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At low Reynolds numbers, the flow through a pipe with a sudden expansion is
characterized by the localized occurrence of flow instabilities, with the formation of a
so-called turbulence puff. In the literature, physical experiments typically predict earlier
occurrence of turbulence than computational fluid dynamics simulations. However, the
behaviour of ‘natural’ transition to turbulence without perturbations, and the dependence
of transition to turbulence on perturbations, are not yet fully understood, particularly
for the simulations. The purpose of the present study is therefore to investigate this
flow, including possible sources of perturbation in numerical simulations, and to evaluate
their effect on transition to turbulence. Through the exploration of different flow rates,
numerical settings and inlet perturbation amplitudes, and by evaluating coarse and refined
simulations, insights into low-Reynolds-number transitional turbulent flows are obtained.
The turbulence kinetic energy budget of the turbulence puff or slug characteristic of
this flow is also evaluated. In conclusion, even when perturbations are not intentionally
added, there can still be significant sources of numerical perturbation and error that trigger
turbulence in simulations, but perturbations will need to be added in refined simulations
in order to produce turbulence. Finally, the results agree with the notion that there may not
be a scenario where the flow transitions naturally to turbulence without any perturbation.

Key words: computational methods, turbulence simulation

1. Introduction

Pipes with an expansion (figure 1) have flow features shared by many engineering
and biomedical applications, with recirculation and reattachment regions, and transition
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Figure 1. Axisymmetric schematic of the flow in a pipe with a sudden expansion.

between laminar and turbulent flow. Typical engineering applications cited include ramjets
and combustors (Sreenivasan & Strykowski 1983) and ventilation systems (Lukács & Vad
2021). Related biomedical examples include blood flow in arteries (Zmijanovic et al. 2017)
and air flow in the trachea (Brouns et al. 2007).

The turbulence puffs observed in pipes with a sudden expansion are different from those
in transitional flow in straight pipes, where the puff is formed then moves downstream with
the flow (Nishi et al. 2008), whereas in the pipe with an expansion, the puff can stabilize
and persist at a certain location downstream of the expansion, while still being surrounded
by laminar flow upstream and downstream.

Historically, experimental studies in pipes with an expansion (Back & Roschke 1972;
Sreenivasan & Strykowski 1983; Latornell & Pollard 1986; Pak, Cho & Choi 1990; Mullin
et al. 2009; Lebon et al. 2018b) have shown that, as flow rates are increased to inlet
Reynolds numbers Re of the order of 1000, the flow becomes asymmetric then breaks
down into an unsteady state, which is characterized by transition from a steady symmetric
laminar state at the inlet, to an unsteady asymmetric turbulent state some distance after the
expansion.

On the other hand, numerical studies (Sanmiguel-Rojas, del Pino & Gutiérrez-Montes
2010; Cliffe et al. 2012; Sanmiguel-Rojas & Mullin 2012; Selvam, Peixinho & Willis
2015, 2016; Nguyen et al. 2019) have typically required relatively higher flow rates, with
Re closer to 2000 and up to 5000, and/or the addition of numerical inlet perturbations in
order to observe the transition from laminar to turbulent flow. In addition, the position
where the asymmetry begins also occurs overall further downstream compared to the
physical experiments. The earlier occurrence of turbulence in the physical experiments,
in terms of both flow rate as well as position in the pipe downstream of the expansion,
can be explained by the fact that the numerical simulations are free of any so-called
imperfections or disturbances, which inevitably exist in the real world. These can be small
pipe wall scratches or defects, flow disturbances caused by the pump that moves the fluid,
or even vibrations from (un)related adjacent equipment. In numerical simulations, the
main disturbances observed are arbitrarily added perturbations (other than those arising
from numerical calculation errors), which are expected to represent to some degree these
real-world imperfections.

In the straight-pipe literature (i.e. without an expansion), the seminal experimental study
of Reynolds (1883) investigated the transition between the laminar and turbulent states,
and observed the remarkable sensitivity of transition to disturbances. More recently, the
studies of Meseguer & Trefethen (2003), Hof et al. (2006) and Peixinho & Mullin (2007),
as well as the review of Eckhardt et al. (2007), lead to the notion that, unless the numerical
simulation of a pipe is perturbed ‘enough’, it will not develop from the laminar state into
a turbulent one, regardless of the flow rate.
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Localized turbulence in a pipe with a sudden expansion

Conversely, the numerical simulations of Moallemi & Brinkerhoff (2018), for example,
did not require the addition of numerical inlet perturbations in order to observe turbulence.
Other numerical studies that did employ perturbations also found a critical or natural
transition point where, regardless of the manual addition of perturbations, increasing the
flow rate caused turbulence (Sanmiguel-Rojas et al. 2010; Sanmiguel-Rojas & Mullin
2012; Selvam et al. 2015, 2016). To the authors’ knowledge, this behaviour has not
been explained, except for the observation that there are background disturbances and
numerical noise that could cause this. Possible sources of disturbance other than the inlet
boundary condition could have been numerical errors, such as truncation and aliasing
errors, arising from the computational grid/mesh or from the numerical procedures
themselves. Such errors are expected always to be present in numerical simulations of
turbulence. More discussion about truncation and aliasing errors can be found in Ghosal
(1996) and Kravchenko & Moin (1997). This leads to the question of what, and to what
extent, different numerical parameters and methods in the simulation influence the onset
of turbulence. In this context, the present paper reports the results of an investigation
of the flow in a pipe with an expansion that specifically explores sources of numerical
perturbations in the simulations that can lead to transition to turbulence.

In this study, the numerical settings that were found to significantly influence the
transition across different flow rates were the time step and the grid sizes, which
are related, respectively, to the temporal and spatial resolution of computational fluid
dynamics (CFD) simulations. The influence of these as sources of numerical error and
perturbation are evaluated and compared against simple numerical perturbations added to
the inlet boundary condition. Centreline streamwise velocity and velocity fluctuations are
evaluated, in addition to reattachment lengths and the turbulence kinetic energy budget of
the puff characteristic of this flow. The results are also compared to literature experimental
and numerical studies.

