n− k in the second sum results in
∑n
j=1(exp[−22j−1] − exp[−22j ]). In particular, therefore,

lim
n→∞

∞∑
k=0

(exp[−tn2−2k−1] − exp[−tn2−2k]) =
∞∑

k=−∞
(exp[−2−2k−1] − exp[−2−2k]).

It is easy to check that the sum on the right-hand side is finite and even absolutely convergent.
Turning to the sum in the expression for ψ(2tn), analogous calculations yield

lim
n→∞

∞∑
k=0

(exp[−2tn2−2k−1]−exp[−2tn2−2k]) =
∞∑

k=−∞
(exp[−2−(2k+1)−1]−exp[−2−(2k+1)]).

Because sn = 2tn and 2sn = tn+1, these observations imply that

lim
n→∞

ψ(2tn)

ψ(tn)
= 1

2

∑∞
k=−∞(exp[−2−2k−1] − exp[−2−2k])∑∞

k=−∞(exp[−2−(2k+1)−1] − exp[−2−(2k+1)]) ,
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while

lim
n→∞

ψ(2sn)

ψ(sn)
= 1

2

∑∞
k=−∞(exp[−2−(2k+1)−1] − exp[−2−(2k+1)])∑∞

k=−∞(exp[−2−2k−1] − exp[−2−2k]) .

The limits as n→∞ of ψ(2tn)/ψ(tn) and ψ(2sn)/ψ(sn) thus differ if and only if

∞∑
k=−∞

(exp[−2−(2k+1)−1] − exp[−2−(2k+1)]) �=
∞∑

k=−∞
(exp[−2−2k−1] − exp[−2−2k]).

To verify this claim, set a� = exp[−2−�−1]− exp[−2−�]. Since a� ≥ 0 for any � ∈ Z, we have

∞∑
k=−∞

a2k+1 −
∞∑

k=−∞
a2k =

5∑
k=−2

a2k+1 −
6∑

k=−2

a2k +
∑
k≤−3
k≥6

a2k+1 −
∑
k≤−3
k≥7

a2k

≥
5∑

k=−2

a2k+1 −
6∑

k=−2

a2k −
∑
�≤−5
�≥13

a�

=
5∑

k=−2

a2k+1 −
6∑

k=−2

a2k − (1− exp[−2−13] − exp[−24]),

where the last equality follows from the telescopic property and the fact that
∑
�∈Z a� = 1.

The value of the lower bound was found to be strictly positive (greater than 10−4) by direct
computation. This completes the counterexample.

The cases where λL = 0 and λU = 0 are referred to as asymptotic independence in the lower
and upper tails, respectively; see Propositions 2 and 4. In [11], the authors introduced the so-
called coefficients of tail dependence of the second kind, which provide additional information
in such situations. The latter are given by

µL = lim
q→0

2 log q

logC(q, q)
− 1, µU = lim

q→1

2 log(1− q)
log{1− 2q + C(q, q)} − 1.

As shown in [11] and [13], µL = 1 whenever λL > 0 and µL > −1 whenever λL = 0, and
similarly for µU. The following result illustrates that in the case of asymptotic independence,
µL may be computed under second-order conditions on the tail behavior of the radial part.

Proposition 7. Let C be a bivariate Archimedean copula with differentiable generator ψ .
Assume further that the radial part R of C is such that R ∈ M(�) and xF = ∞. If the
auxiliary function a of R satisfies a ∈ Rβ for some β ≤ 1 then µL = 2β − 1.

Proof. Substituting t = ψ−1(q) and using l’Hôpital’s rule, we obtain

lim
q→0

2 log q

logC(q, q)
= lim
t→∞

2 logψ(t)

logψ(2t)
= lim
t→∞

ψ(2t)/ψ ′(2t)
ψ(t)/ψ ′(t)

.

From Theorem 1 and Remark 1, ψ ∈ � with auxiliary function a. The result thus follows by
regular variation of a if a and−ψ/ψ ′ are tail equivalent, i.e.−a(x)ψ ′(x)/ψ(x)→ 1 as x →∞.
To show this, note thatψ(x) = − ∫∞

x
ψ ′(t) dt , so that, by Lemma 1 in Appendix A,−ψ ′ ∈ �a .

As is well known (see, e.g. Proposition 1.9 of [29]),− ∫∞
x
ψ ′(t) dt/{−ψ ′(x)} = −ψ(x)/ψ ′(x)

is a valid choice of auxiliary function for −ψ ′. Thus, a and −ψ/ψ ′ must be tail equivalent.
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Remark 5. Note that Proposition 7 is in agreement with Section 3.3 of [8], where the same
expression forµL is derived under the assumption of regular variation of−ψ/ψ ′. The arguments
in the proof of Proposition 7 show that the latter condition is equivalent to the requirement that
the auxiliary function a of R satisfies a ∈ Rβ .

