
JFP 28, e15, 49 pages, 2018. c© Cambridge University Press 2018

doi:10.1017/S0956796818000096

1

Applicative bidirectional programming

Mixing lenses and semantic bidirectionalization∗

KAZUTAKA MATSUDA

Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

(e-mail: kztk@ecei.tohoku.ac.jp)

MENG WANG

Department of Computer Science, University of Bristol, Bristol BS8 1TH, UK

(e-mail: meng.wang@bristol.ac.uk)

Abstract

A bidirectional transformation is a pair of mappings between source and view data objects,

one in each direction. When the view is modified, the source is updated accordingly

with respect to some laws. One way to reduce the development and maintenance effort

of bidirectional transformations is to have specialized languages in which the resulting

programs are bidirectional by construction—giving rise to the paradigm of bidirectional

programming. In this paper, we develop a framework for applicative-style and higher-

order bidirectional programming, in which we can write bidirectional transformations as

unidirectional programs in standard functional languages, opening up access to the bundle

of language features previously only available to conventional unidirectional languages. Our

framework essentially bridges two very different approaches of bidirectional programming,

namely the lens framework and Voigtländer’s semantic bidirectionalization, creating a new

programming style that is able to obtain benefits from both.

1 Introduction

Bidirectionality is a reoccurring aspect of computing: transforming data from one

format to another, and requiring a transformation in the opposite direction that is

in some sense an inverse. The most well-known instance is the view-update problem

(Bancilhon & Spyratos, 1981; Dayal & Bernstein, 1982; Hegner, 1990; Fegaras, 2010)

from database design: a “view” represents a database computed from a source by

a query, and the problem comes when translating an update of the view back to a

“corresponding” update on the source.

But the problem is much more widely applicable than just to databases. It is

central in the same way to most interactive programs, such as desktop and web

∗ This work is partially supported by JSPS KAKENHI grant numbers 24700020, 25540001, 15H02681
and 15K15966, and the Grand-Challenging Project on the “Linguistic Foundation for Bidirectional
Model Transformation” of the National Institute of Informatics. The work is partly done when the
first author was at the University of Tokyo, Japan, and when the second author was at University of
Kent, UK.

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

2 K. Matsuda and M. Wang

applications: underlying data, perhaps represented in XML, is presented to the user

in a more accessible format, edited in that format, and the edits translated back in

terms of the underlying data (Hu et al., 2004; Hayashi et al., 2007; Rajkumar et al.,

2013). Similarly, for model transformations, playing a substantial role in software

evolution: having transformed a high-level model into a lower level implementation,

for a variety of reasons one often needs to reverse engineer a revised high-level

model from an updated implementation (Xiong et al., 2007; Yu et al., 2012).

Using terminologies originated from the lens framework (Foster et al., 2007,

2008; Bohannon et al., 2008), bidirectional transformations, coined lenses, can

be represented as pairs of functions known as get of type S → V and put

of type S → V → S . Function get extracts a view from a source, and put

takes both an updated view and the original source as inputs to produce an

updated source. An example definition of a bidirectional transformation in Haskell

notation is

data Lens s v = Lens {get :: s→ v, put :: s→ v→ s}
fstL :: Lens (a, b) a

fstL = Lens (λ(a,)→ a) (λ(, b) a→ (a, b))

A value � of type Lens s v is a lens that has two function fields namely get and put,

and the record syntax overloads the field names as access functions: get � has type

s→ v and put � has type s→ v→ s. The datatype is used in the definition of fstL
where the first element of a source pair is projected as the view, and may be updated

to a new value.

Not all bidirectional transformations are considered “reasonable” ones. The

following laws are generally required to establish bidirectionality:

put � s (get � s) = s (Acceptability)

get � s ′= v if put � s v = s ′ (Consistency)

for all s, s ′ and v. Note that in this paper, we write e = e′ with the assumption that

neither e nor e′ is undefined. Here, Consistency (also known as the PutGet law (Foster

et al., 2007)) roughly corresponds to right invertibility, ensuring that all updates on

a view are captured by the updated source; and Acceptability (also known as the

GetPut law (Foster et al., 2007)), prohibits changes to the source if no update has

been made on the view. Collectively, the two laws define well-behavedness (Bancilhon

& Spyratos, 1981; Hegner, 1990; Foster et al., 2007). A bidirectional transformation

Lens get put is called well-behaved if it satisfies well-behavedness. The above example

fstL is a well-behaved bidirectional transformation.

By dint of hard effort, one can construct separately the forward transformation get

and the corresponding backward transformation put. However, this is a significant

duplication of work, because the two transformations are closely related. Moreover,

it is prone to error, because they do really have to correspond with each other

to be well-behaved. And, even worse, it introduces a maintenance issue, because

changes to one transformation entail matching changes to the other. Therefore, a lot

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 3

of work has gone into ways to reduce this duplication and the problems it causes;

in particular, there has been a recent rise in linguistic approaches to streamlining

bidirectional transformations (Hu et al., 2004; Mu et al., 2004; Foster et al., 2007,

2008, 2010; Matsuda et al., 2007; Bohannon et al., 2008; Voigtländer, 2009a; Davi

et al., 2010; Hidaka et al., 2010; Voigtländer et al., 2010, 2013; Wang et al., 2010,

2011, 2013; Rajkumar et al., 2013; Matsuda & Wang, 2013, 2014; Wang & Najd,

2014; Pacheco et al., 2014b).

Ideally, bidirectional programming should be as easy as usual unidirectional

programming. For this to be possible, techniques of conventional languages such

as applicative-style and higher-order programming need to be available in the

bidirectional languages, so that existing programming idioms and abstraction

methods can be ported over. At the minimum, programmers shall be allowed

to treat functions as first-class objects and have them applied explicitly. Moreover,

it is beneficial to be able to write bidirectional programs in the same style of their

gets, because as cultivated by traditional unidirectional programming, programmers

normally start with (at least mentally) constructing a get before trying to make it

bidirectional.

However, existing bidirectional programming frameworks fall short of this goal

by quite a distance. The lens bidirectional programming framework (Hu et al.,

2004; Mu et al., 2004; Foster et al., 2007, 2008, 2010; Bohannon et al., 2008;

Davi et al., 2010; Wang et al., 2010, 2013; Rajkumar et al., 2013; Pacheco

et al., 2014b), the most influential of all, composes small lenses into larger ones

by special lens combinators. The combinators preserve well-behavedness, and

thus produce bidirectional programs that are correct by construction. Lenses are

impressive in many ways: they are highly expressive and adaptable, and in many

implementations a carefully crafted type system guarantees the totality of the

bidirectional transformation. But at the same time, like many other combinator-

based languages, lenses restrict programming to the point-free style, which may not

be the most appropriate in all cases. We have learned from past experiences (Paterson,

2001; McBride & Paterson, 2008) that a more convenient programming style does

profoundly impact on the popularity of a language.

Research on bidirectionalization (Matsuda et al., 2007; Voigtländer, 2009a; Hidaka

et al., 2010; Wang et al., 2010, 2013; Voigtländer et al., 2010, 2013; Matsuda &

Wang, 2013, 2014; Wang & Najd, 2014), which mechanically derives a suitable

put from an existing get, shares the same spirit with us to some extent. The gets

can be programmed in a unidirectional language and passed in as objects to the

bidirectionalization engine, which performs program analysis and then generation

of puts. However, the existing bidirectionalization methods are whole program

analyses; there is no better way to compose individually constructed bidirectional

transformations.

In this paper, we develop a novel bidirectional programming framework:

• As lenses, it supports composition of user-constructed bidirectional

transformations, and well-behavedness of the resulting bidirectional

transformations is guaranteed by construction.

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

4 K. Matsuda and M. Wang

• As a bidirectionalization system, it allows users to write bidirectional

transformations almost in the same way as that of gets, in an applicative

and higher-order programming style.

The key idea of our proposal is to lift lenses of type Lens (A1, . . . ,An) B to lens

functions of type

∀s.Ls A1 → · · · → Ls An→ . . . → Ls B

where L is a type-constrained version of Lens (Sections 2 and 3). The n-ary tuple

(A1, . . . ,An) above is then generalized to data structures such as lists in Section 4.

This function representation of lenses is open to manipulation in an applicative style,

and can be passed to higher-order functions directly. For example, we can write a

bidirectional version of unlines, defined by

unlines :: [String]→ String

unlines [] = ""

unlines (x : xs) = x++ "\n" ++ unlines xs

as below.

unlinesF :: [Ls String]→ Ls String

unlinesF [] = new ""

unlinesF (x : xs) = lift2 catLineL (x, unlinesF xs)

where catLineL is a lens version of λx y → x ++ "\n" ++ y. In the above, except

for the noise of new and lift2, the definition is faithful to the original structure of

unlines’ definition, in an applicative style. With the heavy-lifting done in defining

the lens function unlinesF, a corresponding lens unlinesL :: Lens [String] String is

readily available through straightforward unlifting: unlinesL = unliftT unlinesF. In

the forward direction, lens unlinesL is the same as the unidirectional function unlines:

Main> get unlinesL ["a", "b", "c"]

"a\nb\nc\n"

In the backward direction, changes to the list elements in the view are put back to

the source:

Main> put unlinesL ["a", "b", "c"] "AA\nBB\nCC\n"

["AA", "BB", "CC"]

With this definition, structural updates (i.e., changes to the length of the view

list) are not allowed. For example, put unlinesL ["a", "b", "c"] "AA\nBB\n" and

put unlinesL ["a", "b", "c"] "AA\nBB\nCC\nDD\n" result in exceptions. In Section 6,

we explain that this restriction on updates is statically reflected in the type of unlinesF,

and may be relaxed at the cost of the simplicity of the definition.

In Section 5, we demonstrate the expressiveness of our core system through

a realistic example (bidirectional evaluator for a higher-order programming

language), and then extend the core system in two different dimensions, showing

a smooth integration of our framework with both lenses and bidirectionalization

approaches in Section 6. We deploy the extended system in the context of XML

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 5

transformations (Section 7), before proving the correctness theorem (Section 8). We

discuss related techniques in Section 9, in particular, making connection to semantic

bidirectionalization (Voigtländer, 2009a; Matsuda & Wang, 2013, 2014; Wang &

Najd, 2014), followed by conclusion in Section 10. An implementation of our idea

is available from https://hackage.haskell.org/package/app-lens.

Notes on Proofs and Examples. To simplify the formal discussion, we assume that

all functions except puts are total and no data structure contains ⊥. To deal with

the partiality of puts, we assume that a put function of type A → B → A can be

represented as a total function of type A→ B → Maybe A, which upon termination

will produce either a value Just a or an error Nothing .

We strive to balance the practicality and clarity of examples. Very often we

deliberately choose small but hopefully still illuminating examples aiming at directly

demonstrating the and only the theoretical issue being addressed. In addition, we

include in Section 5 a sizeable application and would like to refer interested readers to

https://bitbucket.org/kztk/app-lens for examples ranging from some general

list functions in Prelude to the specific problem of XML transformations.

A preliminary version of this paper appeared in ICFP’15 (Matsuda & Wang, 2015),

under the title “Applicative Bidirectional Programming with Lenses.” The major

differences to the preliminary version include proofs in Section 8 and Appendix A,

more detailed discussion to Voigtländer’s original bidirectionalization in Section 6.2,

and an XML transformation example in Section 7 involving the extensions discussed

in Section 6, together with the improvement of overall presentation and correction

of technical errors in Section 3.

2 Bidirectional transformations as functions

Conventionally, bidirectional transformations are represented directly as pairs of

functions (Hegner, 1990; Hu et al., 2004; Mu et al., 2004; Foster et al., 2007;

Matsuda et al., 2007; Voigtländer, 2009a; Hidaka et al., 2010; Voigtländer et al.,

2010, 2013; Wang et al., 2010, 2011, 2013; Matsuda & Wang, 2013, 2014; Wang &

Najd, 2014) (see the datatype Lens defined in Section 1). In this paper, we use lenses

to refer specifically to bidirectional transformations in this representation.

Lenses can be constructed and reasoned about compositionally. For example, with

the composition operator “◦̂”

(◦̂) :: Lens b c→ Lens a b→ Lens a c

(Lens get2 put2) ◦̂ (Lens get1 put1) =

Lens (get2 ◦ get1) (λs v→ put1 s (put2 (get1 s) v))

we can compose fstL to itself to obtain a lens that operates on nested pairs, as below:

fstTriL :: Lens ((a, b), c) a

fstTriL = fstL ◦̂ fstL

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

6 K. Matsuda and M. Wang

Well-behavedness is preserved by such compositions: fstTriL is well-behaved by

construction assuming well-behaved fstL.

The composition operator “◦̂” is associative, and has the identity lens idL as its

unit.

idL :: Lens a a

idL = Lens id (λ v→ v)

This means that the set of (both well-behaved and not-necessarily-well-behaved)

lenses forms a category, where objects are types (sets in our setting), and morphisms

from A to B are lenses of type Lens A B .

2.1 Basic idea: A functional representation inspired by Yoneda

Our goal is to develop a representation of bidirectional transformations such that

we can apply them, pass them to higher-order functions and reason about well-

behavedness compositionally.

Inspired by the Yoneda embedding in category theory (Mac Lane, 1998), we lift

lenses of type Lens a b to polymorphic functions of type

∀s.Lens s a→ Lens s b

by lens composition

lift :: Lens a b→ (∀s.Lens s a→ Lens s b)

lift � = λx→ � ◦̂ x

Intuitively, a lens of type Lens s A with the universally quantified type variable s in

a lifted function can be seen as an updatable datum of type A, and a lens of type

Lens A B as a transformation of type ∀s.Lens s A → Lens s B on updatable data.

We call such lifted lenses lens functions.

The lifting function lift is injective, and has the following left inverse:

unlift :: (∀s.Lens s a→ Lens s b)→ Lens a b

unlift f = f idL

Since lens functions are normal functions, they can be composed and passed to

higher-order functions in the usual way. For example, fstTriL can now be defined

with the usual function composition.

fstTriL :: Lens ((a, b), c) a

fstTriL = unlift (lift fstL ◦ lift fstL)

Alternatively, in a more applicative style, we can use a higher-order function twice::

(a→ a)→ a→ a as below:

fstTriL = unlift (λx→ twice (lift fstL) x)

where twice f x = f (f x)

Like many category-theory inspired isomorphisms, this functional representation

of bidirectional transformations is not unknown (Ellis, 2012), but its formal

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 7

properties and applications in practical programming have not been investigated

before.

2.2 Formal properties of lens functions

We reconfirm that lift is injective with unlift as its left inverse.

Proposition 1. unlift (lift �) = � for all lenses � :: Lens A B . �

We say that a function f preserves well-behavedness, if f � is well-behaved for any

well-behaved lens �. Functions lift and unlift have the following desirable properties.

Proposition 2. lift � preserves well-behavedness if � is well-behaved.