2. Numerical methods and modelling

The simulations were run with a laminar Poiseuille flow inlet at bulk velocity (U)
equivalent to Reynolds numbers varying from 100 to 2500 (Re = Ud/ν) with a pipe
axisymmetric expansion ratio D/d = 2 (see figure 1). The streamwise lengths of the
computational domain used were Li = 10h and Lo = 200h, with further discussion on
these values presented in § 4. A three-dimensional (3-D) representation of the geometry
with the centreline along which variables were evaluated can be seen in figure 2.

The simulations were run using the CFD toolbox ‘OpenFOAM’, which is the most
widely used open-source CFD solver available, and has already been used for direct
numerical simulations (DNS) of a pipe with a sudden expansion, for example by
Sanmiguel-Rojas & Mullin (2012) and Moallemi & Brinkerhoff (2018). This solver is
based on the flux-conservative discretization method known as the finite-volume method,
which is used to approximate the Navier–Stokes partial differential equations as a matrix
of algebraic equations, through the divergence or Gauss’ theorem. Using Gibbs’ dyadic
notation, the incompressible continuity and Navier–Stokes equations are, respectively,

∇ · u = 0, (2.1)

∂u
∂t

+ ∇ · (uu) − ∇ · (ν∇u) = −∇p, (2.2)
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Figure 2. Grid G3: (a) frontal view of the inlet region shaded in darker colour and (b) side view of the
region around the sudden expansion. (c) The 3-D geometry and location of the centreline and the origin of
the coordinate axes.
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Figure 3. Distribution of grid element sizes for grid G1 in the (a) radial and (b) streamwise directions; dr and
dx indicate the element sizes in each respective direction, and R = D/2.

where t represents the time, u is the instantaneous velocity vector, ν is the kinematic
viscosity and p is the kinematic pressure. No turbulence closure modelling was added, but
instead the DNS approach was used for the present study.

The fluid domain was discretized into a computational grid composed of hexahedral
cells using ANSYS Meshing v194, with frontal and side views in figure 2. In total, six
different grids were used in the present study, with up to 14.6 million control volumes
or cells. Grid details are available in table 1, with the cylindrical coordinate system
(r, θ, x) transformed from the Cartesian system (x, y, z) using x as the cylindrical axis,
r =

√
y2 + z2 and θ = arctan( y/z). The distribution of the grid cell sizes in the radial

r and streamwise x directions can be seen in figure 3. When changing grid refinement,
the grids were refined or coarsened uniformly across the entire domain, maintaining the
same aspect ratios and element-to-element size ratios shown in figure 3. Aspect ratios were
below 10 and maintained across all grids, with ratios within 1 to 4 starting from the sudden
expansion region increasing up to 3 to 10 at the outlet boundary. The highest aspect ratios
correspond to where the elements are thinner in the r direction, r → R/2 and r → R, as
seen in figure 3(a).
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Localized turbulence in a pipe with a sudden expansion

Before After

Grid Control volumes nθ nr nx nr nx

G1 14 628 432 103 31 119 66 2315
G2 8 583 124 87 26 100 55 1929
G3 3 554 560 63 20 75 42 1430
G4 1 506 384 47 15 56 32 1059
G5 828 540 39 12 45 27 828
G6 643 104 35 11 43 24 785

Table 1. Total number of control volumes and number of control volumes in the cylindrical r, θ and x
directions, before and after the sudden step expansion, for each grid.

Over a hundred simulations were run for this study, and the simulations with the
finest grids took 2 to 3 months of computational time each using one compute node
with two Intel Xeon Gold 6148 processors, a total of 40 CPU physical cores in parallel
in a single node, available on the University of Saskatchewan’s Plato high-performance
computing cluster. The version 7 of OpenFOAM was compiled using GCC 5.4.0, with
solver parallelization through OpenMPI 2.1.1.

The PISO algorithm, originally proposed by Issa (1986), was used to solve the system
of equations. This is a non-iterative algorithm, adjusting pressure–velocity as a whole at
each stage to satisfy continuity and momentum simultaneously. The algorithm consists
of performing one predictor stage, followed by two or more corrector stages for each
time step, without additional outer iterations, without relaxation factors and without
gradient limiters, so that the solution of each time step is a legitimate approximation
to the differential equations. According to Issa (1986), using more than two corrector
stages is expected to result in higher than second-order temporal accuracy for the solution
of the pressure and velocity fields. After preliminary tests at Re = 2500 evaluating the
computational costs and precision of the simulations, a good compromise favouring
precision was found with five corrector stages (compared to two) and scaled residual
convergence criteria of 1 × 10−6 (compared to 1 × 10−8) for pressure and velocity.

Implicit second-order backward differencing was used to approximate the temporal
derivatives and second-order central differencing was used for the spatial derivatives.
The OpenFOAM generalized geometric–algebraic V-cycle multigrid linear solver with a
Gauss–Seidel smoother was used to solve the system of equations.

In order to avoid negatively influencing the consistency of the results, the initial
condition for all simulations at t = 0 for the fluid domain was the same, with the fluid
at rest with zero kinematic pressure and zero velocity. No-slip boundary conditions
were applied at the walls. The inlet boundary condition was the steady-state Poiseuille
velocity profile (with its characteristic shape schematized in figure 1), which is the
theoretical solution for steady-state laminar flow in a straight pipe, with flow rates varying
from Reynolds numbers 100 to 2500, as mentioned previously. At the outlet surface, an
advective or convective outflow boundary condition is applied, which is based on solving
the equation

∂u
∂t

+ (un · ∇)u = 0, (2.3)

where un is the advection velocity calculated from the flow rate normal to the outlet
boundary. This type of boundary condition, similar to the one used by Vittal Shenoy et al.
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Figure 4. Inlet boundary condition with Poiseuille profile and example shaded region indicating range of
possible fluctuations; instantaneous results sampled from the simulation with Re = 1500 and A = 5 % on
grid G4, and Ri = d/2.

(2019), with further discussion in Ol’shanskii & Staroverov (2000) and Hasan, Anwer &
Sanghi (2005), is used to minimize numerical oscillations or reflections of outgoing waves
and vortices, but is otherwise expected to behave the same as a zero-velocity-gradient
condition. The kinematic pressure at the outlet is calculated from the velocity considering
the dynamic pressure (i.e. |u|2/2).