As already indicated in Theorem 5.1 of [8], the condition β ≤ 1 in Proposition 7 is not
restrictive, because we cannot have a ∈ Rβ for β > 1. Indeed, Theorem 1 implies that
ψ ∈ �. In particular, therefore, ψ(x)/exp{− ∫ x

z0
dt/a(t)} → 1 as x → ∞ for some z0 > 0.

If β > 1, we would then have
∫∞

0 dt/a(t) <∞ by Karamata’s theorem [3, Theorem 1.5.11],
[29, Theorem 0.6] and, hence, limx→∞ ψ(x) > 0, which is a contradiction.

Similar calculations are possible for the coefficientµU. To obtain nondegenerate results, we
need to consider second-order regular variation of 1− ψ , which goes beyond the scope of the
present paper. For more results on this issue, see [8].

Appendix A. Proof of Theorem 1

To simplify the notation in the proof, let ψ(d−1) be the right-hand derivative of ψ(d−2).
Furthermore, f ∼ g for two real functions f and g means that f (x)/g(x)→ 1 as x →∞.

Proof of (a). Let Y be a Beta(1, d − 1) random variable which is independent of R, and
observe that

ψ(x) =
∫ ∞

0

(
1− x

r

)d−1

dF(r) =
∫ ∞

0
Ḡ

(
x

r

)
dF(r) = Pr(RY > x),

where G denotes the distribution function of Y . Since E(Y α+ε) <∞ for all ε > 0, Breiman’s
theorem [4], [10] implies that ψ(x) = Pr(RY > x) ∈ R−α .

Conversely, suppose thatψ(x) = x−αL(x) for some slowly varying functionL. As is shown
below by induction, we have

(−1)kxkψ(k)(x) ∼
k−1∏
j=0

(j + α)ψ(x) (7)

for k = 0, . . . , d − 1. The claim is trivial for k = 0, and because ψ is d-monotone,

(−1)kψ(k)(x) =
∫ ∞
x

(−1)k+1ψ(k+1)(y) dy (8)

for k = 0, . . . , d − 2. Now suppose that (−1)kψ(k)(x) ∼∏k−1
j=0(j + α)x−kψ(x). In other

words, (−1)kψ(k)(x) ∼ ckx−k−αL(x), where ck =∏k−1
j=0(j + α) is a positive constant. Since

(−1)k+1ψ(k+1) is nonincreasing, the monotone density theorem [3, Theorem 1.7.2], [14, Theo-
rem A 3.7] implies that (−1)k+1ψ(k+1)(x) ∼ ck(k + α)x−k−α−1L(x). Hence, (−1)k+1xk+1×
ψ(k+1)(x) ∼∏k

j=0(j + α)ψ(x), as claimed.
Now, use (7) and (2) for the inverse Williamson d-transform to see that

1− F(x)
ψ(x)

= 1−W−1
d ψ(x)

ψ(x)
=
d−1∑
k=0

1

k!
(−1)kxkψ(k)(x)

ψ(x)
→

d−1∑
k=0

1

k!
k−1∏
j=0

(j + α)

as x →∞. As α > 0, the limit is positive. This implies that F̄ ∈ R−α .
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Proof of (b). Assume that R ∈ M(�α) for some α > 0. As is well known, this happens if
and only if F̄ (xF − x−1) ∈ R−α; see, e.g. [14, Theorem 3.3.12] and [29, Chapter 1.3]. Using
the definition of the Williamson d-transform and dominated convergence, we easily obtain

(−1)(d−1)ψ(d−1)(x) = (d − 1)!
∫ ∞
x

t−d+1 dF(t),

which can be rewritten as follows by partial integration:

(−1)d−1ψ(d−1)(x) = (d − 1)!
{
x−d+1F̄ (x)− (d − 1)

∫ ∞
x

t−d F̄ (t) dt

}
. (9)

The change of variable t = xF − s−1 then leads to

(−1)d−1ψ(d−1)(xF − x−1) = (d − 1)!
{
(xF − x−1)−d+1F̄ (xF − x−1)

− (d − 1)
∫ ∞
x

s−2(xF − s−1)−d F̄ (xF − s−1) ds

}
.