Proof

Immediate from the fact that ◦̂ preserves well-behavedness (Foster et al., 2007). �

Proposition 3. unlift f is well-behaved if f preserves well-behavedness. �

As it stands, the type Lens is open and it is possible to define lens functions

through pattern matching on the constructor. This becomes a problem when we

want to guarantee that f :: ∀s.Lens s A→ Lens s B preserves well-behavedness. For

example, the following f does not preserve well-behavedness.

f :: Lens s Int → Lens s Int

f (Lens g p) = Lens g (λs → p s 3)

Here the input lens is pattern matched and the get/put components are used directly

in constructing the output lens, which breaks encapsulation and blocks compositional

reasoning of behaviors. Moreover, it is worth mentioning that lift is not surjective

due to the exposure of Lens . The following f ′ is an example that lift cannot produce,

i.e., lift (unlift f ′) 	≡ f ′.

f ′ :: Eq a⇒ Lens s (Maybe a)→ Lens s (Maybe a)

f ′ (Lens g p) = Lens g (λs v→ if v g s then s else p (p s Nothing) v)

For example, for a well-behaved lens,

� :: Lens (Maybe (Int , Int)) (Maybe Int)

� = Lens g p

where g Nothing = Nothing

g (Just s) = Just (fst s)

p Nothing Nothing = Nothing

p (Just s) (Just v) = Just (v, snd s)

we have put (f ′ �) (Just (1, 2)) (Just 3) = ⊥ while put (lift (unlift f ′) �) (Just (1, 2))

(Just 3) = Just (3, 2).

In our framework, the intention is that all lens functions are constructed

through lifting, which sees bidirectional transformations as atomic objects. Thus,

we require that Lens is used as an “abstract type” in defining lens functions of type

∀s.Lens s A→ Lens s B . That is, we require that lens values must be produced and

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

8 K. Matsuda and M. Wang

consumed only by using lifted lens functions. This requirement is formally written

as follows.

Definition 1 (Abstract nature of Lens). We say Lens is abstract in f :: τ, if there is a

polymorphic function h of type

∀�. (∀a b.Lens a b→ (∀s. � s a→ � s b))

→ (∀a b. (∀s. � s a→ � s b)→ Lens a b)→ τ′

where τ′ = τ[�/Lens] and f = h lift unlift. �

Essentially, the polymorphic � in h’s type prevents us from using the constructor

Lens directly, while the first functional argument of h (which is lift) provides

the (only) means to produce and consume Lens values. For example, for a

function lift fstL :: Lens s (a, b) → Lens s a, we have a function h lift ′ =

lift ′ fstL of type ∀�. (∀a b.Lens a b → (∀s. � s a → � s b)) → (∀a b. (∀s. � s a →
� s b)) → � s (a, b) → � s a such that lift fstL = h lift unlift, and thus Lens is abstract

in lift fstL.

Now the compositional reasoning of well-behavedness extends to lens functions,

we can use a logical relation (Reynolds, 1983) to characterize well-behavedness

for higher-order functions. As an instance, we can state that functions of type

∀s.Lens s A→ Lens s B are well-behavedness preserving as follows.

Theorem 1. Let f :: ∀s.Lens s A→ Lens s B be a function in which Lens is abstract.

Suppose that only well-behaved lenses are passed to lift during evaluation. Then, f

preserves well-behavedness, and thus unlift f is well-behaved. �

The functions lift fstL ◦ lift fstL and twice (lift fstL) are examples of f in this theorem.

Notice that we can use unlift in the definition of f; lift (unlift (lift fstL)) is also a

function in which Lens is abstract and has a type ∀s.Lens s (A,B) → Lens s A. We

shall omit the proof of Theorem 1 because it can be proved similarly to Theorems 4

and 6. The condition on lift in Theorem 1, which is also assumed in Theorems 4

and 6, essentially asserts that (the denotation of) lift only takes well-behaved lenses,

which will be used in the proof of Theorem 6 in Section 8.

Another consequence of having abstract Lens is that lift is now surjective (and

unlift is now injective).

Lemma 1. Let f be a function of type ∀s.Lens s A → Lens s B in which Lens is

abstract. Then, f � = f idL ◦̂ � holds for all � :: Lens S A. �

Although this lemma is key to prove the bijectivity of lift/unlift and ensures the

naturality of f, which is mentioned in Yoneda lemma (Section 2.4), our system does

not rely on the surjectivity of lifting functions for correctness: injectivity alone is

sufficient. As a matter of fact, the bijectivity property does not hold when we extend

lifting to n-ary lenses in Section 3. Therefore, we delay the largish proof of this

lemma to Appendix A, so as not to disrupt the flow of the paper.

Theorem 2. For any f :: ∀s.Lens s A → Lens s B in which Lens is abstract,

lift (unlift f) = f holds. �

In the rest of this paper, we always assume abstract Lens unless specially

mentioned otherwise.

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 9

2.3 Guaranteeing abstraction

Theorem 1 requires the condition that Lens is abstract in f, which can be enforced

by using abstract types through module systems. For example, in Haskell, we can

define the following module to abstract Lens:

module AbstractLens (Lensabs, liftabs, unliftabs) where

newtype Lensabs a b = Lensabs {unLensabs :: Lens a b}
liftabs :: Lens a b→ (∀s.Lensabs s a→ Lensabs s b)

liftabs � = λx→ Lensabs (lift � (unLensabs x))

unliftabs :: (∀s.Lensabs s a→ Lensabs s b)→ Lens a b

unliftabs f = unlift (unLensabs ◦ f ◦ Lensabs)

Outside the module AbstractLens , we can use liftabs, unliftabs and type Lensabs itself,

but not the constructor of Lensabs. Thus, the only way to access data of type Lens

is through liftabs and unliftabs.

2.4 Categorical notes

As mentioned earlier, our idea of mapping Lens A B to ∀s.Lens s A → Lens s B

is based on the Yoneda lemma in category theory (Mac Lane, 1998, Section III.2).

Since our purpose of this paper is not categorical formalization, we briefly introduce

an analog of the Yoneda lemma that is enough for our discussion.

Theorem 3 (An analogue of the Yoneda lemma (Mac Lane, 1998, Section III.2)).

The pair of functions (lift, unlift) is a bijection between

• {� :: Lens A B}, and

• {f :: ∀s.Lens s A→ Lens s B | f x ◦̂ y = f (x ◦̂ y)}. �

The condition f x ◦̂ y = f (x ◦̂ y) is required to make f a natural transformation

between functors Lens (−) A and Lens (−) B ; here, the contravariant functor

Lens (−) A maps a lens � of type Lens Y X to a function (λy → y ◦̂ �) of type

Lens X A → Lens Y A. Note that f x ◦̂ y = f (x ◦̂ y) is equivalent to f x = f idL ◦̂ x.

Thus, the naturality condition implies Theorem 2 (through Lemma 1), and vice versa.

That is, Theorem 3 is nothing but Proposition 1 and Theorem 2 put together.

It sounds contradictory, but there are no higher-order lenses in a categorical sense.

Recall that the set of (not-necessarily-well-behaved) lenses forms a category. This

category of lenses is monoidal (Hofmann et al., 2011), but is believed to be not

closed (Rajkumar et al., 2013) and have no higher-order lenses. Our discussion does

not conflict with this fact. What we state is that, for any s, (Lens s A,Lens s B) →
Lens s C is isomorphic to Lens s A→ (Lens s B → Lens s C), where s is quantified

globally; the standard curry and uncurry are the required bijections.

Also, note that Lens s (−) is a functor that maps a lens � to a function lift �. It

is not difficult to check that lift x ◦ lift y = lift (x ◦̂ y) and lift (idL :: Lens A A) =

(id :: Lens s A→ Lens s A).

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

10 K. Matsuda and M. Wang

3 Lifting n-ary lenses and flexible duplication

So far we have presented a system that lifts lenses to functions, manipulates the

functions and then “unlifts” the results to construct composite lenses. One example

is fstTriL from Section 2 reproduced below:

fstTriL :: Lens ((a, b), c) a

fstTriL = unlift (lift fstL ◦ lift fstL)

Astute readers may have already noticed the type Lens ((a, b), c) a which is subtly

distinct from Lens (a, b, c) a. One reason for this is with the definition of fstTriL,

which consists of the composition of lifted fstLs. But more fundamentally, it is the

type of lift (Lens x y→ (∀s.Lens s x→ Lens s y)), which treats x as a black box, that

has prevented us from rearranging the tuple components.

Let us illustrate the issue with an even simpler example that goes directly to the

heart of the problem.

swapL :: Lens (a, b) (b, a)

swapL = . . .

Following the programming pattern developed so far, we would like to construct

this lens with the familiar unidirectional function swap :: (a, b) → (b, a). But since

lift only produces unary functions of type ∀s.Lens s A → Lens s B , despite the

fact that A and B are actually pair types here, there is no way to compose swap

with the resulting lens function. If we use the intuition developed in Section 2.1

that a lens of type Lens s A represents an updatable datum of type A, lift treats

a pair (indeed any data structure) as a single datum. What we really want here is

a pair of functions lift2 :: Lens (a, b) c→ (∀s. (Lens s a,Lens s b) → Lens s c) and

unlift2 :: (∀s. (Lens s a,Lens s b)→ Lens s c)→ Lens (a, b) c, which are able to go into

the pair structure and create separate updatable data that can be manipulated by

functions like swap as

swapL :: Lens (a, b) (b, a)

swapL = unlift2 (lift2 idL ◦ swap)

In this section, we will see how such a lift2/unlift2 pair is defined (with slightly

different types for the reason that will be discussed in Section 3.1), and show how the

idea of having lift2/unlift2 is related to Applicative in Haskell (McBride & Paterson,

2008; Paterson, 2012).

3.1 Caveats of the duplication lens

The key of binary lifting is the ability to split a pair and have separate lenses applied

to each component. This is achieved via function (�), pronounced “split.”

(�) :: Eq s⇒ Lens s a→ Lens s b→ Lens s (a, b)

x � y = (x ⊗̂ y) ◦̂ dupL

where (⊗̂) is a lens combinator that combines two lenses applying to each component

of a pair (Foster et al., 2007):

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 11

(⊗̂) :: Lens a a ′→ Lens b b ′→ Lens (a, b) (a ′, b ′)

(Lens get1 put1) ⊗̂ (Lens get2 put2) =

Lens (λ(a, b)→ (get1 a, get2 b))

(λ(a, b) (a ′, b ′)→ (put1 a a ′, put2 b b ′))

With (�), we can define the lifting of binary lenses as below:

lift2 :: Lens (a, b) c→ (∀s. (Lens s a,Lens s b)→ Lens s c)

lift2 � (x, y) = lift � (x � y)

The class constraint Eq s in the type of (�) comes from the use of duplication

lens dupL (also known as copy elsewhere (Foster et al., 2007)) defined as below. For

simplicity, we assume that () represents observational equivalence.

dupL :: Eq s⇒ Lens s (s, s)

dupL = Lens (λs→ (s, s)) (λ (s, t)→ checkEq s t)

where checkEq s t | s t = s -- This will cause a problem later.

Despite being fitting type-wise, this definition of dupL causes a serious execution

issue. We would like to use the following definition as lift2’s left inverse:

unlift2 :: (∀s. (Lens s a,Lens s b)→ Lens s c)→ Lens (a, b) c

unlift2 f = f (fstL, sndL)

But unlift2 ◦ lift2 does not result in identity:

(unlift2 ◦ lift2) �

= { definition unfolding & β-reduction }
� ◦̂ (fstL � sndL)

= { unfolding (�) }
� ◦̂ (fstL ⊗̂ sndL) ◦̂ dupL

= { definition unfolding }
� ◦̂ blockL where

blockL = Lens id (λs v→ if s v then v else ⊥)

Lens blockL is not a useful lens because it blocks any update to the view.

Consequently, any lenses composed with it become useless too. The reason for

the failure is that dupL demands the duplicated copies to remain equal amid updates,

which will not hold because the purpose of the duplication is to create separate

updatable data.

3.2 Flexible and safe duplication by tagging

If we look at the lens dupL in isolation, there seems to be no way out. The two

duplicated values have to remain equal for the bidirectional laws to hold. However,

if we consider the context in which dupL is applied, there is more room for maneuver.

Let us consider the lifting function lift2 again, and how put dupL, which rejects the

update above, works in the execution of put (unlift2 (lift2 idL)).

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

12 K. Matsuda and M. Wang

put (unlift2 (lift2 idL)) (1, 2) (3, 4)

= { simplification }
put ((fstL ⊗̂ sndL) ◦̂ dupL) (1, 2) (3, 4)

= { definition unfolding & β-reduction }
put dupL (1, 2) (put fstL (1, 2) 3, put sndL (1, 2) 4)

= { β-reduction }
put dupL (1, 2) ((3, 2), (1, 4))

The last call to put dupL above will fail because (3, 2) 	≡ (1, 4). But if we look more

carefully, there is no reason for this behavior: lift2 idL should be able to update the

two elements of the pair independently. Indeed in the put execution above, relevant

values to the view change as highlighted by underlining are only compared for equal-

ity with irrelevant values. That is to say, we should be able to relax the equality check

in dupL and update the old source (1, 2) to (3, 4) without violating bidirectional laws.

To achieve this, we tag the values according to their relevance to view updates (Mu

et al., 2004).

data Tag a = U {unTag :: a} | O {unTag :: a}

Tag U (representing Updated) means the tagged value may be relevant to the view

update and O (representing Original) means the tagged value must not be relevant to

the view update. The idea is that O-tagged values can be altered without violating

the bidirectional laws, as the new dupL below:

dupL :: Poset s⇒ Lens s (s, s)

dupL = Lens (λs→ (s, s)) (λ (s, t)→ s� t)

Here, Poset is a type class for partially ordered sets that has a method (�)

(pronounced as “lub”) to compute least upper bounds.

class Poset s where (�) :: s→ s→ s

We require that (�) must be associative, commutative and idempotent; but unlike a

semilattice, (�) can be partial. Tagged elements and their (nested) pairs are ordered

as follows:

instance Eq a⇒ Poset (Tag a) where

(O) � (U t) = U t

(U s) � (O) = U s

(O s) � (O t) | s t = O s -- The check s t never fails.

(U s) � (U t) | s t = U s -- In contrast, this check can fail.

instance (Poset a,Poset b)⇒ Poset (a, b) where

(a, b) � (a ′, b ′) = (a� a ′, b� b ′)

We also introduce the following type synonym for brevity1:

type Ls a = Poset s⇒ Lens s a

1 Actually, we will have to use newtype for the code in this paper to pass GHC 7.8.3’s type checking. We
take a small deviation from GHC Haskell here in favor of brevity.

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 13

As we will show later, the move from Lens to L will have implications on well-

behavedness.

Accordingly, we change the types of (�), lift and lift2 as below (notice that due to

the change of dupL the behavior of lift2 is changed accordingly):

(�) :: Ls a→ Ls b→ Ls (a, b)

lift :: Lens a b→ (∀s.Ls a→ Ls b)

lift2 :: Lens (a, b) c→ (∀s. (Ls a,Ls b)→ Ls c)

and adapt the definitions of unlift and unlift2 to properly handle the newly introduced

tags.

unlift :: Eq a⇒ (∀s.Ls a→ Ls b)→ Lens a b

unlift f = f id′L ◦̂ tagL

id′L :: L (Tag a) a

id′L = Lens unTag (const U)

tagL :: Lens a (Tag a)

tagL = Lens O (const unTag)

unlift2 :: (Eq a,Eq b)⇒ (∀s. (Ls a,Ls b)→ Ls c)→ Lens (a, b) c

unlift2 f = f (fst′L, snd′L) ◦̂ tag2L

fst′L :: L (Tag a,Tag b) a

fst′L = Lens (λ(a,)→ unTag a) (λ(, b) a→ (U a, b))

snd′L :: L (Tag a,Tag b) b

snd′L = Lens (λ(, b)→ unTag b) (λ(a,) b→ (a,U b))

tag2L :: Lens (a, b) (Tag a,Tag b)

tag2L = tagL ⊗̂ tagL

We need to change unlift, though no duplication is needed in the unary case, because

the function may be applied to functions calling lift2 internally. The definitions

are a bit involved, but a key property is that tags are automatically introduced

and eliminated by unlifts, an internal mechanism that is completely invisible to

programmers.