When indicated, pseudo-random fluctuations with limited amplitudes were superimposed
onto the inlet Poiseuille velocity profile as a simple perturbation in every direction, updated
every time step, as follows:

u = uinlet + δ|uinlet|, (2.4)

δi = riA. (2.5)

Here uinlet is the specified inlet Poiseuille velocity vector, δ is the perturbation vector and
ri indicates randomly generated numbers uniformly distributed in the interval from −1 to
+1. The idea behind these fluctuations is for them to represent an effect comparable to
turbulence at the inlet, in a procedure similar to the one described by Zmijanovic et al.
(2017). Knowing that the root-mean-square (r.m.s.) of the velocity fluctuations caused by
this distribution is equal to the standard deviation of the distribution, an amplitude of
A = 1 % (percentage of the mean velocity, from −1 % to +1 %) will result in a turbulence
intensity of ≈0.6 % (r.m.s. velocity fluctuations divided by the mean velocity). Throughout
the simulations, perturbation amplitudes 0.001 % � A � 50 % were used for different Re.
An example visualization of these perturbations in the inlet velocity profile is given in
figure 4. Note that these perturbations can change the flow rate instantaneously, but will
not change the average flow rate.

The time-step sizes (�t) are the same for the entire grid and represented using
the Courant–Friedrichs–Lewy (CFL) number to non-dimensionalize them, which is
calculated, for each control volume or cell in the grid, as

CFL = �t
∑

f |uf · Sf |
2V

, (2.6)

935 A20-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

14
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.14


Localized turbulence in a pipe with a sudden expansion

where
∑

f indicates the sum over all faces, uf is the face velocity vector, Sf is the face
surface vector area and V is the cell volume. The maximum CFL value across the grid for
each simulation is reported here.

Similar to Wu & Moin (2008) and Moallemi & Brinkerhoff (2018), the start-up impact
of the unrealistic initial condition was minimized by starting the simulations with time
steps smaller than maximum CFL numbers of 0.05, and then slowly increasing them in
changes smaller than 20 % until hitting the simulations’ targeted maximum CFL.

The flow-through time τ = Uo/Lo was calculated based on the bulk velocity Uo along
the length of the pipe after the expansion Lo; see figure 1. The simulations were run
for at least one flow-through time before taking time averages, and the time averages
used the data from at least another flow-through simulation time. Time-averaged results
in this study therefore are from at least t/τ = 2, using data starting from t/τ = 1.
Instantaneous results were sampled at t/τ = 2, unless otherwise specified. For reference,
in this geometry, one flow-through time based on Lo is equivalent to 50 flow-through
times based on the outlet pipe diameter D. These times were found to be sufficient to
observe stable positioning of the turbulence puff or the development of fully laminar flow
(see e.g. figure 8 later). Some tests were run with time averaging up to t/τ = 10, but no
significant changes compared to t/τ = 2 were observed.

3. Results and discussion

Two main numerical settings were found to be capable of causing turbulent behaviour other
than the addition of numerical perturbations at the inlet: grid and time-step sizes. These
are respectively associated with the spatial and temporal discretization procedures that are
inherent to time-resolved CFD simulations. To the authors’ knowledge, the influence of
these parameters as perturbations on the turbulent behaviour of DNS has not yet been
documented. This section starts by discussing the general flow features observed in this
flow, followed by the impact of grid and time-step sizes on the turbulent behaviour of
the simulations, then examining the turbulence kinetic energy budget predicted by the
simulations. Finally, the effects of numerical inlet perturbations as well as a comparison
to literature results is presented.

3.1. Flow features
At the tested Reynolds numbers of 100 to 2500, without additional perturbations the
simulations would naturally result in the laminar steady solution as seen in figure 5(a),
whereas with sufficient perturbations they would result in a turbulent unsteady solution
as seen in figure 5(b). In the turbulent solution, the flow transitions from laminar flow
to turbulence at a position downstream from the sudden expansion, with the formation
of a turbulence cloud or puff. After the puff, the flow transitions back to laminar flow
again. This turbulence puff is stable at a position downstream of the expansion that does
not change significantly with time. Using the definitions for straight-pipe flow discussed
by Barkley (2016) and Song et al. (2017), this puff has a strong upstream front and
unstable dynamics in the sense that the flow has turbulent and laminar states that are
intermittent in position (i.e. there is the transition from laminar flow to turbulence then
back to laminar as the flow moves downstream). The flow with the turbulence puff in the
pipe with an expansion has a similar behaviour to the turbulence puff and to the turbulence
slug at low Re in straight pipes, as these have a weak downstream front, with subsequent
relaminarization of the flow. Still in comparison to the turbulence puff in a straight pipe,
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Figure 5. Instantaneous velocity contour results (a) without and (b) with inlet perturbations of A = 0.7 %,
using grid G4 and CFL = 0.5 at Re = 2500.
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Figure 6. Visualization of the cores of vortices at λ2 = −0.5 s−2 coloured by the vorticity magnitude
(a) without and (b) with inlet perturbations of A = 0.7 % using the finest grid G1 and maximum CFL = 0.5
at Re = 2500.

the main difference is that the puff in the pipe with an expansion is localized and does not
move with the flow, whereas the puff in the straight pipe moves downstream with the flow.

In figure 6 it is possible to visualize, through the λ2 criterion (Jeong & Hussain 1995),
the core of the vortices produced by this flow, coloured by the vorticity magnitude. There
is the formation of a toroidal or ring-like vortex immediately downstream of the sudden
expansion, which is observed regardless of turbulence or the presence of perturbations at
the inlet. This expansion vortex can also be observed in the results of Vittal Shenoy et al.
(2019). With inlet perturbations, in the laminar region right after the expansion there is
also the formation of a larger clockwise spiral or helical vortex that grows until the flow
breaks down into the turbulence puff with numerous smaller vortices. Further downstream
from the puff, the vortices elongate and assume shapes similar to hairpin or horseshoe
vortices, while also reducing in number as the flow relaminarizes.

Figure 7 shows more clearly the region around which the recirculation region ends
(i.e. where the flow reattaches), through velocity contour lines. At Re = 800, increased
perturbations and subsequent transition to turbulence did not change the streamwise length
of the recirculation region significantly, as seen in figure 7(a) for the laminar solution
compared to figure 7(b), where the inlet perturbations were sufficient to trigger turbulence.
Whereas in the laminar flow the recirculation region is thin and slowly tapers off, in the
turbulent flow the recirculation region is thicker and ends abruptly. Additional discussion
on figure 7, in the context of other simulations, is presented in § 3.5. Lastly, figure 7(b) also
depicts contours of the same large laminar clockwise helical vortex in the recirculation
region that was observed in figure 6(b).