Now, write F̄ (xF − x−1) = x−αL(x) for some slowly varying function L. As K(x) =
(xF − x−1)−dL(x) is again slowly varying, Karamata’s theorem [3, Theorem 1.5.11], [29,
Theorem 0.6] yields ∫∞

x
s−α−2K(s) ds

x−α−1K(x)
→ 1

α + 1

as x →∞. In particular, therefore,

(−1)d−1ψ(d−1)(xF − x−1)

F̄ (xF − x−1)

= (d − 1)!
{
(xF − x−1)−d+1 − (d − 1)(xF − x−1)−d

x

∫∞
x
s−α−2K(s) ds

x−α−1K(x)

}
,

which converges to (d − 1)! x−d+1
F as x → ∞. Hence, (−1)d−1ψ(d−1)(xF − x−1) ∈ R−α .

Now because ψ(k)(x) = 0 whenever x > xF , we have

(−1)kψ(k)(xF − x−1) =
∫ xF

xF−x−1
(−1)k+1ψ(k+1)(t) dt

=
∫ ∞
x

(−1)k+1s−2ψ(k+1)(xF − s−1) ds (10)

for k = 0, . . . , d − 2. Thus, successive applications of Karamata’s theorem yield

(−1)kψ(k)(xF − x−1) ∈ R−α−(d−1)+k

for k = 0, . . . , d − 2. In particular, this implies that ψ(xF − x−1) ∈ R−α−(d−1), as claimed.
For the converse, suppose that

ψ(xF − x−1) ∈ R−α−(d−1),

i.e. ψ(xF − x−1) = x−α−(d−1)L(x) for some slowly varying function L. Because α > 0 by
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assumption,−α−(d−1)+k < 0 for every k = 0, . . . , d−1. Invoking (10) and the monotone
density theorem repeatedly, we obtain

(−1)kψ(k)(xF − x−1) ∼ akx−α−(d−1)+kL(x) for k = 0, . . . , d − 1,

whereak =∏k−1
j=0(α + d − 1− j) is a strictly positive constant. Now, the inversion formula (2)

gives

F̄ (xF − x−1)

x−αL(x)
=
d−1∑
k=0

(xF − x−1)kxk−(d−1)(−1)kψ(k)(xF − x−1)

x−α−(d−1)+kL(x)k!
for all sufficiently large x. As x →∞, the right-hand side converges to ad−1(xF )

d−1/(d − 1)!.
In other words, F(xF − x−1) ∈ R−α and the proof is complete.

The proof of Theorem 1(c) requires several technical results related to 	-varying functions,
including modifications of Corollary 3.10.7 and Theorem 3.10.11 of [3].

Lemma 1. The following statements hold.

(a) If f ∈ �a satisfies f (x) = ∫∞
x
g(t) dt for all x ∈ R and some nonincreasing and

right-continuous function g, then g ∈ �a .

(b) Let f ∈ �a and g(x) = ∫∞
x
f (t) dt be well defined for all x ∈ R. Then g ∈ �a .

(c) Let f ∈ �a , ρ ∈ R, and g(x) = xρf (x), x ∈ R. Then g ∈ �a .

(d) Let g = f ± f ∗, where f, f ∗ ∈ �a with the same upper endpoint xf and such that
limx↑xf f (x)/f ∗(x) = � for some � ∈ [0,∞). Then g ∈ �a .

Proof. To show (a), first note that becausef is nonincreasing, g is nonnegative with xg = xf .
Now pick two reals t < s. Then, for every x ∈ R,

f {x + a(x)t} − f {x + a(x)s}
f (x)

= 1

f (x)

∫ x+a(x)s

x+a(x)t
g(v) dv = a(x)

f (x)

∫ s

t

g{x + a(x)u} du.

As g is nonincreasing, this implies that

f {x + a(x)t} − f {x + a(x)s}
f (x)

≤ a(x)g{x + a(x)t}(s − t)
f (x)

.

Hence, recalling that f ∈ �a by assumption,

lim inf
x↑xf

a(x)g{x + a(x)t}
f (x)

≥ lim
x↑xf

f {x + a(x)t} − f {x + a(x)s}
f (x)(s − t) = e−t − e−s

s − t .

Letting s → t , this means that lim infx↑xf a(x)g{x + a(x)t}/f (x) ≥ e−t . Similarly, we can
argue that lim supx↑xf a(x)g{x + a(x)t}/f (x) ≤ e−t . Consequently,

lim
x↑xf

a(x)g{x + a(x)t}
f (x)

= e−t , t ∈ R.