We can now show that the new unlift2 is the left-inverse of lift2 (a similar property

holds for lift/unlift); notice that, as we will discuss later, lift2 is not a left-inverse of

unlift2 in contrast.

Proposition 4. unlift2 (lift2 �) = � holds for all lenses � :: Lens (A,B) C .

Proof

We prove the statement with the following calculation:

unlift2 (lift2 �)

= { definition unfolding & β-reduction }
� ◦̂ (fst′L � snd′L) ◦̂ tag2L

= { unfolding (�) }
� ◦̂ (fst′L ⊗̂ snd′L) ◦̂ dupL ◦̂ tag2L

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

14 K. Matsuda and M. Wang

= { (fst′L ⊗̂ snd′L) ◦̂ dupL ◦̂ tag2L = idL — (1) }
�

We prove the statement labeled (1) by showing get ((fst′L ⊗̂ snd′L) ◦̂ dupL ◦̂
tag2L) (a, b) = (a, b) and put ((fst′L ⊗̂ snd′L) ◦̂ dupL ◦̂ tag2L) (a, b) (a ′, b ′) = (a ′, b ′). Since
the former property is easy to prove, we only show the latter here.

put ((fst′L ⊗̂ snd′L) ◦̂ dupL ◦̂ tag2L) (a, b) (a ′, b ′)

= { definition unfolding & β-reduction }
put tag2L (a, b) $ put ((fst′L ⊗̂ snd′L) ◦̂ dupL) (O a,O b) (a ′, b ′)

= { definition unfolding & β-reduction }
put tag2L (a, b) $ put dupL (O a,O b) $ (put fst′L (O a,O b) a ′, put snd′L (O a,O b) b ′)

= { definitions of fst′L and snd′L }
put tag2L (a, b) $ put dupL (O a,O b) ((U a ′,O b), (O a,U b ′))

= { definition of dupL }
put tag2L (a, b) (U a ′,U b ′)

= { definition of tag2L }
(put tagL a (U a ′), put tagL b (U b ′))

= { definition of tagL }
(a ′, b ′)

Thus, we have proved that lift2 is injective. �

We can recreate fstL and sndL with unlift2, which is rather reassuring.

Proposition 5. fstL = unlift2 fst and sndL = unlift2 snd. �

Example 1 (swap). Lens swapL as seen in the beginning of this section can be defined

as follows:

swapL :: (Eq a,Eq b)⇒ Lens (a, b) (b, a)

swapL = unlift2 (lift2 idL ◦ swap)

and it behaves as expected.

put swapL (1, 2) (4, 3)

= { unfold definitions }
put ((snd′L ⊗̂ fst′L) ◦̂ dupL ◦̂ tag2L) (1, 2) (4, 3)

= { simplifications }
put tag2L (1, 2) $ put dupL (O 1,O 2) $ (put snd′L (O 1,O 2) 4, put fst′L (O 1,O 2) 3)

= { definition of fst′L and snd′L }
put tag2L (1, 2) $ put dupL (O 1,O 2) ((O 1,U 4), (U 3,O 2))

= { definitions of dupL and tag2L }
(3, 4) �

It is worth mentioning that (�) is the base for “splitting” and “lifting” tuples of

arbitrary arity. For example, the triple case is as follows:

split3 :: (Ls a,Ls b,Ls c)→ Ls (a, b, c)

split3 (x, y, z) = lift flattenLL ((x � y) � z)

where flattenLL :: Lens ((a, b), c) (a, b, c)

flattenLL = Lens (λ((x, y), z)→ (x, y, z))

(λ (x, y, z)→ ((x, y), z))

lift3 � t = lift � (split3 t)

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 15

For unlifts, we additionally need n-ary versions of projection and tagging functions.

But they are straightforward to define.

In the above definition of split3, we have decided to nest to the left in the

intermediate step. This choice is not essential.

split′3 (x, y, z) = lift flattenRL (x � (y� z))

where flattenRL :: Lens (a, (b, c)) (a, b, c)

flattenRL = Lens (λ(x, (y, z))→ (x, y, z))

(λ (x, y, z)→ (x, (y, z)))

The two definitions split3 and split′3 coincide. That is, (�) is associative up to

isomorphism.

To complete the picture, the nullary lens function

unit :: ∀s.Ls ()

unit = Lens (λ → ()) (λs ()→ s)

is the unit for (�). Theoretically, (Ls (−),�, unit) forms a lax monoidal functor (Mac

Lane, 1998, Section XI.2) under certain conditions (see Section 3.4). Practically, unit

enables us to define the following combinator:

new :: Eq a⇒ a→ ∀s.Ls a

new a = lift (Lens (const a) (λ a ′→ check a a ′)) unit

where

check a a ′= if a a ′ then ()

else error "Update on constant"

Function new lifts ordinary values into the bidirectional transformation system, but

since the values are not from any source, they are not updatable. Nevertheless, this

ability to lift constant values is very useful in practice (Matsuda & Wang, 2013,

2014), as we will see in the examples to come.

Note that now unlifts are no longer injective (even with abstract Lens), there

exist functions that are not equivalent but coincide after unlifting. An example

of such is the pair lift2 fstL and fst: while unlifting both functions results in fstL,

they actually differ as put (lift2 fstL (fst′L, snd′L)) (O a,O b) c = (U c,U b) and

put (fst (fst′L, snd′L)) (O a,O b) c = (U c,O b). Intuitively, fst knows that the second

argument is unused, while lift2 fstL does not because fstL is treated as a black

box by lift2. In other words, the relationship between the lifting/unlifting functions

and the Yoneda lemma discussed in Section 2 ceases to exist in this new context.

Nevertheless, the counter-example scenario described here is contrived and will not

affect practical programming in our framework.

Another side effect of this new development with tags is that the original

bidirectional laws, i.e., the well-behavedness, are temporarily broken during the

execution of lift2 and unlift2 by the new internal functions fst′L, snd′L, dupL and tag2L.

Consequently, we need a new theoretical development to establish the preservation

of well-behavedness by the lifting/unlifting process.

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

16 K. Matsuda and M. Wang

3.3 Relevance-aware well-behavedness

We have noted that the new internal functions dupL, fst′L, snd′L and tag2L are not

well-behaved, for different reasons. For functions fst′L and snd′L, the difference from

the original versions fstL and sndL is only in the additional wrapping/unwrapping

that is required due to the introduction of tags. As a result, as long as these

functions are used in an appropriate context, the bidirectional laws are expected to

hold. But for dupL and tag2L, the new definitions are more defined in the sense that

some originally failing executions of put are now intentionally turned into successful

ones. For this change in semantics, we need to adapt the laws to allow temporary

violations and yet still establish well-behavedness of the resulting bidirectional

transformations in the end. For example, we still want unlift2 f to be well-behaved

for any f :: ∀s. (Ls A,Ls B) → Ls C , as long as the lifting functions are applied to

well-behaved lenses.

3.3.1 Relevance-ordering and lawful duplications

Central to the discussion in this and the previous subsections is the behavior of dupL.

To maintain safety, unequal values as duplications are only allowed if they have

different tags (i.e., one value must be irrelevant to the update and can be discarded).

We formalize such a property with the partial ordering between tagged values. Let

us write (
) for the partial order induced from �, that is, s
 t if s� t is defined and

equal to t. One can see that (
) is the reflexive closure of O s
 U t. The definition

of (
) is extended to (n-ary) containers element-wise; for example, (s1, s2)
 (t1, t2)

if and only if s1
 t1 and s2
 t2. Nesting of tags is not allowed. We write ↑s for a

value obtained from s by replacing all O tags with U tags. Trivially, we have s
 ↑s.
But there exists s ′ such that s
 s ′ and s ′ 	= ↑s, unless s contains only U tags.

Now we can define a variant of well-behavedness local to the U -tagged elements.

Definition 2 (Local well-behavedness). Let A be a type associated with (
). A

bidirectional transformation � :: LA B is called locally well-behaved if the following

four conditions hold:

• (Forward tag-irrelevance) If v = get � s, then for all s ′ such that ↑s ′ = ↑s,
v = get � s ′ holds.

• (Backward inflation) For all minimal (with respect to
) s, if put � s v succeeds

as s ′, then s
 s ′.

• (Local acceptability) For all s, s
 put � s (get � s)
 ↑s.
• (Local consistency) For all s and v, assuming put � s v succeeds as s ′, then for

all s ′′ with s ′
 s ′′, get � s ′′= v holds. �

In the above, tags introduced for the flexible behavior of put must not affect the

behavior of get: ↑s ′ = ↑s means that s and s ′ are equal if tags are ignored. The

property backward inflation states that put puts U -tags to all the updated elements,

and thus O-tagged elements in the put result are kept unchanged, which will be

used to show the naturality of (�) in Section 3.4. The property local acceptability

is similar to acceptability, except that O-tags are allowed to change to U -tags. The

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 17

property local consistency is stronger than consistency in the sense that get must map

all values sharing the same U -tagged elements with s ′ to the same view. The idea is

that O-tagged elements in s ′ are not connected to the view v, and thus changing them

will not affect v. In this sense, O-tagged values must not be relevant to the view. A

similar reasoning applies to backward inflation stating that source elements changed

by put will have U -tags. Note that in this definition of local well-behavedness, tags

are assumed to appear only in the sources. As a matter of fact, only dupL and

tag2L/tagL introduce tagged views (and actually they are not locally well-behaved),

but they are always precomposed when used, as shown in the definitions of lift2 and

unlift2.

We have the following compositional properties for local well-behavedness:

Lemma 2. The following properties hold for bidirectional transformations x and y

with appropriate types:

• If x is well-behaved and y is locally well-behaved, then lift x y is locally

well-behaved.

• If x and y are locally well-behaved, x � y is locally well-behaved.

• If x and y are locally well-behaved, x ◦̂ tag2L and y ◦̂ tagL are well-behaved.

Proof

We only prove the second and third properties because it is straightforward to prove

the first property.

The second property. We first show local acceptability.

put ((x ⊗̂ y) ◦̂ dupL) s (get ((x ⊗̂ y) ◦̂ dupL) s)

= { simplification }
put dupL s (put (x ⊗̂ y) (s, s) (get (x ⊗̂ y) (s, s)))

= { by the local acceptability of x ⊗̂ y }
put dupL s (s ′, s ′′) — where s
 s ′
 ↑s, s
 s ′′
 ↑s

= { by the definition of dupL and that s ′� s ′′ is defined }
s ′� s ′′
 ↑s

Note that, since s ′
 ↑s and s ′′
 ↑s, it follows that s ′� s ′′
 ↑s.
Then, we prove local consistency. Assume that put ((x⊗̂y) ◦̂dupL) s (v1, v2) succeeds

in s ′. Then, by the following calculation, we have s ′= put x s v1 � put y s v2.

put ((x ⊗̂ y) ◦̂ dupL) s (v1, v2)

= { simplification }
put dupL s (put x s v1, put y s v2)

= { definition unfolding }
put x s v1 � put y s v2

Let s ′′ be a source such that s ′
 s ′′. Then, we prove get ((x ⊗̂ y)@dupL) s ′′= (v1, v2)

as follows:

get ((x ⊗̂ y) ◦̂ dupL) s ′′ (v1, v2)

= { simplification }

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

18 K. Matsuda and M. Wang

(get x s ′′, get y s ′′)

= { the local consistency of x and y }
(v1, v2)

Note that we have put x s v1
 s ′
 s ′′ and put y s v2
 s ′
 s ′′ by the definition of �.

Forward tag-irrelevance and backward inflation are straightforward.

The third property. First, we prove acceptability.

put (x ◦̂ tag2L) (s1, s2) (get (x ◦̂ tag2L) (s1, s2))

= { unfolding ◦̂ }
put tag2L (s1, s2) (put x (get tag2L (s1, s2)) (get x (get tag2L (s1, s2))))

= { unfolding the definition of get tag2L }
put tag2L (s1, s2) (put x (O s1,O s2) (get x (O s1,O s2)))

= { by the local acceptability of x }
put tag2L (s1, s2) (tag s1, tag s2) where tag = O ∨ tag = U

= { unfolding the definition of put tag2L }
(s1, s2)

The proof of the acceptability of y ◦̂ tagL is similar.

Next, we prove consistency. Assume that (s′1, s
′
2) = put (x ◦̂ tag2L) (s1, s2) v. Then,

it must be the case when there are tag1 and tag2 such that (tag1 s′1, tag2 s′2) =

put x (O s1,O s2) v where tagi is either O or U for i = 1, 2. Here, we have

(O s′1,O s′2)
 (tag1 s′1, tag2 s′2). Then, we have

get (x ◦̂ tag2L) (s′1, s
′
2)

= { unfolding ◦̂ }
get x (get tag2L (s′1, s

′
2))

= { unfolding the definition of get tag2L (s′1, s
′
2) }

get x (O s′1,O s′2)

= { the forward tag-irrelevance of x }
get x (tag1 s′1, tag2 s′2)

= { the local consistency of x and (tag1 s′1, tag2 s′2) = put x (O s1,O s2) v }
v

The proof of the consistency of y ◦̂ tagL is similar. �

Corollary 1. The following properties hold:

• lift � :: ∀s.L s A → L s B preserves local well-behavedness, if � :: Lens A B is

well-behaved.

• lift2 � :: ∀s. (L s A,L s B) → L s C preserves local well-behavedness, if � ::

Lens (A,B) C is well-behaved. �

Similar to the case in Section 2, compositional reasoning of well-behavedness

requires the lens type L to be abstract.

Definition 3 (Abstract nature of L). We say L is abstract in f :: τ, if there is a

polymorphic function h of type

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 19

∀�. (∀a b.Lens a b→ (∀s. � s a→ � s b))

→ (∀a b. (∀s. � s a→ � s b)→ Lens a b)

→ (∀s. � s ())

→ (∀s a b. � s a→ � s b→ � s (a, b))

→ (∀a b c. (∀s. (� s a, � s b)→ � s c)→ Lens (a, b) c)

→ τ′

satisfying f = h lift unlift unit (�) unlift2 and τ′ = τ[�/L]. �

Then, we obtain the following properties from the free theorems (Wadler, 1989;

Voigtländer, 2009b).

Theorem 4. Let f be a function of type ∀s. (L s A,L s B) → L s C in which L

is abstract. Then, f (x, y) is locally well-behaved if x and y are also locally well-

behaved, assuming that only well-behaved lenses are passed to lift during evaluation.

We omit the proof because we will prove the more involved version, Theorem 6, in

Section 8.

Proposition 6. fst′L and snd′L are locally well-behaved. �

Corollary 2. Let f be a function of type ∀s. (L s A,L s B) → L s C in which L is

abstract. Then, unlift2 f is well-behaved, assuming that only well-behaved lenses are

passed to lift during evaluation.

3.4 Categorical notes

Recall that Lens S (−) is a functor from the category of lenses to the category of

sets and (total) functions, which maps � ::Lens A B to lift � ::Lens S A→ Lens S B

for any S . In the case that S is tagged and thus partially ordered, (LS (−),�, unit)

forms a lax monoidal functor, under the following conditions:

• (�) must be natural, i.e., (lift f x) � (lift g y) = lift (f ⊗̂ g) (x � y) for all f, g, x

and y with appropriate types.

• split3 and split′3 coincide.