Figure 8 shows instantaneous snapshots of centreline streamwise velocity plotted
as a function of the position x/h downstream of the expansion, with the time
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Flowy

x

(b)

(a)

Figure 7. Instantaneous streamwise velocity ux contour lines with inlet perturbation amplitudes of (a) A =
5 % and (b) A = 20 %, using grid G4 and maximum CFL = 0.5 at Re = 800. Blue lines correspond to velocity
below, red above and black equal to zero. This sectional view is from around x/h ≈ 45 to 75, with the y
dimension stretched to 150 %.

t non-dimensionalized by the flow-through time τ , for different inlet perturbation
amplitudes. Figure 8(a) shows the evolution of a simulation with a perturbation amplitude
A = 0.01 % that is not enough to sustain turbulence: initially, a turbulence puff is formed
near the expansion due to the start-up of this flow (as seen by the sharp drop as well as
the oscillations in the centreline velocity), but the puff is advected downstream as the
flow laminarizes behind it. After approximately one flow-through time, the flow is fully
laminar, resulting in a reattachment length of LR/h ≈ 133. In contrast, under the same
conditions but with A increased to 1 % as seen in figure 8(b), the turbulence puff now
stops moving and stabilizes in about half a flow-through time, resulting in a significantly
earlier reattachment length of LR/h ≈ 67. This behaviour with a steady state achieved
after approximately one flow-through time was observed for all turbulent and laminar
simulations presented in this paper.

3.2. Grid resolution
Figure 9 shows time-averaged streamwise velocity ux results for different grids along the
centreline downstream of the expansion, for simulations without inlet perturbations, at
Re = 2500. Similar to figure 8, it is possible to identify where the recirculation region
ends and where the turbulent puff is positioned through the sharp drop in the centreline
velocity as the flow moves downstream. The finer grids G4 to G1 all resulted in the same
fully laminar state in these simulations. When testing coarse grids G5 and G6, transition
to turbulence was observed, with the coarser grid G6 resulting in earlier transition to
turbulence than G5. The main source of the perturbation that triggers and sustains
turbulence here appears to be the numerical error from using coarser grids with larger
spatial discretization errors in the solution of the equations, resulting in simulations with
clear grid dependence when comparing G6 and G5 to the others.

On the other hand, when adding significant inlet perturbations, as seen in figure 10, all
grids result in the formation of a turbulence puff at a similar position downstream of the
expansion, and the grid dependence of the results is greatly reduced compared to without
perturbations or with a fully laminar inlet as in figure 9. Also note that between figures 9
and 10, the results of G6 without or with inlet perturbations are effectively the same,
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Figure 8. Evolution of the centreline instantaneous streamwise velocity ux with inlet perturbation amplitudes
of (a) 0.01 % and (b) 1 %, maximum CFL = 0.5 and grid G4 at Re = 1500. Flow from left to right (in regards
to x) and from bottom to top (in regards to t).
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Figure 9. Grid test centreline time-averaged streamwise velocity 〈ux〉 results without inlet perturbations, with
maximum CFL = 0.5 at Re = 2500. Flow from left to right.

indicating that a threshold of perturbation intensity was reached beyond which additional
perturbations do not make a significant difference in the reattachment length results.

Further discussion of the grid resolution and a comparison to the Kolmogorov length
scale is available in § 3.4.

3.3. Time-stepping resolution
A similar behaviour to the grid resolution is observed when testing different time steps.
Overall, figures 11 and 12 show that the coarser (larger) the time step, the closer the
location of the turbulence puff to the expansion or the earlier the transition from the
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Figure 10. Grid test centreline time-averaged streamwise velocity 〈ux〉 results with inlet perturbations at A =
0.7 %, with maximum CFL = 0.5 at Re = 2500. The laminar curve indicates the laminar solution obtained
when the simulation is unperturbed.
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Figure 11. Time-stepping results without inlet perturbations for centreline (a) time-averaged streamwise
velocity and (b) Reynolds streamwise normal stress, with grid G6 at Re = 2500.

laminar flow to turbulence. Under these conditions, for time steps with a maximum CFL
of 0.5 and higher, a threshold seems to be reached, as the results with a maximum CFL of
0.8 and 1.0 are very similar to those with a maximum CFL of 0.5. On the other hand, these
results also indicate that the time step may need to be smaller than CFL 0.1 in order to
obtain DNS that are independent of time-step sizes, as the results are still changing around
CFL 0.1.

Additionally, figure 11(b) shows the Reynolds streamwise normal stress results for these
under-resolved simulations, which is an indication of the intensity of the streamwise
velocity fluctuations along the centreline of the pipe. The peak value of the fluctuations
progressively decreases as the time-step size is decreased. This indicates reduced
turbulence intensity or a less disturbed simulation, and agrees with the notion that
numerical discretization errors are perturbing the simulation. This reduction in velocity
fluctuation peaks could also be explained by considering that smaller time steps will
more accurately capture the behaviour of the smaller flow scales, which are responsible
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Figure 12. Time-stepping centreline time-averaged streamwise velocity results with inlet perturbations of
A = 0.7 %, and grid G4 at Re = 2500.

for turbulence dissipation. In particular, the results for CFL 0.05 depict a less disturbed
simulation around x/h = 50, but the growth of the fluctuations is slightly faster than for
CFL 0.1 as seen by the inclination of the curve around x/h = 100, though the peak value of
fluctuations for CFL 0.05 is still smaller than for CFL 0.1. The change from the simulation
with CFL 0.1 to the one with CFL 0.05 is much smaller than that from CFL 0.2 to CFL 0.1,
even though the time-step size was halved in both cases, indicating that this may be a case
of oscillatory convergence. In other words, at this point the solution seems to be converging
with some oscillations to a time-step-independent solution.

The time-step sizes used here were significantly smaller than the Kolmogorov time
scales (ν/ε)1/2 in these simulations. For example, with grid G6 and CFL 0.8 at Re = 2500
(figure 11), the simulation time-step size was about five times smaller than the smallest
time scales calculated for each control volume in the grid. In comparison, the study of
Choi & Moin (1994) investigated the influence of the time-step size on plane channel flow
at a higher Re (based on the channel half-width) of 4200, with time steps corresponding
to CFL numbers up to 5 and closer to the size of the Kolmogorov time scale. The authors
observed that at such large time steps, the simulation would result in a laminar solution.
On the other hand, when using time steps of the order of CFL 0.5 to 3, a larger time step
would result in larger streamwise velocity and normal vorticity fluctuations, qualitatively
agreeing with the behaviour observed in the present study.