The case t = 0 yields a(x)g(x)/f (x)→ 1 as x → xf . Thus, g{x + a(x)t}/g(x)→ e−t for
every t ∈ R, which implies that g ∈ �a , as claimed.
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Regarding (b), note that, if f ∈ �a , the auxiliary function a satisfies

lim
x↑xf

a(x)

x
= 0; (11)

see, e.g. Lemma 3.10.1 of [3]. Furthermore, according to Propositions 0.9 and 0.14 of [29], we
have f ∈ �a∗ with the asymptotically equivalent auxiliary function

a∗(x) =
∫ xf

x

f (t) dt

f (x)
= g(x)

f (x)
, x ∈ R.

Now, by Proposition 3.10.6 of [3], a∗ is self-neglecting. This implies that

lim
x↑xf

a∗{x + ta∗(x)}
a∗(x)

= lim
x↑xf

g{x + ta∗(x)}f (x)
f {x + ta∗(x)}g(x) = 1.

Consequently, g satisfies (4) and, hence, g ∈ �a∗ , which is the same as g ∈ �a .
Part (c) follows directly with (11) and the fact that f satisfies (4). Indeed,

lim
x↑xf

g{x + a(x)t}
g(x)

= lim
x↑xf

(
1+ a(x)

x
t

)ρ
f {x + a(x)t}

f (x)
= e−t .

To show (d), write η(x) = f (x)/f ∗(x) and consider the case g = f + f ∗. Now

f {x + a(x)t} + f ∗{x + a(x)t}
f (x)+ f ∗(x) = f {x + a(x)t}/f (x)+ η(x)f ∗{x + a(x)t}/f ∗(x)

1+ η(x) .

Clearly, the right-hand side tends to e−t as x → xf . The case g = f − f ∗ is similar.

Proof of (c). Suppose first that R ∈M(�). As is well known, this is equivalent to F̄ ∈ �a
for some auxiliary function a. Because of (8) and Lemma 1(b), it is sufficient to show that
(−1)d−1ψ(d−1) ∈ �a . To do so, recall (9) and observe that (−1)d−1ψ(d−1)(x) = γ (x)− δ(x)
for x ∈ (0,∞), where

γ (x) = (d − 1)! x−d+1F̄ (x), δ(x) = (d − 1)! (d − 1)
∫ xF

x

t−d F̄ (t) dt.

Now by Lemma 1(c) and (b), γ ∈ �a as well as δ ∈ �a . However, because of Propositions 0.9
and 0.14 of [29], the function

a∗(x) =
∫ xF
x
t−d F̄ (t) dt

x−d F̄ (x)
, x ∈ (0,∞),

is another auxiliary function for δ. In particular, (11) holds for a∗ and, thus, δ(x)/γ (x) =
(d − 1)a∗(x)/x tends to 0 as x → xF . Consequently, γ − δ satisfies (4) by Lemma 1(d). As
(−1)d−1ψ(d−1) is nonincreasing and right continuous, it is in the class �a .

To show the converse, recall the inversion formula (2), i.e.

F̄ (x) =
d−1∑
k=0

(−1)kxkψ(k)(x)

k! , x ∈ (0,∞),
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and observe that each of the summands satisfies (4) by (8) and Lemma 1(a) and (c). Thus,
F̄ ∈ �a by Lemma 1(d) provided that

ξk(x) = (d − 1)!(−1)kxkψ(k)(x)

k! (−1)d−1xd−1ψ(d−1)(x)

has a finite limit as x → xF for every k = 0, . . . , d − 2. Because (−1)kψ(k) ∈ �a by (8) and
Lemma 1(a), the function a∗k given by

a∗k (x) =
∫ xF
x
(−1)kψ(k)(t) dt

(−1)kψ(k)(x)
= (−1)k−1ψ(k−1)(x)

(−1)kψ(k)(x)
, x ∈ (0,∞),

is a possible auxiliary function for (−1)kψ(k) as per Propositions 0.9 and 0.14 of [29] for all
k = 1, . . . , d − 1. Now write

k! ξk(x)
(d − 1)! =

(−1)kxkψ(k)(x)

(−1)k+1xk+1ψ(k+1)(x)

(−1)k+1xk+1ψ(k+1)(x)

(−1)k+2xk+2ψ(k+2)(x)
· · · (−1)d−2xd−2ψ(d−2)(x)

(−1)d−1xd−1ψ(d−1)(x)

= a∗k+1(x)

x

a∗k+2(x)

x
· · · a

∗
d−1(x)

x
.

Because each a∗k satisfies (11), the last expression tends to 0 as x → xF . Thus, Lemma 1(d)
implies that F̄ ∈ �a as announced, and the proof is complete.