• lift elimUnitLL (unit � x) = x must hold where elimUnitLL :: Lens ((), a) a is the

bidirectional version of elimination of (), and so does its symmetric version.

Intuitively, the second and the third conditions state that the mapping must respect

the monoid structure of products, with the former concerning associativity and the

latter concerning the identity elements. The first and second conditions above hold

without any additional assumptions, whereas the third condition, which reduces to

s � put x s v = put x s v, is not necessarily true if s is not minimal (if s is minimal,

this property holds by backward inflation—this is why we considered the backward

inflation property). Recall that minimality of s implies that s can only have O-tags.

To get around this restriction, we take LS A as a quotient set of Lens S A by the

equivalence relation ≡ defined as x ≡ y if get x = get y ∧ put x s = put y s for all

minimal s. This equivalence is preserved by manipulations of L-data; that is, the

following holds for x, y, z and w with appropriate types:

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

20 K. Matsuda and M. Wang

• x≡ y implies lift � x≡ lift � y for any well-behaved lens �.
• x≡ y and z≡ w imply x � z≡ y� w.
• x≡ y implies x ◦̂ tagL = y ◦̂ tagL (or x ◦̂ tag2L = y ◦̂ tag2L).

Note that the above three cases cover the only ways to construct/destruct L in f

when L is abstract. The third condition says that this “coarse” equivalence (≡) on L

can be “sharpened” to the usual extensional equality (=) by tagL and tag2L in the

unlifting functions. Thus, quotienting L with ≡, the three conditions hold, and thus

we have the following theorem.

Theorem 5. (LS (−),�, unit) forms a lax monoidal functor. �

The fact that our framework forms a lax monoidal functor may suggest a

connection to Haskell’s Applicative class (McBride & Paterson, 2008; Paterson,

2012), which shares the same mathematical structure. It is known that Applicative

is exactly an endo lax monoidal functor (with strength) on the category of Haskell

functions (Paterson, 2012). However, it is not possible to structure our code with

the Applicative class, because our functor is not endo and there are (believed to be)

no exponentials in the category of lenses (Rajkumar et al., 2013). Nevertheless, one

may consider the following classes similar to those in Rajkumar et al. (2013) (unlike

their type classes we consider covariant functors instead of contravariant ones).

class LFunctor f where

lift :: Lens a b→ (f a→ f b)

class LFunctor f ⇒ LMonoidal f where

unit :: f ()

(�) :: f a→ f b→ f (a, b)

The laws for LMonoidal have already been discussed in Section 3.4. These classes

have the following instance declarations:

instance LFunctor (Lens s) where

lift � x = � ◦̂ x

instance Poset s⇒ LMonoidal (Lens s) where

unit = Lens (λ → ()) (λs ()→ s)

x � y = (x ⊗̂ y) ◦̂ dupL

We then can define lift2 as

lift2 :: Lens (a, b) c→ (∀f.LMonoidal f ⇒ (f a, f b)→ f c)

lift2 � = λ(x, y)→ lift � (x � y)

Now unlift and unlift2 have the types Eq a ⇒ (∀f.LMonoidal f ⇒ f a → f b) →
Lens a b and (Eq a,Eq b) ⇒ (∀f.LMonoidal f ⇒ (f a, f b) → f c) → Lens (a, b) c,

respectively, while their implementations are kept unchanged. Haskell programmers

may prefer this class-based interface, but it is more of a matter of taste.

4 Going generic

In this section, we make the ideas developed in previous sections practical by

extending the technique to lists and other data structures.

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 21

4.1 Unlifting functions on lists

We have looked at how unlifting works for n-ary tuples in Section 3. And we now

see how the idea can be extended to lists. As a typical usage scenario, when we apply

map to a lens function lift �, we will obtain a function of type map (lift �) :: [Ls A]→
[Ls B]. But what we really want is a lens of type Lens [A] [B]. The way to achieve

this is to internally treat length-n lists as n-ary tuples. This treatment effectively

restricts us to in-place updates of views (i.e., no change is allowed to the list

structure), we will revisit this issue in more detail in Section 6.1.

First, we can “split” lists by repeated pair splitting, as follows:

lsequencelist :: [Ls a]→ Ls [a]

lsequencelist [] = lift nilL unit

lsequencelist (x : xs) = lift2 consL (x, lsequencelist xs)

nilL = Lens (λ()→ []) (λ() []→ ())

consL = Lens (λ(a, as)→ (a : as)) (λ (a ′ : as ′)→ (a ′, as ′))

The name of this function is inspired by sequence in Haskell. Then the lifting function

is defined straightforwardly.

liftlist :: Lens [a] b→ ∀s. [Ls a]→ Ls b

liftlist � xs = lift � (lsequencelist xs)

Notice that we have liftlist idL = lsequencelist.

Tagged lists form an instance of Poset .

instance Poset a⇒ Poset [a] where

xs� ys = if length xs length ys then zipWith (�) xs ys

else ⊥ -- Unreachable in our framework

Note that the requirement that xs and ys must have the same shape is made explicit

above, though it is automatically enforced by the abstract use of L in lifted functions.

The definition of unliftlist is a bit more involved. What we need to do is to turn

every element of the source list into a projection lens and apply the lens function f.

unliftlist :: ∀a b.Eq a⇒ (∀s. [Ls a]→ Ls b)→ Lens [a] b

unliftlist f = Lens (λs→ get (mkLens s) s) (λs→ put (mkLens s) s)

where

mkLens s = f (projs (length s)) ◦̂ tagListL

tagListL = Lens (map O) (λ ys→ map unTag ys)

projs n = map projL [0 . . n− 1]

projL :: Int → L [Tag a] a

projL i = Lens (λxs→ unTag (xs !! i)) (λas a→ update i (U a) as)

update :: Int → a→ [a]→ [a]

update 0 v (: xs) = v : xs

update i v (x : xs) = x : update (i− 1) v xs

Given that the need to inspect the length of the source leads to the separate

definitions of get and put in the above, there might be worry that we may lose the

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

22 K. Matsuda and M. Wang

guarantee of well-behavedness of the resulting lens. But this is not a problem here,

since the length of the source list is an invariant of the resulting lens. Similar to lift2,

liftlist is an injection with unliftlist as its left inverse.

Example 2 (Bidirectional tail). Let us consider the function tail.

tail :: [a]→ [a]

tail (x : xs) = xs

A bidirectional version of tail is easily constructed by using lsequencelist and unliftlist
as follows:

tailL :: Eq a⇒ Lens [a] [a]

tailL = unliftlist (lsequencelist ◦ tail)

The obtained lens tailL supports all in-place updates, such as

put tailL ["a", "b", "c"] ["B", "C"] = ["a", "B", "C"]. In contrast, any change

on list length will be rejected; specifically, nilL or consL in lsequencelist throws an

error. �

Example 3 (Bidirectional unlines). Let us consider a bidirectional version of unlines::

[String]→ String that concatenates lines, after appending a terminating newline to

each. For example, unlines ["ab", "c"] = "ab\nc\n". In conventional unidirectional

programming, one can implement unlines as follows:

unlines [] = ""

unlines (x : xs) = catLine x (unlines xs)

catLine x y = x++ "\n" ++ y

To construct a bidirectional version of unlines, we first need a bidirectional version

of catLine.

catLineL :: Lens (String , String) String

catLineL =

Lens (λ(s, t)→ s++ "\n" ++ t)

(λ(s, t) u→ let n = length (filter (’\n’) s)

i = elemIndices ’\n’ u !! n

(s ′, t ′) = splitAt i u

in (s ′, tail t ′))

Here, elemIndices and splitAt are functions from Data.List: elemIndices c s returns

the indices of all elements that are equal to c, splitAt i x returns a tuple where the

first element is x’s prefix of length i and the second element is the remainder

of the list. Intuitively, put catLineL (s, t) u splits u into s ′ and "\n" ++ t ′ so

that s ′ contains the same number of newlines as the original s. For example,

put catLineL ("a\nbc", "de") "A\nB\nC" = ("A\nB", "C").

Then, construction of a bidirectional version unlinesL of unlines is straightforward,

we only need to replace "" with new "" and catLine with lift2 catLineL, and to apply

unliftlist to obtain a lens.

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 23

unlinesL :: Lens [String] String

unlinesL = unliftlist unlinesF

unlinesF :: ∀s. [Ls String]→ Ls String

unlinesF [] = new ""

unlinesF (x : xs) = lift2 catLineL (x, unlinesF xs)

As one can see, unlinesF is written in the same applicative style as unlines. The

construction principle is if the original function handles data that one would like

to update bidirectionally (e.g., String in this case), replace all manipulations (e.g.,

catLine and "") of the data with the corresponding bidirectional versions (e.g.,

lift2 catLineL and new "").

Lens unlinesL accepts updates that do not change the original formatting of

the view (i.e., the same number of lines and an empty last line). For example,

we have put unlinesL ["a", "b", "c"] "AA\nBB\nCC\n" = ["AA", "BB", "CC"], but

put unlinesL ["a", "b", "c"] "AA\nBB\n" = ⊥ and put unlinesL ["a", "b", "c"]

"AA\nBB\nCC\nD" = ⊥.

Example 4 (unlines defined by foldr). Another common way to implement unlines is

to use foldr, as below:

unlines = foldr catLine ""

The same coding principle for constructing bidirectional versions applies

unlinesL :: Lens [String] String

unlinesL = unliftlist unlinesF

unlinesF :: ∀s. [Ls String]→ Ls String

unlinesF = foldr (curry (lift2 catLineL)) (new "")

The new unlinesF is again in the same applicative style as the new unlines, where

the unidirectional function foldr is applied to normal functions and lens functions

alike. �

For readers familiar with the literature of bidirectional transformation,

this restriction to in-place updates is very similar to that in semantic

bidirectionalization (Voigtländer, 2009a; Matsuda & Wang, 2013; Wang & Najd,

2014). We will discuss the connection in Section 9.1.

4.2 Datatype-generic unlifting functions

The treatment of lists is an instance of the general case of container-like datatypes.

We can view any container with n elements as an n-tuple, only to have list length

replaced by the more general container shape. In this section, we define a generic

version of our technique that works for many datatypes.

Specifically, we use the datatype-generic function traverse, which can be found in

Data.Traversable, to give datatype-generic lifting and unlifting functions.

traverse :: (Traversable t,Applicative f)⇒ (a→ f b)→ t a→ f (t b)

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

24 K. Matsuda and M. Wang

We use traverse to define two functions that are able to extract data from the

structure holding them (contents), and redecorate an “empty” structure with given

data (fill).2

newtype Const a b = Const {getConst :: a}
contents :: Traversable t⇒ t a→ [a]

contents t = getConst (traverse (λx→ Const [x]) t)

fill :: Traversable t⇒ t b→ [a]→ t a

fill t � = evalState (traverse next t) �

where next = do (a : x)← Control .Monad .State.get

Control .Monad .State.put x

return a

Here, Const a b is an instance of the Haskell Functor that ignores its argument b.

It becomes an instance of Applicative if a is an instance of Monoid . We qualified

the state monad operations get and put to distinguish them from the get and put as

bidirectional transformations.

For many datatypes such as lists and trees, instances of Traversable are

straightforward to define to the extent of being systematically derivable (McBride &

Paterson, 2008). The instances of Traversable must satisfy certain laws (Bird et al.,

2013); and for such lawful instances, we have

fill (fmap f t) (contents t) = t (FillContents)

contents (fill t xs) = xs if length xs = length (contents t) (ContentsFill)

for any f and t, which are needed to established the correctness of our generic

algorithm. Note that every Traversable instance is also an instance of Functor .

We can now define a generic lsequence function as follows:

lsequence :: (Eq a,Eq (t ()),Traversable t)⇒ t (Ls a)→ Ls (t a)

lsequence t = lift (fillL (shape t)) (lsequencelist (contents t))

where

fillL s = Lens (λxs→ fill s xs) (λ t→ contents ′ s t)

contents ′ s t = if shape t s then contents t

else error "Shape Mismatch"

Here, shape computes the shape of a structure by replacing elements with units, i.e.,

shape t = fmap (λ → ()) t. Also, we can make a Poset instance as follows3:

instance (Poset a,Eq (t ()),Traversable t)⇒ Poset (t a) where

t1 � t2 = if shape t1 shape t2 then fill t1 (contents t1 � contents t2)

else ⊥ -- Unreachable, in our framework

2 In GHC, the function contents is called toList, which is defined in Data.Foldable (every Traversable
instance is also an instance of Foldable). We use the name contents to emphasize the function’s role of
extracting contents from structures (Bird et al., 2013).

3 This definition actually overlaps with those for lists and pairs. So we either need to have “wrapper”
type constructors, or enable OverlappingInstances.

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 25

Following the example of lists, we have a generic unlifting function with length

replaced by shape.

unliftT :: (Eq (t ()),Eq a,Traversable t)⇒ (∀s. t (Ls a)→ Ls b)→ Lens (t a) b

unliftT f = Lens (λs→ get (mkLens s) s) (λs→ put (mkLens s) s)

where

mkLens s = f (projTs (shape s)) ◦̂ tagTL

tagTL = Lens (fmap O) (const$ fmap unTag)

projTs sh = let n = length (contents sh)

in fill sh [projTL i sh | i← [0 . . n− 1]]

projTL i sh = Lens (λs→ unTag (contents s !! i))

(λs v→ fill sh (update i (U v) (contents s)))

Here, projTL i t is a bidirectional transformation that extracts the ith element in t

with the tag erased. Similarly to unliftlist, the shape of the source is an invariant of

the derived lens.

5 An application: Bidirectional evaluation

In this section, we demonstrate the expressiveness of our framework by defining a

bidirectional evaluator in it. As we will see in a larger scale, programming in our

framework is very similar to what it is in conventional unidirectional languages,

showing the distinct advantage of our approach.

An evaluator can be seen as a mapping from an environment to a value of a given

expression. A bidirectional evaluator (Hidaka et al., 2010) additionally takes the

same expression but maps an updated value of the expression back to an updated

environment, so that evaluating the expression under the updated environment

results in the value.

Consider the following syntax for a higher-order call-by-value language:

data Exp = ENum Int | EInc Exp

| EVar String | EApp Exp Exp

| EFun String Exp deriving Eq

data Val a = VNum a

| VFun String Exp (Env a) deriving Eq

data Env a = Env [(String ,Val a)] deriving Eq

This definition is standard, except that the type of values is parameterized to

accommodate both Val (L s Int) and Val Int for updatable and ordinary integers,

and so does the type of environments. It is not difficult to make Val and Env

instances of Traversable.

Using our framework, writing a bidirectional evaluator is almost as easy as writing

the usual unidirectional one.

eval :: Env (Ls Int)→ Exp → Val (Ls Int)

eval env (ENum n) = VNum (new n)

eval env (EInc e) = let VNum v = eval env e

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

26 K. Matsuda and M. Wang

in VNum (lift incL v)

eval env (EVar x) = lkup x env

eval env (EApp e1 e2) = let VFun x e′ (Env env ′) = eval env e1
v2 = eval env e2

in eval (Env ((x, v2) : env ′)) e′

eval env (EFun x e) = VFun x e env

Here, incL :: Lens Int Int is a bidirectional version of (+1) that can be defined as

follows:

incL = Lens (+1) (λ x→ x− 1)

and lkup :: String → Env a→ a is a lookup function.