Lastly, as figure 12 shows, when adding inlet perturbations the time-stepping
dependence of the results is greatly reduced, which is very similar to what was seen for
grid dependence in figure 10. In general, there is surprisingly little difference between
the streamwise velocity time-averaged results of these simulations with perturbations and
different grids or time steps (figures 10 and 12, respectively), considering that the spatial
resolution changed by more than 20 times from G1 to G6 and the temporal resolution
changed by around 10 times from maximum CFL 0.1 to 1.0.

3.4. Turbulence kinetic energy budget
As mentioned previously, numerical discretization errors were observed to influence the
simulation in a similar manner to random perturbations. Additional understanding of the
behaviour observed in figures 9 to 12, with earlier transition to turbulence obtained when
using a coarser discretization in time and space, comes from consideration of the role of the
smaller-scale motions or eddies in the turbulence energy cascade. By using coarser grids
and larger time steps, the smaller-scale motions are not adequately captured. Knowing that
the smaller scales are associated with turbulence dissipation, it follows that, without the
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Localized turbulence in a pipe with a sudden expansion

smaller scales to counteract the growth of turbulence, the simulation more readily grows
into turbulence and maintains the turbulent state.

In order to substantiate this discussion, the cross-section-averaged turbulence kinetic
energy budget was evaluated along the length of the pipe downstream of the expansion.
Considering the Reynolds decomposition as u = 〈u〉 + u′, with the time-averaged velocity
〈u〉 and the velocity fluctuation u′, the equation of the mean turbulence kinetic energy
budget k = 1

2 〈u′ · u′〉 can be written as (Pope 2000, p. 125)

∂k
∂t

= P − 〈u〉 · ∇k − ε − ∇ · T , (3.1)

where P is the production of turbulence kinetic energy calculated as

P = −〈u′u′〉 : ∇〈u〉, (3.2)

where : indicates the scalar product (or double dot product) operation.
The dissipation of turbulence kinetic energy ε is calculated as

ε = 2ν〈s : s〉, (3.3)

where s is the fluctuating rate-of-strain tensor, given by

s = 1
2 (∇u′ + (∇u′)T). (3.4)

The term 〈u〉 · ∇k represents the mean-flow convective transport of k. Finally, the vector
T in the diffusion or turbulence transport term is calculated as

T = 1
2 〈(u′ · u′)u′〉 + 〈p′u′〉 − 2ν〈s · u′〉, (3.5)

where p′ is the fluctuating kinematic pressure (i.e. p′ = p − 〈p〉). To represent the
imbalance or residual of the turbulence kinetic energy budget, a term represented by E
is subtracted from the right-hand side of (3.1) to ensure that ∂k/∂t is equal to zero.

A ratio between the control volume edge length Δ and the Kolmogorov length scale η

was calculated for each control volume or cell in the grid, and will be represented as Δ/η.
Each control volume’s edge length is calculated by approximating the volume as a cube,
and the Kolmogorov length scale for each volume is calculated as

η =
(

ν3

ε

)1/4

. (3.6)

Figure 13 shows the cross-section-averaged results for Re = 800 of the turbulence
kinetic energy budget terms as a function of the location downstream of the expansion,
with results non-dimensionalized and scaled by multiplying them by 103d/U3. In
figure 13, laminar flow is coming from the left, and, after the turbulence puff, laminar
flow leaves to the right. At the upstream front, coming from laminar flow, there is first
a sharp increase in turbulence production. Similar to the turbulence slugs in a straight
pipe evaluated by Wygnanski & Champagne (1973) and Song et al. (2017), there is a
delay in the dissipation peak compared to the production peak. According to Wygnanski
& Champagne (1973), this behaviour is explained by considering that only the smallest
eddies contribute to the dissipation and therefore a finite time is required for the cascading
process to properly take effect.

After the peak of production, as the flow approaches the downstream front of the puff,
it moves back towards a laminar state with a decrease in both the turbulence production
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Figure 13. Turbulence kinetic energy budget results, with grid G4 and maximum CFL = 0.5 at Re = 800
with A = 20 %. Flow from left to right.

and the dissipation. In contrast, in the results of Song et al. (2017) for a slug at Re = 5000
(noting that the slug expands and moves with the flow whereas the puff here is fixed in size
and position), there are secondary production and dissipation peaks near the downstream
front of the slug. These downstream peaks are not seen at Re = 2000 in their slug results
(referencing this behaviour as a weak front) nor in any of the results obtained in the present
study for the puff in a pipe with an expansion for Re � 2500.

Still looking at figure 13, note that the term ∇ · T has a very small contribution
compared to the other terms, which is similar to what was observed for the turbulence
slugs by Song et al. (2017). In other words, turbulence diffusion is minimal in these cases
compared to its convective transport. The convective transport term −〈u〉 · ∇k also shows
that convection moves turbulence away from the upstream front towards the downstream
front of the turbulence puff.

Figure 14 presents an example of the turbulence kinetic energy budget calculated for
a simulation with significantly reduced discretization resolution compared to figure 13,
as the Reynolds number is increased from 800 to 2500 simultaneously with a grid
significantly coarser. Note that the coarse simulation for figure 14 did not require the
addition of inlet perturbations in order to produce turbulence, while the simulation in
figure 13 did. Two features are immediately evident in the coarse simulation compared to
the previous one: (i) the budget imbalance represented by E is significantly increased, and
(ii) the calculated resolved dissipation ε is reduced compared to the production P .

The reasons for the aforementioned behaviour are related: (i) the increased budget
imbalance E is due to the underestimated dissipation ε, and (ii) the dissipation is
underestimated due to the coarse discretization with large time steps and large grid cells
that cannot resolve the smaller scales, which are the ones responsible for turbulence
dissipation. In this case, the numerical dissipation from the simulation algorithms seems to
compensate for the failure to resolve the smallest scales, and contributes a sink equivalent
to the budget imbalance E. In other words, E comes from numerical or artificial dissipation
from the solver itself. If numerical dissipation did not compensate for the lack of resolved
dissipation, the simulation would probably diverge.