Appendix B. Proof of Theorem 2

Proof of (a). Fix α ∈ (0, 1), and assume that 1/R ∈ M(�α). If Y is a Beta(1, d − 1)
random variable which is independent of R, it is easy to see that

1− ψ
(

1

x

)
= Pr

{
1

RY
> x

}
, x ∈ (0,∞).

Furthermore, we can easily check that E(Y−α−ε) <∞ if ε is sufficiently small to ensure that
α + ε < 1. Thus, Breiman’s theorem implies that Pr{1/(RY ) > x} = 1− ψ(1/x) ∈ R−α , as
claimed.

For the converse, suppose that 1−ψ(1/x) = x−αL(x) for some slowly varying function L.
Consequently, 1− ψ(x) is regularly varying at 0 with index α and because

1− ψ(x) = −
∫ x

0
ψ ′(t) dt,

the monotone density theorem implies that −ψ ′(1/x) ∼ αx1−αL(x). Given that (8) holds for
1 ≤ k ≤ d − 2, successive applications of the same theorem yield

(−1)kx−kψ(k)
(

1

x

)
∼ bkx−αL(x) (12)

for k = 1, . . . , d − 2 as well as (−1)d−1x1−dψ(d−1)
− (1/x) ∼ bd−1x

−αL(x). Here, bk =
α

∏k−1
j=1(j − α) is a positive constant, k = 1, . . . , d − 1. From (2),

Pr(R < 1/x)

x−αL(x)
= 1− ψ(1/x)

x−αL(x)
−
d−2∑
k=1

(−1)kx−kψ(k)(1/x)
k! x−αL(x)

− (−1)d−1x1−dψ(d−1)
− (1/x)

(d − 1)! x−αL(x) .
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Now (12) implies that, as x →∞, the right-hand side converges to

1−
d−1∑
k=1

bk

k! =
	(d − α)

	(d)	(1− α) > 0,

where 	 denotes the gamma function. In particular, therefore, 1/R ∈M(�α) and the proof is
complete.

Proof of (b). Suppose first that 1/R ∈M(�1). Thus, ifG denotes the distribution function
of 1/R then Ḡ ∈ R−1. To show that

L(x) = x
{

1− ψ
(

1

x

)}
, x ∈ (0,∞),

is slowly varying, make a change of variable and use a binomial expansion to write

L(x) = x
{

1−
∫ x

0

(
1− s

x

)d−1

dG(s)

}

= x
{

1−
d−1∑
k=0

(
d − 1

k

)
(−1)kx−k

∫ x

0
sk dG(s)

}

= xḠ(x)+ (d − 1)
∫ x

0
s dG(s)−

d−1∑
k=2

(
d − 1

k

)
(−1)kx−k+1

∫ x

0
sk dG(s).

Furthermore, partial integration gives
∫ x

0 s dG(s) = −xḠ(x)+ ∫ x
0 Ḡ(s) ds and, hence,

L(x) = {κ(x)λ(x)+ (d − 1)}
∫ x

0
Ḡ(s) ds, x ∈ (0,∞),

where

κ(x) = xḠ(x)∫ x
0 Ḡ(s) ds

, λ(x) = 2− d −
d−1∑
k=2

(
d − 1

k

)
(−1)k

∫ x
0 s

k dG(s)

xkḠ(x)
.

Now, κ(x)→ 0 as x →∞ by Karamata’s theorem, while

λ(x)→ 2− d −
d−1∑
k=2

(
d − 1

k

)
(−1)k

1

k − 1

by Proposition A5.8 of [14]. This means that

lim
x→∞ κ(x)λ(x)+ (d − 1) = d − 1.

It then follows that L is slowly varying, because
∫ x

0 Ḡ(s) ds itself has this property in view of
Karamata’s theorem. In other words, 1− ψ(x−1) ∈ R−1, as claimed.

The case when 1/R ∈M(�α) with α ∈ (1,∞) is simpler. Then E(R−1−ε) <∞ whenever
ε is such that 1+ ε < α. Now if Y is a Beta(1, d − 1) random variable which is independent
of R, it is easily checked that Pr(1/Y > x) ∈ R−1. Breiman’s theorem then implies that
Pr{1/(RY ) > x} ∈ R−1, i.e. 1 − ψ(x−1) ∈ R−1. If 1/R ∈ M(�) or 1/R ∈ M(�α), then
all moments of 1/R are finite. In particular, E(R−1−ε) < ∞ again holds and we may use the
same argument as above to conclude.
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