A lens evalL :: Exp → Lens (Env Int) (Val Int) naturally arises from eval.

evalL :: Exp → Lens (Env Int) (Val Int)

evalL e = unliftT (λenv→ liftT idL $ eval env e)

As an example, let us consider the following expression that essentially computes

x+ 65536 by using a higher-order function twice in the object language.

expr = twice@@ twice@@ twice@@ twice@@ inc@@ x

where

twice = EFun "f" $ EFun "x" $ EVar "f" @@ (EVar "f" @@ EVar "x")

x = EVar "x"

inc = EFun "x" $ EInc (EVar "x")

infixl 9 @@ -- @@ is left associative

(@@) = EApp

For easy reading, we translate the above expression to Haskell syntax.

expr = ((((twice twice) twice) twice) inc) x

where twice f x = f (f x)

inc x = x+ 1

Now giving an environment that binds the free variable x, we can run the

bidirectional evaluator as follows, with env0 = Env [("x",VNum 3)].

Main> get (evalL expr) env0

VNum 65539

Main> put (evalL expr) env0 (VNum 65536)

Env [("x",VNum 0)]

As a remark, this seemingly innocent implementation of evalL is

actually highly non-trivial. It essentially defines compositional (or modular)

bidirectionalization (Matsuda et al., 2007; Voigtländer, 2009a; Matsuda & Wang,

2013; Wang & Najd, 2014) of programs that are monomorphic in type and use higher-

order functions in definition—something that has not been achieved in bidirectional

transformation research so far.

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 27

6 Extensions

In this section, we extend our framework in two dimensions: allowing shape changes

via lifting lens combinators, and allowing (L s A)-values to be inspected during

forward transformations following our previous work (Matsuda & Wang, 2013,

2014).

6.1 Lifting lens combinators

An advantage of the original lens combinators (Foster et al., 2007) (that operate

directly on the non-functional representation of lenses) over what we have presented

so far is the ability to accept shape changes to views. We argue that our framework

is general enough to easily incorporate such lens combinators.

Since we already know how to lift/unlift lenses, it only takes some plumbing to

be able to handle lens combinators, which are simply functions over lenses. For

example, for combinators of type Lens A B → Lens C D , we have

liftC :: Eq a⇒ (Lens a b→ Lens c d)→ (∀s.Ls a→ Ls b)→ (∀t.Lt c→ Lt d)

liftC c f = lift (c (unlift f))

Using the analogy to higher-order abstract syntax (Church, 1940; Huet & Lang, 1978;

Miller & Nadathur, 1987; Pfenning & Elliott, 1988), the polymorphic arguments

of the lifted combinators represent closed expressions; for example, a program like

λx→ . . . c (. . . x . . .) . . . does not type-check when c is a lifted combinator.

As an example, let us consider the following lens combinator mapDefaultC:

mapDefaultC :: a→ Lens a b→ Lens [a] [b]

mapDefaultC d � = Lens (map (get �)) (λs v→ go s v)

where go ss [] = []

go [] (v : vs) = put � d v : go [] vs

go (s : ss) (v : vs) = put � s v : go ss vs

When given a lens on elements, mapDefaultC d turns it into a lens on lists. The default

value d is used when new elements are inserted to the view, making the list lengths

different. We can incorporate this behavior into our framework. For example, we

can use mapDefaultC as in the following, which in the forward direction is essentially

map (uncurry (+)).

mapAddL :: Lens [(Int , Int)] [Int]

mapAddL = unlift mapAddF

mapAddF :: ∀t.Lt [(Int , Int)]→ Lt [Int]

mapAddF xs = mapF (0, 0) (lift addL) xs

mapF :: Eq a⇒ a→ (∀s.Ls a→ Ls b)→ (∀t.Lt [a]→ Lt [b])

mapF d = liftC (mapDefaultC d)

addL:: Lens (Int , Int) Int

addL= Lens (λ(x, y)→ x+ y) (λ(x,) v→ (x, v− x))

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

28 K. Matsuda and M. Wang

This lens mapAddL constructed in our framework handles shape changes without

any trouble.

Main> put mapAddL [(1, 1), (2, 2)] [3, 5]

[(1, 2), (2, 3)]

Main> put mapAddL [(1, 1), (2, 2)] [3]

[(1, 2)]

Main> put mapAddL [(1, 1), (2, 2)] [3, 5, 7]

[(1, 2), (2, 3), (0, 7)]

The trick is that the expression mapF (0, 0) (lift addL) has type ∀s.Ls [(Int , Int)]→
L s [Int], where the list occurs inside L s, contrasting to map (lift addL)’s type

∀s. [L s (Int , Int)] → [L s Int]. Intuitively, the type constructor L s can be seen as

an updatability annotation; L s [(Int , Int)] means that the list itself is updatable,

whereas [L s (Int , Int)] means that only the elements are updatable. Here is the

trade-off: the former has better updatability at the cost of a special lifted lens

combinator; the latter has less updatability but simply uses the usual map directly.

Our framework enables programmers to choose either style, or anywhere in between

freely.

This position-based approach used in mapDefaultC is not the only way to resolve

shape discrepancies. We can also match elements according to keys (Davi et al.,

2010; Foster et al., 2010). As an example, let us consider a variant of the map

combinator:

mapByKeyC :: Eq k⇒ a→ Lens a b→ Lens [(k, a)] [(k, b)]

mapByKeyC d � = Lens (map (λ(k, s)→ (k, get � s))) (λs v→ go s v)

where go ss [] = []

go ss ((k, v) : vs) = case lookup k ss of

Nothing → (k, put � d v) : go ss vs

Just s → (k, put � s v) : go (del k ss) vs

del k [] = []

del k ((k ′, s) : ss) | k k ′ = ss

| otherwise = (k ′, s) : del k ss

Lenses constructed with mapByKeyC match with keys instead of positions.

mapAddByKeyL :: Eq k⇒ Lens [(k, (Int , Int))] [(k, Int)]

mapAddByKeyL = unlift mapAddByKeyF

mapAddByKeyF :: Eq k⇒ ∀t.Lt [(k, (Int , Int))]→ Lt [(k, Int)]

mapAddByKeyF xs = mapByKeyF (0, 0) (lift addL) xs

mapByKeyF :: (Eq k,Eq a)⇒
a→ (∀s.Ls a→ Ls b)→ (∀t.Lt [(k, a)]→ Lt [(k, b)])

mapByKeyF d = liftC (mapByKeyC d)

Let s be [("A", (1, 1)), ("B", (2, 2))]. Then, the obtained lens works as follows:

Main> put mapAddByKeyL s [("B", 5), ("A", 3)]

[("B", (2, 3)), ("A", (1, 2))]

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 29

Main> put mapAddByKeyL s [("A", 3)]

[("A", (1, 2))]

Main> put mapAddByKeyL s [("B", 5), ("C", 7), ("A", 3)]

[("B", (2, 3)), ("C", (0, 7)), ("A", (1, 2))]

6.2 Observations of lifted values

So far we have programmed bidirectional transformations ranging from polymorphic

to monomorphic functions. For example, unlines is monomorphic because its base

case returns a String constant, which is nicely handled in our framework by the

function new. At the same time, it is also obvious that the creation of constant values

is not the only cause of a transformation being monomorphic (Matsuda & Wang,

2013, 2014). For example, let us consider the following toy program4:

bad (x, y) = if x new 0 then (x, y) else (x, new 1)

In this program, the behavior of the transformation depends on the “observation”

made to a value that may potentially be updated in the view. Then the naively

obtained lens badL = unlift2 (lift2 idL ◦ bad) would violate well-behavedness, as

put badL (0, 2) (1, 2) = (1, 2) but get badL (1, 2) = (1, 1).

Our previous work (Matsuda & Wang, 2013, 2014) tackles this problem by using

a monad to record observations, and to enforce that the recorded observation

results remain unchanged while executing put. The same technique can be used

in our framework, and actually in a simpler way due to our new compositional

formalization.

newtype R a b = R (Poset a⇒ a→ (b, a→ Bool))

We can see that R A B represents gets with restricted source updates: taking a

source s::A, it returns a view of type B together with a constraint of type A→ Bool

which must remain satisfied amid updates of s. Formally, giving R m :: R A B , for

any s, if (, p) = m s, then we have (1) p s = True; (2) p s ′= True implies m s = m s ′

for any s ′. It is not difficult to make R s an instance of Monad—it is a composition

of Reader and Writer monads. We only show the definition of (>>=).

R m>>= f = R $ λs→ let (x, c1) = m s

(y, c2) = let R k = f x in k s

in (y, λs→ c1 s∧ c2 s)

Then, we define a function that produces R values, and a version of unlifting that

enforces the observations gathered.

observe :: Eq w⇒ Ls w→ R s w

observe x = R (λs→ let w = get x s in (w, λs ′→ get x s ′ w))

4 This code actually does not type check as () on (Ls Int)-values depends on a source and has to be
implemented monadically. But we do not fix this program as it is meant to be a non-solution that will
be discarded.

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

30 K. Matsuda and M. Wang

unliftM2 :: (Eq a,Eq b)⇒ (∀s. (Ls a,Ls b)→ R s (Ls c))→ Lens (a, b) c

unliftM2 f = Lens (λs→ get (mkLens f s) s) (λs→ put (mkLens f s) s)

where

mkLens f s =

let (�, p) = let R m = f (fst′L, snd′L) in m (get tag2L s)

�′ = � ◦̂ tag2L

put ′ s v = let s ′= put �′ s v

in if p (get tag2L s ′) then s ′

else error "Changed Observation"

in Lens (get �′) put ′

Although we define the get and put components of the resulting lens separately in

unliftM2, well-behavedness is guaranteed as long as R and L are used abstractly in

f, where this abstract nature of R and L are formalized as follows:

Definition 4 (Abstract nature of L and R). We say L and R are abstract in f :: τ, if

there is a polymorphic function h of type

∀� r. (∀a b.Lens a b→ (∀s. � s a→ � s b))

→ (∀a b. (∀s. � s a→ � s b)→ Lens a b)

→ (∀s. � s ())

→ (∀s a b. � s a→ � s b→ � s (a, b))

→ (∀a b c. (∀s. (� s a, � s b)→ � s c)→ Lens (a, b) c)

→ (∀s w.Eq w⇒ � s w→ r s w)

→ (∀a b. (∀s. � s a→ r s (� s b))→ Lens a b)

→ (∀a b c. (∀s. (� s a, � s b)→ r s (� s c))→ Lens (a, b) c)

→ τ′

satisfying f = h lift unlift unit (�) unlift2 observe unliftM unliftM2 and τ′ =

τ[�/L, r/R]. �

Note that, similarly to unliftM2, we can define unliftM and unliftMT, as monadic

versions of unlift and unliftT. Formally, we have the following theorem.

Theorem 6. Let f be a function of type ∀s. (L s A,L s B) → R s (L s C) in which L

and R are abstract. Then, unliftM2 f is well-behaved, if all the following conditions

hold:

• Only well-behaved lenses are passed to lift during evaluation.

• w in observe :: Eq w⇒ L s w→ R s w is only instantiated to types W such

that () on W coincides with the semantic (observational) equality.

We postpone the proof till Section 8.

We can now place observe at where observations happens, and use unliftM to

guard against changes to them.

good :: ∀s. (Ls Int ,Ls Int)→ R s (Ls (Int , Int))

good (x, y) = do b← liftO2 () x (new 0)

return (if b then x � y else x � new 1)

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 31

Here, liftO2 is defined as follows:

liftO2 :: Eq w⇒ (a→ b→ w)→ Ls a→ Ls b→ R s w

liftO2 p x y = liftO (uncurry p) (x � y)

liftO :: Eq w⇒ (a→ w)→ Ls a→ R s w

liftO p x = observe (lift (Lens p unused) x)

where unused s v | v p s = s

Then the obtained lens goodL = unliftM2 good successfully rejects illegal updates, as

put goodL (0, 2) (1, 2) = ⊥. Note that unused is unused as it stands in our framework,

recall that observe x only uses the get component of x.

One might have noticed that the definition of good is in the Monadic style—not

applicative in the sense of McBride & Paterson (2008). This is necessary for handling

observations, as the effect of (R s) can depend on the value in it (Lindley et al., 2011).

Example 5 (nub). As a slightly involved example, let us consider a bidirectional

version of nub, which removes duplicate elements in a list as nub [1, 1, 2, 3, 2] =

[1, 2, 3].

nubF :: Eq a⇒ [Ls a]→ R s [Ls a]

nubF [] = return []

nubF (x : xs) = do xs ′← deleteF x xs

r← nubF xs ′

return (x : r)

deleteF :: Eq a⇒ Ls a→ [Ls a]→ R s [Ls a]

deleteF x [] = return []

deleteF x (y : ys) = do b← liftO2 () x y

r← deleteF x ys

return (if b then r else y : r)

nubL:: Eq a⇒ Lens [a] [a]

nubL= unliftMT (fmap lsequence◦ nubF)

The obtained lens nubL works as follows:

Main> get nubL [1, 1, 2, 3, 2]

[1, 2, 3]

Main> put nubL [1, 1, 2, 3, 2] [1, 2, 6]

[1, 1, 2, 6, 2]

However, there is a limitation: nubL cannot change any duplicated elements.

Main> put nubL [1, 1, 2, 3, 2] [1, 5, 6]

*** Exception: Changed Observation

Unlike the previous example that updates 3, we have two copies of 2 in the source:

the first one appears as the third element and the second one appears as the last

element. They are compared by , and the first one comes in the view while the

second one is dropped. This also imposes a constraint on the source that the third

element and the last element must be equal (but not necessarily remain as 2). Thus,

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

32 K. Matsuda and M. Wang

we cannot change the 2 in the view because it changes only the first occurrence of

2 while leaving the second occurrence untouched.

Voigtländer (2009a) addresses the problem by treating equal elements in the source

as the “same,” where a change to one automatically triggers a change to others. In

the above example, if we can update both occurrences of 2 simultaneously to 5, no

bidirectional laws will be violated.

With a small amount of additional work, we can incorporate this idea while

keeping the definition of nubF. First, we prepare a datatype in which the “same”

elements are merged to one.

data EList a = EList [Int] [(Int , a)]

Intuitively, EList indexes elements: its first parameter is the list of Int-indices and

the second parameter is an injective mapping from the indices to actual list elements.

It is easy to decompose a list to EList , and vice versa.

decompose :: Eq a⇒ [a]→ EList a

decompose xs = let ys = nub xs

in EList [fromJust (findIndex (x) ys) | x← xs] (zip [0 . .] ys)

recompose :: EList a→ [a]

recompose (EList is m) = [fromJust (lookup i m) | i← is]

Here, findIndex :: Eq a ⇒ a → [a] → Maybe Int defined in Data.List, is a

function that takes an element x and a list xs, and returns the index of the

first occurrence of x in xs if it exists. The function fromJust is a function

defined by fromJust (Just x) = x. For example, decompose [A,A,B ,C ,B] results

in EList [0, 0, 1, 2, 1] [(0,A), (1,B), (2,C)].

From the two functions decompose and recompose, we can define lens decomposeL

as follows:

decomposeL:: Eq a⇒ Lens [a] (EList a)

decomposeL= Lens decompose (λ v→ recompose′ v)

where recompose′ v = let s = recompose v

in if v decompose s then s else ⊥

Function recompose′ is a variant of recompose that actually checks the invariant on

EList . That is, for EList is m, m must be injective and defined for all the indices in

is. This check is conservative, but works fine for our purpose.

Now, we are ready to generalize nubL.

nubL′ :: Eq a⇒ Lens [a] [a]

nubL′= unliftMT (λxs→ fmap lsequence (nubF (recompose xs))) ◦̂ decomposeL

Note that recompose xs type-checks because recompose :: EList a → [a] does not

require Eq for a.