As a way to quantify the previous observations, the grid resolution was evaluated
through the ratio between each control volume’s edge length and the Kolmogorov length
scale, Δ/η, see (3.6). It is generally recommended that the grid spacing be of the same
order of magnitude as the Kolmogorov length scale for DNS, with Yeung & Pope (1989)
recommending Δ/η up to 2.0 and Shin, Sandberg & Richardson (2017) up to around 2.5.
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Figure 14. Coarse simulation results for the turbulence kinetic energy budget, with grid G6 and maximum
CFL = 0.8 at Re = 2500 without inlet perturbations.

Here, the simulation for figure 13 resulted in 0.06 � Δ/η � 2.2. In this simulation, an
estimated 92 % of the dissipation was resolved (i.e. calculated through ε) and 8 % of the
dissipation was associated with numerical dissipation (assuming and approximating that it
is equal to E). In contrast, the coarse simulation in figure 14 resulted in 0.08 � Δ/η � 9.5,
with around 40 % of the dissipation coming from ε, and 60 % from E. The simulation for
figure 13 was clearly of much higher resolution than the one for figure 14.

The approach of performing DNS with less than ideal resolution is not new. Komen
et al. (2017), for example, using effectively the same OpenFOAM second-order-accurate
numerical set-up that was used here and described previously, investigated fully developed
turbulent channel flow. Of note, in a highly resolved simulation that the authors referenced
as ‘quasi-DNS’, they also observed numerical dissipation responsible for 8 % of the
total dissipation, which is the same value as reported here for the simulation shown
in figure 13. For this simulation, Komen et al. (2017) report DNS-quality results in
comparison to reference DNS databases. The authors also compared the usage of even
coarser ‘under-resolved’ DNS with numerical dissipation estimated to account for 30 % to
60 % of the total dissipation, as an alternative to simulations with subgrid-scale modelling
in the large-eddy simulation approach, and found the differences to be within a few
percentage points. For related discussion on numerical dissipation and its effects on the
simulation, interested readers are referred to Zhou et al. (2014) and Cadieux, Sun &
Domaradzki (2017).

Figure 15 shows a simulation with intermediate resolution between those of figures 13
and 14 with 0.01 � Δ/η � 4.6. This resulted in an estimated 70 % of the dissipation
coming from ε, and 30 % from E, which also fits between the results of the other
simulations. Comparing figures 14 and 15, which are at the same Reynolds numbers, more
closely, the non-dimensionalized peak value of the turbulence production in figure 15 was
half that of figure 14. This is despite the fact that figure 15 had significant perturbations
added to the inlet, while figure 14 did not have any additional perturbations. This behaviour
shows how much of a disturbance the numerical errors from the discretization can cause
in the simulations, even triggering and sustaining turbulence by themselves, without the
additional perturbations being required for turbulent flow.

In summary, the main observations from this subsection are as follows: (i) Not resolving
the smaller flow scales by using coarser discretization procedures results in reduced
resolved dissipation ε compared to the production P . (ii) The simulation seemingly
compensates for the reduced resolved dissipation with increased numerical dissipation.

935 A20-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

14
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.14


R.D. Luciano, X.B. Chen and D.J. Bergstrom

35 40 45 50 55 60 65

–5

0

5

10

∂
k/

∂
t (

1
0

3
d/

U
3
)

–〈u〉 · ∇k
–ε

−∇ · T
–E

x/h

P

Figure 15. Turbulence kinetic energy budget results, with grid G1 and maximum CFL = 1.0 at Re = 2500
with A = 0.7 %.

(iii) Finally, coarser discretization procedures also result in numerical errors that are
a significant source of disturbance to the simulations, sufficient to trigger and sustain
turbulence by themselves.

3.5. Inlet perturbations
When testing increased amplitudes of the arbitrary perturbations added to the inlet
boundary of the simulation, the behaviour was similar to using coarser grids or time steps:
larger inlet perturbation amplitudes result in significantly earlier transition to turbulence,
as shown for example in figure 16. On the other hand, the influence of the amplitude of
the inlet perturbations for a lower Re of 800 is shown in figure 17, where a perturbation
amplitude of 5 % was not large enough to trigger turbulence. The velocity fluctuations
〈u′

xu′
x〉 in figure 17(b) for A = 5 % are not amplified downstream of the expansion and the

flow remains fully laminar, in contrast with the results for larger perturbation amplitudes
that were amplified and resulted in velocity fluctuation peaks and turbulence. For the
simulation with A = 10 %, although it did exhibit a significant amplification of its velocity
fluctuations, the streamwise velocity results in figure 17(a) are still closer to the fully
laminar results obtained with A = 5 %. In contrast, the streamwise velocity fluctuations
of the simulation with A = 20 % are amplified by almost four orders of magnitude from
x/h ≈ 25 to x/h ≈ 70. Lastly, throughout these simulations with different perturbation
amplitudes 5 % � A � 20 % at Re = 800, the time-averaged reattachment length did not
change significantly from the laminar state around LR/h ≈ 71.5 ± 3 (see also figure 7).

Figure 18 compares simulation results for different Reynolds numbers and perturbation
amplitudes to results from the literature. The vertical axis shows the reattachment length,
which represents the length of the recirculation region that is formed downstream of the
expansion (see figure 1), obtained for different inlet Reynolds numbers shown on the
horizontal axis. The experimental studies of Latornell & Pollard (1986) and Pak et al.
(1990) used a sudden expansion ratio of D/d = 2, while Back & Roschke (1972) used
D/d = 8/3. In the numerical study of Moallemi & Brinkerhoff (2018) and in the present
work, a ratio of D/d = 2 was used. Pak et al. (1990) also performed experiments using
D/d = 8/3, and the non-dimensional reattachment length results were effectively the same
as in their D/d = 2 experiments. The point where transition from laminar to turbulent
flow starts for each study is the Reynolds number (flow rate) where the reattachment
length peaks and begins to decrease. The steady laminar results for all studies, prior
to the development of turbulence, closely agree with each other. The differences in the
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Figure 16. Centreline time-averaged streamwise velocity profiles showing the influence of the inlet
perturbation amplitude with grid G4 and maximum CFL = 0.5 at Re = 2500.
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Figure 17. Centreline profiles for (a) time-averaged streamwise velocity and (b) Reynolds streamwise normal
stress, with different inlet perturbation amplitudes, grid G4 and maximum CFL = 0.5 at Re = 800.

turbulent results can be explained by considering that the authors had different background
disturbances or perturbation levels in their experiments (apart from other differences in the
experimental apparatus), therefore exhibiting differences in the transition to turbulence.
The numerical simulations of Moallemi & Brinkerhoff (2018) seem to be less subject
to disturbances having a later transition to turbulence (higher Re and higher reattachment
lengths) compared to the other studies. Note that the simulation results of the present study
using perturbations with A = 5 % closely agreed with the turbulent experimental results
of Latornell & Pollard (1986). The concave curve shape formed by the turbulent results of
the present study with constant A also agrees with the other studies.