The new lens nubL′ accepts more updates than nubL

Main> put nubL′ [1, 1, 2, 3, 2] [4, 5, 6]

[4, 4, 5, 6, 5]

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 33

without compromising the bidirectional laws.

Main> put nubL′ [1, 1, 2, 3, 2] [4, 5, 5]

*** Exception: Changed Observation

As a remark, automatically treating all equal elements as the same may not

always be the most desirable. Our previous work (Matsuda & Wang, 2014) addresses

the problem by selective indexing: only the elements that pass an equality check

occurring in the execution of get are considered the same. It is not obvious how our

current framework can be extended to achieve this because now elements can be

compared after applying lifted lens functions, which may require us to index elements

in intermediate views, unlike the situation in the previous work (Voigtländer, 2009a;

Matsuda & Wang, 2014) where only source elements are indexed. �

7 An XML transformation example

XML transformation is a common application area of bidirectional programming,

where data in different XML formats are synchronized through transformations

going both ways. In this section, we program such transformations in our framework

with the extensions discussed in Section 6.2. Specifically, we implement a slightly

simplified version of the query Q5 of Use Case “STRING” in XML Query Use

Cases (http://www.w3.org/TR/xquery-use-cases). Different from the existing

first-order languages specialized for bidirectional XML transformations (Liu et al.,

2007; Fegaras, 2010; Pacheco et al., 2014a), our language is general purpose, and,

as will be demonstrated by this exercise, can be seamlessly integrated with an

existing functional framework for transforming XML that involves higher-order

features.

The basic idea follows from our previous work (Matsuda & Wang, 2013, 2014). We

use the established HaXML framework (Wallace & Runciman, 1999) to construct

XML transformations using filters—functions of type a → [b]. Adapting it to

our context of bidirectional transformations with observations, we will use filters

of type L s a → ListT (R s) (L s b), where the monad transformer ListT in

Control .Monad .List is defined by

newtype ListT m a = ListT {runListT :: m [a]}

with an implementation of the function “lift” of type Monad m⇒ m a→ ListT m a.

To avoid name conflicts, we use the following type-specialized version:

liftListT :: Monad m⇒ m a→ ListT m a

liftListT = Control .Monad .Trans .lift

The type constructor ListT m is an instance of MonadPlus in Control .Monad , which

gives us mplus :: MonadPlus m⇒ m a→ m a→ m a and mzero :: MonadPlus m⇒ m a.

For those who are familiar with monad transformer laws, R s is a commutative

monad in our case, and thus ListT (R s) is a monad.

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

34 K. Matsuda and M. Wang

7.1 A datatype for XML

To start with, we define a datatype to represent XML elements. Following

our previous work (Matsuda & Wang, 2013, 2014), we use a simple rose-tree

representation as follows:

data Tree a = Node a [Tree a] deriving (Eq ,Functor ,Foldable,Traversable)

data Label = E String | T String deriving Eq

Here, E and T stand for “element name” and “text,” respectively. We shall omit

other features of XML that cannot be expressed in this datatype, notably attributes,

IDs and IDREFs, schemas and namespaces.

For example, an XML fragment

<content><par>Today, Gorilla Corporation announced that ...</par>

<par>As a result of this acquisition, ...</par></content>

is represented as follows:

Node (E "content") [

Node (E "par") [

Node (T "Today, Gorilla Corporation announced that ...") []],

Node (E "par") [

Node (T "As a result of this acquisition, ...") []]]

The following function label is sometimes useful to write examples:

label :: Tree a→ a

label (Node lab) = lab

Then, we define a type of (bidirectional) filters as follows:

type BFilter s a = Tree (Ls a)→ ListT (R s) (Tree (Ls a))

7.2 Basic filters

As in our previous work (Matsuda & Wang, 2013, 2014), we introduce several basic

filters. The simplest filter keep keeps its input.

keep :: BFilter s a

keep x = return x

Filter children extracts the children of a node.

children :: BFilter s a

children (Node ts) = ListT $ return ts

Filter ofLabel lab returns the input if its root has the label lab, and fails otherwise.

ofLabel :: Ls Label → BFilter s Label

ofLabel lab t = do guardM $ liftListT $ liftO2 () (label t) lab

return t

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 35

Here, guardM is a variant of guard from Control.Monad which takes a monadic

argument instead (function guard fails if its argument is False, and does nothing

otherwise).

guardM :: MonadPlus m⇒ m Bool → m ()

guardM x = x >>= guard

Filters are composable by combinators.

(/>) :: BFilter s a→ BFilter s a→ BFilter s a

f /> g = f >=> children>=> g

Here, (>=>) is the Kleisli composition operator in Control.Monad defined by (f >=>

g) x = f x >>= g. The operator (/>) is useful for implementing the XPath axis

“/”. For example, the filter keep/> ofLabel (new (E "content")) extracts content

elements from the children of its input, and the filter keep/>keep/>keep extracts the

grandchildren of its input.

Another useful combinator is deep defined as follows:

deep :: BFilter s a→ BFilter s a

deep f t = bfs [t] []

where

bfs [] [] = mzero

bfs [] qs = bfs (reverse qs) []

bfs (t@(Node lab ts) : rest) qs = do ck← gather (f t)

case ck of

[]→ bfs rest (reverse ts++ qs)

→ return t ‘mplus‘ bfs rest qs

The expression deep f t applies filter f to each subtree of t in the breadth-first

manner, and combines by mplus the subtrees for which f succeeds. An auxiliary

function gather gathers results: for example, children y produces one child at a time,

and gather (children y) gathers the children in a list.

gather :: Monad m⇒ ListT m a→ ListT m [a]

gather (ListT x) = ListT $ x >>= (λa→ return [a])

Combinator deep is useful for implementing the XPath axis “//”. For example,

the filter deep (ofLabel (new $ E "news_item")) returns all the news_item elements

within the input tree.

Sometimes, we want to extract the nth element of a query result. This is done by

using the filter /!n defined as follows:

(/!) :: BFilter s a→ Int → BFilter s a

f /! n = λxs→ do rs← gather (f xs)

return (rs !! n)

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

36 K. Matsuda and M. Wang

Fig. 1. Input XML.

Fig. 2. Output XML.

7.3 Query example

Now, we are ready to write a bidirectional query of Q5 (of Use Case “STRING” in

XML Query Use Cases). The query extracts summaries of the news items (specifically,

titles, dates and the first paragraphs) that contains “Gorilla Corporation” in their

“content”s; for example, for the input shown in Figure 1, it returns the XML shown

in Figure 2.5 Assuming that the input is in a file named “string.xml”, this query is

written in XQuery as shown in Figure 3.

Figure 4 shows the bidirectional version of Q5 implemented in our framework.

Here, catDateL is a lens whose get takes a triple (t, d, p) and returns a

concatenated string with ". ", and whose put takes a string in the format

“\. \d\d\d\d-\d\d-\d\d\. ” (the Perl-compatible regular-expression format), and

decompose it to a triple. The code looks complicated, but this complication mainly

comes from writing XML queries in a functional programming language, instead of

5 Both XMLs are a simplified version of the sample input and output for Q5 of Use Case “STRING”
in XML Query Use Cases (http://www.w3.org/TR/xquery-use-cases). In the original, par may
contain a sequence of text and elements rather than merely text. This simplification does not affect the
original Q5 in XQuery, but does simplify our version written in Haskell.

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 37

Fig. 3. Query Q5 of use case “String” in XML query use cases.

Fig. 4. Query Q5 in our framework.

bidirectional programming. It is worth mentioning that q5 cannot be written in our

previous framework (Matsuda & Wang, 2013, 2014) as we are reusing lenses (such

as catDateL) as blackboxes through lifting—a key advantage of our framework.

7.4 Updatability

By applying get q5L to the XML data in Figure 1 (encoded in Haskell), we

obtain a piece of data that corresponds to the XML in Figure 2. We can

update the extracted strings as long as they still contain delimiters matching the

regular expression “\. \d\d\d\d-\d\d-\d\d\. ”. This means other updates such

as insertions, deletions and changes to element names item_summary are (rightfully)

prohibited.

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

38 K. Matsuda and M. Wang

As an example, consider changing the text of the second extracted item as follows:

Foobar Corporation is suing Gorilla Corporation today. 2015-10-20.

In surprising developments today, YEAH! ...

We have appended “today” to the title part, changed the date string, and inserted

“YEAH!”. Executing put q5Lon the new text succeeds and changes the corresponding

parts in the original input XML. That is, “today” is appended to the title text,

“2015-10-20” is set as the new date and “YEAH!” is inserted in the first paragraph

of the content.

8 Correctness

In this section, we prove Theorem 6 (Proofs of Theorems 1 and 4 are similar and thus

omitted). Our proof is based on the free theorems (Wadler, 1989; Reynolds, 1983;

Voigtländer, 2009b). It is worth noting that we only need to use unary parametricity

instead of the binary one adopted in previous approaches (Voigtländer, 2009a;

Matsuda & Wang, 2013, 2014).

8.1 Free theorem

We first review the free theorems based on unary parametricity.

Roughly speaking, free theorems are theorems obtained as corollaries of relational

parametricity (Reynolds, 1983; Vytiniotis & Weirich, 2010; Bernardy et al., 2012),

which states that, for a closed term f of type T , f belongs to a certain relational

interpretation of T . A simple example of a free theorem is that a (total) function f

of type ∀a. a→ a is the identity function, because f preserves any properties on the

input.

We start by introducing some notations. We write R :: Pred(A) if R is a unary

relation (i.e., a predicate) on A; we identified a predicate on A with the set of A-

elements satisfying the predicate. For predicates R :: Pred(A) and R′ :: Pred(B), we

write R → R′ :: Pred(A→ B) for the predicate on functions {f | ∀x ∈ R. f x ∈ R′},
and (R,R′) :: Pred((A,B)) for the predicate on pairs {(x, y) | x ∈ R, y ∈ R′}. For a

polymorphic term f of type ∀a.T and a type S , we write fS for the instantiation of

f with S , which has type T [S/a]. For simplicity, we sometimes omit the subscript

and simply write f for fS if S is clear from the context or irrelevant.

We introduce a unary relational interpretation �τ�1
ρ of types, where ρ is a mapping

from type variables to predicates, as follows:

�a�1
ρ = ρ(a)

�B�1
ρ = {e | e :: B} if B is a base type

�T1 → T2�
1
ρ = �T1�

1
ρ → �T2�

1
ρ

�(T1, T2)�
1
ρ = (�T1�

1
ρ, �T2�

1
ρ)

�∀a.T �1
ρ =

{
u
∣∣∣ ∀R :: Pred(S). uS ∈ �T �1

ρ[α→R]

}
.

Here, ρ[a �→ R] extends ρ with a �→ R. If ρ = ∅, we sometimes write �T �1 instead of

�T �1
∅. We abuse the notation to write �∀α.τ�1 as ∀R.F where F is the interpretation

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 39

�τ�1
{α�→R}. For example, we write ∀R.∀S. R → S for �∀α.∀β.α→ β�. For a base type

B, we also write B for �B�1. We identify the lens type Lens A B with the pairs

of functions (A → B ,A → B → A). Accordingly, we write Lens S T to mean

(S→ T, S→ T → S).

Then, parametricity states that, for a closed term f of a closed type τ, f is in �τ�1.

Free theorems are theorems obtained by instantiating parametricity.

Voigtländer (2009b) extends parametricity to a type system with type constructors.

A key notion in his result is relational action.

Definition 5 ((Unary) relational action). For a type constructor κ, F is called a

relational action on κ, denoted by F :: Pred(κ), if F maps any predicate R :: Pred(τ)

for every closed type τ to FR :: Pred(κ τ). �

Accordingly, the relational interpretations are extended as

�κ�1
ρ = ρ(κ)

�τ1 τ2�
1
ρ = �τ1�

1
ρ �τ2�

1
ρ

�∀κ.τ�1 =
{
u
∣∣∣ ∀F :: Pred(κ). uκ ∈ �τ�1

ρ[κ �→F]

}

Parametricity holds also with this relational interpretation (Vytiniotis & Weirich,

2010; Bernardy et al., 2012). Here, κ is a type constructor of kind ∗ → ∗, and thus

the quantified F is a relational action. The notation of relational action can be

extended to type constructors of kinds ∗ → ∗ → ∗, ∗ → ∗ → ∗ → ∗ and so on.

8.2 Proof of Theorem 6

First, we state a free theorem for functions of the type mentioned in Definition 4.

Lemma 3 (A free theorem). Let f :: τ be a function in which L and R are abstract,

and τ′ be a type τ[�/L, r/R]. For any F :: Pred(L) and M :: Pred(R) satisfying the

following conditions:

• lift ∈ ∀T.∀U.Lens T U→ (∀S.F S T → F S U).

• unlift ∈ ∀T.∀U.(∀S.F S T → F S U)→ Lens T U.

• unit ∈ ∀T.Lens T ().

• (�) ∈ ∀T.∀U.∀S.F S T → F S U→ F S (T,U).

• unlift2 ∈ ∀T.∀U.∀R.(∀S.(F S T,F S U)→ F S R)→ Lens (T,U) R.

• observe ∈ ∀S.F S T → M S T for any unary relation T on a type with

decidable semantic equality ().

• unliftM ∈ ∀T.∀U.(∀S.F S T →M S (F S U))→ Lens T U.

• unliftM2 ∈ ∀T.∀U.∀R.(∀S.(F S T,F S U)→M S (F S R))→ Lens (T,U) R.

We have f ∈ �τ′�{��→F,r �→M}. �

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

40 K. Matsuda and M. Wang

Thanks to the abstract nature of L and R in f, we can use Lemma 3. Concretely,

we use the following F and M:

F S R = {� | � ∈ LS R, � is locally well-behaved}

MSR =

⎧⎪⎪⎨
⎪⎪⎩

R m

∣∣∣∣∣∣∣∣

∀s ∈ S. let (x, p) be m s,

x ∈ R ∧
p s = True ∧
∀s′ ∈ S. p s ′= True ⇒ m s = m s ′

⎫⎪⎪⎬
⎪⎪⎭

It is worth noting that F S R ⊆ LS R and M S R ⊆ R S R.

Assume that all the conditions required by Lemma 3 are fulfilled. Then, for a

function f of type ∀s. (L s A,L s B) → R s (L s C) in which L and R are abstract,

we have f ∈ (F S A,F S B) → M S (F S C) for any predicate S. Since fst′L belongs

to F (Tag A,Tag B) A and snd′L belongs to F (Tag A,Tag B) B , we have that �

in the definition of mkLens f s called by unliftM2 f is locally well-behaved for all s,

and thus �′ is well-behaved by Lemma 2. Since p (get tag2L s) True holds from

the definition of M, mkLens f s satisfies acceptability. Since put (mkLens f s) is less

defined than put �′, mkLens f s satisfies consistency. This means that mkLens f s is

well-behaved for any s. We are left to show unliftM2 f is well-behaved. Although

the acceptability of unliftM2 f comes almost directly from the acceptability of

mkLens f s, more effort is needed to show the consistency of unliftM2 f. Notice that

this is the main difference between Theorems 6 and 4 after application of the free

theorem.