A more general interpretation and extrapolation of the results shown in figure 18 is
schematized in figure 19. The shaded region indicates the multitude of possible turbulent
flow states that can be produced depending on the perturbations affecting the flow.
When sufficiently small or no perturbations are influencing the flow, it will result in
a reattachment length given by the laminar flow line. It is possible that there is a
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Figure 18. Reattachment length (LR) results for different Reynolds numbers (Re) and perturbation amplitudes
(A), compared to literature results.
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Figure 19. Suggested reattachment length chart with possible laminar and turbulent states.

lower boundary of Reynolds number below which flow is always laminar regardless of
perturbation amplitude. Note that, for this LR versus Re graph, it is also possible that
the turbulent solutions region collapses towards the laminar result, with the turbulent
simulations (provided with sufficiently small perturbations) resulting in essentially the
same reattachment length as the laminar solution. This was seen, for example, in the
behaviour of the simulations at Re = 800 (see the discussion for figures 7 and 17).
As the aforementioned boundary, where turbulent states do not exist or result in the
same reattachment length as the laminar ones, is likely to depend on the nature of the
perturbation being applied, and the form and existence of such a boundary is not yet clear,
it was not included in figure 19.
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Figure 20. Behaviour of simulation results for different Re and perturbation amplitudes close to the critical
point of transition: ‘laminar’ indicates fully laminar flow with the absence of a turbulence puff; ‘turbulent’
indicates the existence of a stable turbulence puff; and ‘unstable’ indicates simulations that had neither a stable
turbulence puff nor fully laminar flow.

Figure 20 presents the simulation results observed to be close to the critical point
of transition from laminar to turbulent flow, when evaluating the effect of the inlet
perturbation amplitude. A power-series fit of the results closer to the fully laminar limit
or threshold, above which increasing the perturbation amplitude was observed to disrupt
the laminar flow, was found to be approximately proportional to Re−9.6. In contrast,
Nguyen et al. (2019) tested by numerical simulations the amplitude of asymmetric vortex
perturbations at the inlet boundary and observed a scaling with Re−3 for 1000 � Re �
2000; Lebon et al. (2018a) tested by physical experiments a crosswise or transverse jet
injection at the wall before the expansion for 400 � Re � 1000, and observed a scaling
with Re−2.3; Sanmiguel-Rojas & Mullin (2012) numerically tested ‘tilt perturbations’
at the inlet, consisting of small perturbations added only to the transverse component
of the velocity vector with the other components unchanged, and observed a scaling
with Re−0.006 for 1300 � Re � 2600. Clearly, the Re scaling of the critical perturbation
amplitude seems to be significantly influenced by the characteristics of the perturbation
being evaluated, as well as the range of Re tested.

A turbulent solution state was not found at Re = 500 when testing perturbation
amplitudes up to 50 %, a result that qualitatively agrees with that of Lebon et al. (2018a),
who estimated a lower bound of Re around 400 below which only laminar flow would
be observed. Peixinho & Mullin (2007) also found a lower Re bound for turbulent pipe
flow without an expansion. It is possible that these lower bounds observed can result from
(i) not testing perturbations with amplitudes high enough, or (ii) limitations due to the
nature of the different types of perturbations tested. For reference, the power-law fit shown
in figure 20 indicates that perturbation amplitudes A > 100 % would be required in order
to observe turbulence for Re ≤ 500.
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Figure 21. Time-averaged inlet pipe velocity fluctuations for Re = 2500 and grid G5, without added inlet
perturbations.

3.6. Inlet disturbance behaviour
The previously discussed figures 11(b) and 17(b) showed the behaviour, downstream
from the expansion, of the disturbances through the centreline time-averaged velocity
fluctuations for simulations without and with added inlet perturbations, respectively. In
order to get a better understanding of how the disturbances behave before the expansion,
i.e. in the smaller-diameter inlet pipe, a different set of figures is presented.

Figure 21 shows the results of a simulation that did not require added inlet perturbations
in order to produce the turbulence puff. The flow disturbances, being evaluated as velocity
fluctuations, more specifically through the magnitude of the time-averaged Reynolds stress
tensor, are negligible at the inlet (x/h = −10), of the order of 10−14, as seen in figure 21.
This is expected, as this simulation did not have any added inlet perturbations, with a
laminar profile specified at the inlet. The only disturbance at the inlet is numerical noise,
likely to be due to truncation and rounding errors. However, as the flow moves through the
smaller-diameter inlet pipe, from x/h = −10 to −5, there is a significant growth of these
disturbances, reaching values around 10−4 at x/h = −5. Afterwards, there is no immediate
and significant change in the magnitude of the velocity fluctuations, from upstream of the
expansion, x/h = −5, to downstream, x/h = 5. However, as the flow moves downstream
further along the expanded region of the pipe, with the recirculation region along the walls
and an adverse pressure gradient, these disturbances eventually grow to a point where
turbulent flow is observed, with values of |〈u′u′〉| up to 10−1 at the reattachment length of
LR = x/h = 93.2.

On the other hand, looking at a simulation that did require perturbations in order to
produce turbulence in figure 22, a completely different behaviour is observed. Initially,
at the inlet (x/h = −10), the added inlet perturbations produce significant velocity
fluctuations with values around 10−2. However, as the flow moves through the inlet pipe to
x/h = −10, these decay to less than 10−4. It is interesting to note that, although there is no
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Figure 22. Time-averaged inlet pipe velocity fluctuations for Re = 1500, grid G4 and A = 5 %.

significant asymmetry in the fluctuations due to the perturbations at the inlet (x/h = −10),
there is a notable amount of asymmetry in the profiles closer to the expansion, as seen in
x/h = −5. This behaviour was not observed in the results in figure 21. Then, similar to
the previous result, as the flow moves downstream from the expansion, the disturbances
grow, and in the region where the flow reattaches, velocity fluctuations reach values around
10−1, significantly surpassing the magnitude of the fluctuations from the perturbations at
the inlet.