Here, the last line of M plays an important role. Assume that put (mkLens f s) s v

succeeds in s ′. We have p (get tag2L s) = p (get tag2L s ′) = True for p in the

definition of mkLens f s. Then, by the definition of M, we have that (let R m =

f (fst′L, snd′L) in (get tag2L s)) is equal to (let R m = f (fst′L, snd′L) in (get tag2L s ′)) by

f (fst′L, snd′L) ∈M S (F S C). The rest of computation of mkLens f s does not depend

on s, and thus mkLens f s = mkLens f s ′ holds. Therefore, we have

get (unliftM2 f) (put (unliftM2 f) s v)

= { put (mkLens f s) s v succeeds in s ′ }
get (mkLens f s ′) (put (mkLens f s) s v)

= { the above discussion }
get (mkLens f s) (put (mkLens f s) s v)

= { the consistency of mkLens f s }
v

which proves the consistency of unliftM2 f.

Now, we go back to show that the conditions in Lemma 3 are actually fulfilled

for F and M.

For the cases of lift and (�), we just use Lemma 2. Here, we have used the

assumption that lift is applied only to well-behaved lenses.

For the case of unit, the proof is obvious.

For the cases of unlift, unlift2, unliftM and unliftM2, the proofs are straightforward

because F S R is a subset of Lens S R.

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 41

For the case of observe, the proof is still straightforward. The last two lines of

M are obtained from the fact that () is semantic equality. �
Note that, to prove correctness also for the datatype-generic unlifting functions

like unliftT and unliftMT, we need to keep an additional invariant that a lens � in

F S R must be shape-preserving if S of S :: Pred(S) has a shape (recall that get and

put are defined separately also for these datatype-generic functions, and thus similar

discussions to unliftM are required for them). The above proof still works for this

case.

9 Related work and discussions

In this section, we discuss related techniques to our paper, making connections

to a couple of notable bidirectional programming approaches, namely semantic

bidirectionalization and the van Laarhoven representation of lenses. In addition, we

also discuss the partiality of derived backward transformations.

9.1 Semantic bidirectionalization

An alternative way of building bidirectional transformations other than lenses is

to mechanically transform existing unidirectional programs to obtain a backward

counterpart, a technique known as bidirectionalization (Matsuda et al., 2007).

Different flavors of bidirectionalization have been proposed: syntactic (Matsuda

et al., 2007), semantic (Voigtländer, 2009a; Matsuda & Wang, 2013, 2014; Wang &

Najd, 2014), and a combination of the two (Voigtländer et al., 2010, 2013). Syntactic

bidirectionalization inspects a forward function definition written in a somehow

restricted syntactic representation and synthesizes a definition for the backward

version. Semantic bidirectionalization on the other hand treats a polymorphic get

as a semantic object, applying the function independently to a collection of unique

identifiers, and the free theorems arising from parametricity state that whatever

happens to those identifiers happens in the same way to any other inputs—this

information is sufficient to construct the backward transformation.

Our framework can be viewed as a more general form of semantic

bidirectionalization. For example, giving a function of type ∀a. [a] → [a],

a bidirectionalization engine in the style of Voigtländer (2009a) can be

straightforwardly implemented in our framework as follows:

bff :: (∀a. [a]→ [a])→ (Eq a⇒ Lens [a] [a])

bff f = unliftlist (lsequencelist ◦ f)

Replacing unliftlist and lsequencelist with unliftT and lsequence, we also obtain the

datatype generic version (Voigtländer, 2009a).

With the addition of observe and the monadic unlifting functions, we are also

able to cover extensions of semantic bidirectionalization (Matsuda & Wang, 2013,

2014) in a simpler and more fundamental way. For example, liftO2 (and other n-ary

observations-lifting functions) has to be a primitive function previously (Matsuda

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

42 K. Matsuda and M. Wang

& Wang, 2013, 2014), but can now be derived from observe, lift and (�) in our

framework.

Our work’s unique ability to combine lenses and semantic bidirectionalization

results in more applicability and control than those offered by bidirectionalization

alone: user-defined lenses on base types can now be passed to higher-order

functions. For example, the XML transformation in Section 7 (Q5 of Use Case

“STRING” in XML Query Use Cases), which involves concatenation of strings

in the transformation, can be handled by our technique, but not previously with

bidirectionalization (Voigtländer, 2009a; Matsuda & Wang, 2013, 2014; Wang &

Najd, 2014). We believe that with the results in this paper, all queries in XML Query

Use Case can now be bidirectionalized. In a sense we are a step forward to the best

of both worlds: gaining convenience in programming without losing expressiveness.

The handling of observation in this paper follows the idea of our previous

work (Matsuda & Wang, 2013, 2014) to record only the observations that actually

happened at run-time, not those that may. The latter approach used in Voigtländer

(2009b) and Wang & Najd (2014) has the advantage of not requiring a monad, but

at the same time is not applicable to monomorphic transformations, as the set of

the possible observation results is generally infinite due to lifted lens functions.

9.2 Functional representation of bidirectional transformations

There exists another functional representation of lenses known as the van Laarhoven

representation (van Laarhoven, 2009; O’Connor, 2011). This representation, adopted

by the Haskell library lens, encodes bidirectional transformations of type Lens A B

as functions of the following type:

∀f.Functor f ⇒ (B → f B)→ (A→ f A)

Intuitively, we can read A → f A as updates on A and a lens in this representation

maps updates on B (view) to updates on A (source), resulting in a “put-back based”

style of programming (Pacheco et al., 2014b; Ko et al., 2016). The van Laarhoven

representation also has its root in the Yoneda lemma (Milewski, 2013; Jaskelioff

& O’Connor, 2015); unlike ours which applies the Yoneda lemma to Lens (−) V ,

they apply the Yoneda lemma to a functor (V ,V → (−)). Note that the lens type

Lens S V is isomorphic to the type S → (V ,V → S).

Compared to our approach, the van Laarhoven representation is rather

inconvenient for applicative-style programming. It cannot be used to derive a

put when a get is already given, as in bidirectionalization (Matsuda et al., 2007;

Voigtländer, 2009a; Voigtländer et al., 2010, 2013; Matsuda & Wang, 2013, 2014;

Wang & Najd, 2014) and the classical view update problem (Bancilhon & Spyratos,

1981; Dayal & Bernstein, 1982; Hegner, 1990; Fegaras, 2010), especially in a higher-

order setting. In the van Laarhoven representation, a bidirectional transformation

� :: Lens A B , which has get � :: A → B , is represented as a function from some

B structure to some A structure. This difference in direction poses a significant

challenge for higher-order programming, because structures of abstractions and

applications are not preserved by inverting the direction of →. In contrast, our

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 43

construction of put from get is straightforward; replacing base type operations with

the lifted bidirectional versions suffices as shown in the unlinesL and evalL examples

(monadification is only needed when supporting observations). Moreover, the van

Laarhoven representation does not extend well to data structures: n-ary functions in

the representation do not correspond to n-ary lenses. As a result, the van Laarhoven

representation itself is not useful to write bidirectional programs such as unlinesL
and evalL. Actually as far as we are aware, higher-order programming with the van

Laarhoven representation has not been achieved before.

By using the Yoneda embedding, we obtained the covariant monoidal functor

Lens S (−) that maps lenses of type Lens A B to functions Lens S A→ Lens S B ,

where S is a Poset instance (Section 3.4). This is not the only way to use the

Yoneda embedding. It is worth mentioning that, by using the Yoneda embedding,

we can also obtain a contravariant monoidal functor Lens (−) V that maps lenses

Lens A B to functions Lens B V → Lens A V , where V is a monoid satisfying

certain conditions. A similar idea can be found in Rajkumar et al. (2013), where

they use contravariant functors over the category of lenses as an abstraction for

bidirectional web forms, or formlenses.

9.3 Partiality of backward transformation

Unlike the original lens framework (Foster et al., 2007) and their

extensions (Bohannon et al., 2008; Foster et al., 2008) that guarantee the totality

of backward transformations, our derived backward transformations are generally

partial, similar to the case in bidirectionalization (Matsuda et al., 2007; Voigtländer,

2009a; Voigtländer et al., 2010, 2013; Matsuda & Wang, 2013, 2014; Wang &

Najd, 2014). Being total has the clear advantage that the backward transformations

never fail, but at the same time, the totality requirement poses strong restrictions on

recursive definitions. For example, even for simple fold-like get functions, totality, i.e.,

termination, of the corresponding put functions is already non-trivial to guarantee,

as such puts are usually implemented by “unfold” (Wang et al., 2010). As a result,

the Boomerang framework of lenses (Bohannon et al., 2008) only supports map-like

functions, leaving out other recursion patterns.

In our approach, instead of guaranteeing totality at the expense of expressiveness,

we aim to reflect the partiality through types. For example, the type of unlinesF in

Example 3, ∀s. [L s String] → L s String , tells that the shape of a list cannot be

changed, while each list element is updatable. But this indication is not perfect. For

updatable data as permitted by its type, there may still be failures coming from

three sources:

• Non-linear use of updatable variables (by �).

• Lifting of non-total lenses (by � of lift �).

• Changed observation (by p of unliftM/unliftM2).

The first two cases are rather predictable, even though identifying the first case

would require some form of linearity analysis. For the last case, since the R monad

in Section 6.2 essentially records the performed observations, there is the possibility to

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

44 K. Matsuda and M. Wang

include diagnostic information when failure happens for improved understandability.

Notice that recursion itself does not affect updatability in our framework: if a

recursion does not terminate, it just means that no lens is constructed, rather than

one with a partial put.

9.4 Closedness of lifted combinators

In Section 6.1, we looked at the lifting of lens combinators (in contrast to lifting of

lenses) and mentioned that there is a closedness restriction on the argument of liftC,

which in some cases severely restricts the programming style.

A recent work by the authors aims to address this problem in a standalone

bidirectional language named HOBiT (Matsuda & Wang, 2018). In HOBiT, lens

combinators can be lifted to language constructs with binders, which have no

closedness restriction. To achieve this, it uses an explicit variable environment for

unlifting (which roughly speaking is the counterpart of the s in Ls a in this paper).

The explicit nature of the evironment opens it to complex manipulations, which are

required for removing the closedness restriction. But it also means that an embedded

implementation is no longer straightforward.

10 Conclusion

We have proposed a novel framework of applicative bidirectional programming,

which features the strengths of lenses (Foster et al., 2007, 2008; Bohannon

et al., 2008) and semantic bidirectionalization (Voigtländer, 2009a; Matsuda &

Wang, 2013, 2014; Wang & Najd, 2014). In our framework, one can construct

bidirectional transformations in an applicative style, almost in the same way as

in a usual functional language. The well-behavedness of the resulting bidirectional

transformations are guaranteed by construction. As a result, complex bidirectional

programs can be now designed and implemented with reasonable efforts.

A future step will be to extend the current ability to handle shape updates. It

is important to relax the restriction that only closed expressions can be unlifted to

enable more practical programming. A possible solution to this problem would be

to abstract certain kind of containers in addition to base-type values, which is likely

to lead to a more fine-grained treatment of lens combinators and shape updates.

Acknowledgments

We would like to thank Shin-ya Katsumata, Makoto Hamana, Kazuyuki Asada and

Patrik Jansson for their helpful comments on categorical discussions in this paper.

Especially, Shin-ya Katsumata and Makoto Hamana pointed out the relationship

from a preliminary version of our method to the Yoneda lemma. We would like to

thank Oleg Kiselyov for his informative comments on higher-order abstract syntax.

We also would like to thank the anonymous reviewers of this paper for their helpful

comments.

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 45

References

Bancilhon, F. & Spyratos, N. (1981) Update semantics of relational views. ACM Trans.

Database Dyst. 6(4), 557–575.

Bernardy, J.-P., Jansson, P. & Paterson, R. (2012) Proofs for free—Parametricity for dependent

types. J. Funct. Program. 22(2), 107–152.

Bird, R. S., Gibbons, J., Mehner, S., Voigtländer, J. & Schrijvers, T. (2013) Understanding

idiomatic traversals backwards and forwards. In Haskell, Shan, C.-C. (ed). ACM, pp. 25–36.

Bohannon, A., Foster, J. N., Pierce, B. C., Pilkiewicz, A. & Schmitt, A. (2008) Boomerang:

Resourceful lenses for string data. In POPL, Necula, G. C. & Wadler, P. (eds). ACM, pp.

407–419.

Church, A. (1940) A formulation of the simple theory of types. J. Symb. Log. 5(2), 56–68.

Davi, B. M. J., Cretin, J., Foster, N., Greenberg, M. & Pierce, B. C. (2010) Matching lenses:

Alignment and view update. In ICFP, September 27–29, 2010. Baltimore, Maryland, USA:

ACM.

Dayal, U. & Bernstein, P. A. (1982) On the correct translation of update operations on

relational views. ACM Trans. Database Syst. 7(3), 381–416.

Ellis, T. (2012) Category and lenses. Blog post [online]. Accessed October 17, 2014. Available at:

http://web.jaguarpaw.co.uk/∼tom/blog/posts/2012-09-30-category-and-lenses.
html

Fegaras, L. (2010) Propagating updates through XML views using lineage tracing. In ICDE,

Li, F., Moro, M. M., Ghandeharizadeh, S., Haritsa, J. R., Weikum, G., Carey, M. J., Casati,

F., Chang, E. Y., Manolescu, I., Mehrotra, S., Dayal, U. & Tsotras, V. J. (eds). IEEE, pp.

309–320.

Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C. & Schmitt, A. (2007) Combinators

for bidirectional tree transformations: A linguistic approach to the view-update problem.

ACM Trans. Program. Lang. Syst. 29(3).

Foster, J. N., Pilkiewicz, A. & Pierce, B. C. (2008) Quotient lenses. In ICFP, Hook, J. &

Thiemann, P. (eds). ACM, pp. 383–396.

Foster, N., Matsuda, K. & Voigtländer, J. (2010) Three complementary approaches to

bidirectional programming. In SSGIP, Gibbons, J. (ed), Lecture Notes in Computer Science,

vol. 7470. Springer, pp. 1–46.

Hayashi, Y., Liu, D., Emoto, K., Matsuda, K., Hu, Z. & Takeichi, M. (2007) A web service

architecture for bidirectional XML updating. In APWeb/WAIM, Dong, G., Lin, X., Wang,

W., Yang, Y. & Yu, J. X. (eds), Lecture Notes in Computer Science, vol. 4505. Springer,

pp. 721–732.

Hegner, S. J. (1990) Foundations of canonical update support for closed database views. In

ICDT, Abiteboul, S. & Kanellakis, P. C. (eds), Lecture Notes in Computer Science, vol.

470. Springer, pp. 422–436.

Hidaka, S., Hu, Z., Inaba, K., Kato, H., Matsuda, K. & Nakano, K. (2010) Bidirectionalizing

graph transformations. In ICFP, September 27–29, 2010. Baltimore, Maryland, USA: ACM.

Hofmann, M., Pierce, B. C. & Wagner, D. (2011) Symmetric lenses. In POPL, Ball, T. & Sagiv,

M. (eds). ACM, pp. 371–384.

Hu, Z., Mu, S.-C. & Takeichi, M. (2004) A programmable editor for developing structured

documents based on bidirectional transformations. In PEPM, Heintze, N. & Sestoft, P.

(eds), ACM, pp. 178–189.

Huet, G. P. & Lang, B. (1978) Proving and applying program transformations expressed with

second-order patterns. Acta Inf. 11, 31–55.

Jaskelioff, M. & O’Connor, R. (2015) A representation theorem for second-order functionals.

J. Funct. Program. 25(e13), 1–36.

Ko, H.-S., Zan, T. & Hu, Z. (2016) BIGUL: A formally verified core language for putback-

based bidirectional programming. In PEPM, January 20–22, 2016, Erwig, M. & Rompf, T.

(eds). St. Petersburg, FL, USA: ACM, pp. 61–72.

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

46 K. Matsuda and M. Wang

Lindley, S., Wadler, P. & Yallop, J. (2011) Idioms are oblivious, arrows are meticulous, monads

are promiscuous. Electr. Notes Theor. Comput. Sci. 229(5), 97–117.

Liu, D., Hu, Z. & Takeichi, M. (2007) Bidirectional interpretation of XQuery. In Proceedings

of the SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program

Manipulation, January 15–16, 2007, Ramalingam, G. & Visser, E. (eds). Nice, France:

ACM, pp. 21–30.

Mac Lane, S. (1998) Categories for the Working Mathematician, 2nd ed., Graduate Texts in

Mathematics, vol. 5. Springer.

Matsuda, K., Hu, Z., Nakano, K., Hamana, M. & Takeichi, M. (2007) Bidirectionalization

transformation based on automatic derivation of view complement functions. In ICFP,

Hinze, R. & Ramsey, N (eds). ACM, pp. 47–58.

Matsuda, K. & Wang, M. (2013) Bidirectionalization for free with runtime recording: Or,

a light-weight approach to the view-update problem. In PPDP, Peña, R. & Schrijvers, T.

(eds). ACM, pp. 297–308.

Matsuda, K. & Wang, M. (2014) “Bidirectionalization for free” for monomorphic transfor-

mations. Sci. Comput. Program. 111(1), 79–109. DOI: 10.1016/j.scico.2014.07.008.

Matsuda, K. & Wang, M. (2015) Applicative bidirectional programming with lenses. In ICFP,

September 1–3, 2015, Fisher, K. & Reppy, J. H. (eds). Vancouver, BC, Canada: ACM, pp.

62–74.

Matsuda, K. & Wang, M. (2018) HOBiT: Programming lenses without using lens combinators.

In ESOP, Ahmed, A. (ed). Lecture Notes in Computer Science, vol. 10801, Springer,

pp. 31–59.

McBride, C. & Paterson, R. (2008) Applicative programming with effects. J. Funct. Program.

18(1), 1–13.

Milewski, B. (2013) Lenses, Stores, and Yoneda. Blog post [online]. Accessed September

29, 2014. Available at: http://bartoszmilewski.com/2013/10/08/lenses-stores-and-

yoneda/

Miller, D. & Nadathur, G. (1987) A logic programming approach to manipulating formulas

and programs. In Proceedings of the 1987 Symposium on Logic Programming, August

31–September 4. San Francisco, California, USA: IEEE-CS, pp. 379–388.

Mu, S.-C., Hu, Z. & Takeichi, M. (2004) An algebraic approach to bi-directional updating.

In APLAS, Chin, W.-N. (ed), Lecture Notes in Computer Science, vol. 3302. Springer,

pp. 2–20.

O’Connor, R. (2011) Functor is to lens as applicative is to biplate: Introducing multiplate.

Corr abs/1103.2841. Accepted in WGP’11, but not included in its proceedings.

Pacheco, H., Hu, Z. & Fischer, S. (2014b) Monadic combinators for “putback” style

bidirectional programming. In PEPM, January 20–21, 2014. San Diego, California, USA:

ACM.

Pacheco, H., Zan, T. & Hu, Z. (2014a) BiFluX: A bidirectional functional update language

for XML. In Proceedings of the 16th International Symposium on Principles and Practice

of Declarative Programming, September 8–10, 2014, Chitil, O., King, A. & Danvy, O. (eds).

Kent, Canterbury, United Kingdom: ACM, pp. 147–158.

Paterson, R. (2001) A new notation for arrows. In ICFP, Pierce, B. C. (ed). ACM, pp. 229–240.

Paterson, R. (2012) Constructing applicative functors. In MPC, Gibbons, J. & Nogueira, P.

(eds), Lecture Notes in Computer Science, vol. 7342. Springer, pp. 300–323.

Pfenning, F. & Elliott, C. (1988) Higher-order abstract syntax. In PLDI, June 22–24, 1988,

Wexelblat, R. L. (ed). Atlanta, Georgia, USA: ACM, pp. 199–208.

Rajkumar, R., Lindley, S., Foster, N. & Cheney, J. (2013) Lenses for web data. Electron.

Commun. EASST 57.

Reynolds, J. C. (1983) Types, abstraction and parametric polymorphism. In Information

Processing, Mason, R. E. A. (ed). North-Holland: Elsevier Science Publishers B.V.,

pp. 513–523.

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 47

van Laarhoven, T. (2009) CPS based functional references. Blog post [online]. Available at:

http://www.twanvl.nl/blog/haskell/cps-functional-references.

Voigtländer, J. (2009a) Bidirectionalization for free! (pearl). In POPL, Shao, Z. & Pierce, B. C.

(eds). ACM, pp. 165–176.

Voigtländer, J. (2009b) Free theorems involving type constructor classes: Functional pearl. In

ICFP, Hutton, G. & Tolmach, A. P. (eds). ACM, pp. 173–184.

Voigtländer, J., Hu, Z., Matsuda, K. & Wang, M. (2010) Combining syntactic and semantic

bidirectionalization. In ICFP, September 27–29, 2010. Baltimore, Maryland, USA: ACM.

Voigtländer, J., Hu, Z., Matsuda, K. & Wang, M. (2013) Enhancing semantic

bidirectionalization via shape bidirectionalizer plug-ins. J. Funct. Program. 23(5), 515–551.

Vytiniotis, Dimitrios & Weirich, Stephanie. (2010) Parametricity, type equality, and higher-

order polymorphism. J. Funct. Program. 20(2), 175–210.

Wadler, P. (1989) Theorems for free! In FPCA ’89, pp. 347–359.

Wallace, M. & Runciman, C. (1999) Haskell and XML: Generic combinators or type-based

translation? In ICFP, Rémy, D. & Lee, P. (eds). ACM, pp. 148–159.

Wang, M., Gibbons, J., Matsuda, K. & Hu, Z. (2010) Gradual refinement: Blending pattern

matching with data abstraction. In MPC, Bolduc, C., Desharnais, J. & Ktari, B. (eds),

Lecture Notes in Computer Science, vol. 6120. Springer, pp. 397–425.

Wang, M., Gibbons, J., Matsuda, K. & Hu, Z. (2013) Refactoring pattern matching. Sci.

Comput. Program. 78(11), 2216–2242.

Wang, M., Gibbons, J. & Wu, N. (2011) Incremental updates for efficient bidirectional

transformations. In ICFP, Chakravarty, M. M. T., Hu, Z. & Danvy, O. (eds). ACM,

pp. 392–403.

Wang, M. & Najd, S. (2014) Semantic bidirectionalization revisited. In PEPM, January 20–21,

2014. San Diego, California, USA: ACM.

Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M. & Mei, H. (2007) Towards automatic model

synchronization from model transformations. In ASE, Stirewalt, R. E. K., Egyed, A. &

Fischer, B. (eds). ACM, pp. 164–173.

Yu, Y., Lin, Y., Hu, Z., Hidaka, S., Kato, H. & Montrieux, L. (2012) Maintaining invariant

traceability through bidirectional transformations. In ICSE, Glinz, M., Murphy, G. C. &

Pezzè, M. (eds). IEEE, pp. 540–550.

Appendix A. Proof of Lemma 1

The proof is based on free theorems (the standard binary version) (Reynolds, 1983;

Wadler, 1989; Voigtländer, 2009b).

The difficulty of the proof lies in the treatment of unlift. Usually, a proof based on

free theorems is done by encoding relationship between two arguments (e.g., � and

idL) of a polymorphic function to a relation, and then by using the fact that such

a polymorphic function preserves the relation. Here, in addition, we have to prove

that lift and unlift preserve the relation because f can use lift and unlift internally.

Our proof obligation for unlift is that two arbitrary polymorphic functions g1 and

g2 that preserve the relation satisfies that g1 idL = g2 idL. That is, it might seem that

the relation must contain the pair (�, idL) and must be diagonal at the same time,

which appears contradictory. Very roughly speaking, this difficulty comes from the

fact that we have to encode two different goals, f � = f idL ◦̂ � and g1 idL = g2 idL,

where f, g1 and g2 are of the same polymorphic type, to one relation. To overcome

the problem, we use the polymorphic nature of s and the fact that such a relation

can depend on the choice of s, which is the reason why our proof becomes tricky.

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

48 K. Matsuda and M. Wang

A.1 Free theorems (binary version)

We write R :: A1 ↔ A2 if R is a binary relation between A1 and A2. For relations

R :: A1 ↔ A2 and R′ :: B1 ↔ B2, we abuse the notation to write R → R′ :: (A1 →
B1) ↔ (A2 → B2) for the relation {(f1, f2) | ∀(x1, x2) ∈ R. (f1 x1, f2 x2) ∈ R′}, and

(R,R′) :: (A1, B1)↔ (A2, B2) for {((x1, y1), (x2, y2)) | (x1, x2) ∈ R, (y1, y2) ∈ R′}.
We introduce a (binary) relational interpretation �τ�2

ρ of types, where ρ is a mapping

from type variable to binary relations, as follows:

�a�2
ρ = ρ(a)

�B�2
ρ = {(e, e) | e :: B} if B is a base type

�T1 → T2�
2
ρ = �T1�

2
ρ → �T2�

2
ρ

�(T1, T2)�
2
ρ = (�T1�

2
ρ, �T2�

2
ρ)

�∀a.T �2
ρ =

{
(u, v)

∣∣∣ ∀R :: S1 ↔ S2. (uS1
, vS2

) ∈ �T �2
ρ[a�→R]

}

Here, ρ[a �→ R] is an extension of ρ with a �→ R. If ρ = ∅, we sometimes write �T �2

instead of �T �2
∅. Similarly to the unary case, we write �∀α.τ�2 as ∀R.F where F is the

interpretation �τ�2
{α�→R}. For a base type B, we also write B for �B�2.

Then, parametricity states that, for a closed term f of a closed type τ, (f, f) ∈ �τ�2

holds. Free theorems are theorems obtained by instantiating parametricity.

Next, we introduce the binary version of relational action (Voigtländer, 2009b).

Definition 6 ((Binary) relational action). For type constructors κ1 and κ2, F is called

a relational action between κ1 and κ2, denoted by F :: κ1 ↔ κ2, if F maps any relation

R :: τ1 ↔ τ2 for every pair of closed types τ1 and τ2 to FR :: κ1 τ1 ↔ κ2 τ2. �

Accordingly, the relational interpretations are extended as

�κ�2
ρ = ρ(κ)

�τ1 τ2�
2 = �τ1�

2
ρ �τ2�

2
ρ

�∀κ.τ�2 =
{

(u, v)
∣∣∣ ∀F : κ1 ↔ κ2. (uκ1

, vκ2
) ∈ �τ�2

ρ[κ �→F]

}

Parametricity holds also for this relational interpretation (Bernardy et al., 2012;

Vytiniotis & Weirich, 2010). Here, κ, κ1 and κ2 are type constructors of kind ∗ → ∗,
and thus the quantified F is a relational action. The notation of relational action

can be extended to type constructors of kinds ∗ → ∗ → ∗, ∗ → ∗ → ∗ → ∗ and so

on.

Also for binary relations R and S, we write Lens R S for (R → S,R → S → R).

The following lemma holds for Lens .

Lemma 4. For binary relations R, S and T, if (f1, f2) ∈ Lens R S and (g1, g2) ∈
Lens S T, then (g1 ◦̂ f1, g2 ◦̂ f2) ∈ Lens R T. �

A.2 Proof

Let us consider a function f of type ∀s.Lens s A → Lens s B in which Lens is

abstract. This means that we have a function h

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

Applicative bidirectional programming 49

∀�. (∀a b.Lens a b→ (∀s. � s a→ � s b))

→ (∀a b. (∀s. � s a→ � s b)→ Lens a b)

→ ∀s. � s A→ � s B

such that f = h lift unlift.

For functions of the type, we have the following free theorem.

Lemma 5 (A free theorem). Let f be a function of type ∀s.Lens s A → Lens s B in

which Lens is abstract. Suppose that F :: κ1 ↔ κ2 is a relational action satisfying

the following conditions:

• (lift, lift) ∈ ∀T.∀U.Lens T U→ (∀S.F S T → F S U).

• (unlift, unlift) ∈ ∀T.∀U.(∀S.F S T → F S U)→ Lens T U.

Then, (f, f) ∈ ∀S.F S A→ F S B . �

Let � :: Lens S1 S2 be a lens. Then, we define F as follows:

F (S : A1 ↔ A2) (R : B1 ↔ B2) =⎧⎪⎨
⎪⎩

{
(x1, x2)

∣∣∣∣ ∃(z1, z2) ∈ Lens S1 R.

(x1, x2) = (z1, z2 ◦̂ �)

}
if S = ∅ :: S1 ↔ S2

Lens S R otherwise

Notice that we do not require that F S R ⊆ Lens S R when S = ∅. Also, notice that

(�1, �2) ∈ Lens ∅ R for any l1 and l2 with appropriate types. The complication of F’s

definition comes from the two different contexts where f can be instantiated: (1) f

in the proof of f idL ◦̂ � = f �, and (2) f in the proof of f idL = f idL. Also, notice

that any pair of lenses (�1, �2) of appropriate types belongs to Lens ∅ R, because

∅ → R contains any pairs of functions of the giving types.

Assume that the required conditions in Lemma 5 are fulfilled. Then, by the lemma,

we have (f, f) ∈ F S A→ F S B for any S. Taking S1 as A, we have (idL, �) ∈ F ∅ A

because (idL, idL) ∈ F A A. Since (f, f) ∈ F ∅ A→ F ∅ B , we have (f idL, f �) ∈ F ∅ B .

Thus, there is a pair (z1, z2) that is related by the relation Lens A B satisfying

f idL = z1 and f � = z2 ◦̂ �. Since A and B are diagonal relations on A and B ,

respectively, A → B is also diagonal, and so does Lens A B . Since Lens A B is

diagonal, we have z1 = z2. Thus, we obtain f idL ◦̂ � = f �.

Case: (lift, lift) ∈ ∀T.∀U.Lens T U → (∀S.F S T → F S U). Let T :: A1 ↔ A2 and

U :: B1 ↔ B2 be relations. Let x1 :: Lens A1 B1 and x2 :: Lens A2 B2 be lenses. Let

S :: C1 ↔ C2 be a relation. Let (z1, z2) be lenses such that (z1, z2) ∈ F S T. Then, by

Lemma 4, we have (lift x1 z1, lift x2 z2) = (x1 ◦̂ z1, x2 ◦̂ z2) ∈ F S U.

Case: (unlift, unlift) ∈ ∀T.∀U.(∀S.F S T → F S U) → Lens T U. Let T :: A1 ↔ A2

and U :: B1 ↔ B2 be relations. Let g1 and g2 be functions satisfying (g1, g2) ::

∀S.F S T → F S U. Take S = T. Suppose T = ∅ :: S1 ↔ S2. Then, we trivially have

(g1 idL, g2 idL) ∈ Lens ∅ U. Recall that (�1, �2) ∈ Lens ∅ U for any �1 and �2 with

appropriate types. Suppose T 	= ∅ :: S1 ↔ S2. Then, we have (idL, idL) ∈ F T T and

thus (g1 idL, g2 idL) ∈ F T U. Since we have assumed T 	= ∅ :: S1 ↔ S2, we have

(g1 idL, g2 idL) ∈ Lens T U. �

https://doi.org/10.1017/S0956796818000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000096