Figure 23 compares (a) a simulation with perturbations of A = 5 %, that were
not enough to observe turbulent flow, to (b) a simulation with perturbations of A =
20 %, where the perturbations were enough to trigger turbulence downstream from the
expansion. In this figure, it is immediately noticeable that reducing the inlet perturbation
amplitude from (b) A = 20 % to (a) A = 5 % causes all velocity fluctuations from x/h =
−10 to x/h = 5 to be reduced by at least one order of magnitude. On the other hand, the
shape of the curves from x/h = −10 to x/h = 5 is maintained when the perturbations are
reduced from A = 20 % to A = 5 %, with the same asymmetries. The inlet perturbations
of A = 5 % resulted in velocity fluctuations close to 10−2 at the inlet, but only laminar flow
was observed with fluctuations of less than 10−4 at x/h = 71.5, which is close to where
the flow reattaches. On the other hand, with inlet perturbations of A = 20 % (figure 23b),
fluctuation magnitudes closer to 10−1 are observed at the inlet, and downstream of the
expansion this resulted in the formation of the turbulence puff with a similar magnitude of
velocity fluctuations to the inlet, above 10−2.

Lastly, looking at figures 21–23 as a whole, the simulations that produced turbulence (all
except for figure 23a) had similar non-dimensional velocity fluctuation magnitudes close
to 10−1 at the reattachment region (which is also where the turbulence puff is located).
At these values, visible turbulence and chaotic flow are observed, whereas at fluctuation
magnitudes below around 10−3 the flow was effectively still laminar, steady and organized
(also see figures 7 and 17, which are under the same conditions as figure 23).

4. Limitations and suggestions for future work

In the present work, as mentioned previously, the length of the pipe after the expansion
was limited to Lo = 200h. In comparison, Moallemi & Brinkerhoff (2018) used a geometry
with Lo = 100h and Vittal Shenoy et al. (2019) one with Lo = 300h. Overall, in order to
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Figure 23. Time-averaged inlet pipe velocity fluctuations for Re = 800, grid G4, and (a) A = 5 % and
(b) A = 20 %.

reduce the required computational resources, the fluid domain sizes were limited in both a
spatial as well as a temporal sense. We believe these could be important for the simulations
closer to the point of global transition to turbulence (e.g. unstable simulations in figure 20),
where the behaviour is more strongly intermittent, though these were not the focus here.
At least for the simulations that produce a stable turbulence puff or that result in a fully
laminar profile, the geometry and time simulated were sufficient to observe fully developed
steady-state behaviour (see for example figure 8 and its discussion).

The length of the smaller-diameter inlet pipe can play an important role in the behaviour
of this system, but its influence was not evaluated here. A longer inlet pipe would cause
perturbations coming from the inlet boundary to decay further before they are amplified
by the sudden expansion (provided they are not enough to trigger turbulence in the inlet
pipe itself). In other words, a longer inlet pipe would further diminish the influence of
perturbations at the inlet. It follows that, if the length of the inlet pipe was longer, higher
inlet perturbations would be necessary in order to compensate for it and achieve the same
effect, and vice versa if it was shorter.

The simulations with different Reynolds numbers were performed using fixed grids.
Effectively, this is expected to result in higher spatial discretization errors for simulations
with higher Reynolds numbers when compared to simulations with the same grid but
lower Reynolds numbers. Here, the grid convergence was evaluated mainly for the highest
Reynolds number used of 2500 (see figures 9 and 10). Ideally, a separate grid convergence
study would be performed for each different Reynolds number being simulated, in order to
better evaluate the influence of grid refinement and numerical perturbations coming from
the spatial discretization errors. Additionally, in terms of grid dependence, only the global
resolution or refinement of the grid was evaluated here (i.e. size of the grid cells). However,
changes in the construction, such as in different cell polyhedron types, cell orientation,
aspect ratios and/or refinement regions, would probably also be relevant. Lastly, simulation
resolution was also evaluated using the calculated Kolmogorov length scales, as discussed
in § 3.4.

The sources of perturbation used here to trigger turbulence were not expected to
represent realistic behaviour, particularly considering that numerical error itself was the
only source of perturbation in some of the turbulent simulations. Even though the results
of the simulations overall agree with experimental and numerical results from the literature
(see for example figure 18), additional simulations using more realistic inlet perturbations,
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extracted from physical measurements or from precursor DNS, could complement these
results. In fact, the review of Mullin (2011) noted that drawing a connection between the
disturbances in experimental and numerical investigations was an open problem in the
literature, and to the best of our knowledge this is still an open problem today.

The mechanisms behind how numerical errors can grow as disturbances and result in
perturbations to the flow are unclear. It is possible that different perturbations lead to
turbulence through different mechanisms. In addition, a technique to quantify numerical
errors in terms of the equivalent perturbation amplitude that they cause could be useful in
this discussion.

5. Conclusions

The most relevant differences in the turbulent behaviour of simulations and real-world
physical experiments of pipes with a sudden expansion are associated with the fact that
the simulations typically do not take into account sufficient and equivalent sources of
perturbation in comparison to physical experiments. Physical experiments are susceptible
to various imperfections such as wall scratches or defects that can cause perturbations
and trigger transition to turbulence. In contrast, numerical simulations typically consider
perfect or ideal conditions with an absence of imperfections, apart from intrinsic numerical
errors. In the present paper, sources of numerical perturbation, including added inlet
perturbations as well as numerical discretization errors, were evaluated.

Observations include that, at lower Reynolds numbers, such as Re � 800, turbulent
states may not produce significantly different reattachment lengths compared to the
laminar solution, even though the recirculation region changes significantly and becomes
thicker before ending. At higher Reynolds numbers, such as Re � 1000, the recirculation
region ends and the flow reattaches significantly earlier in the turbulent states.
Additionally, the formation of a large helical vortex within the laminar recirculation region
downstream of the expansion was observed in the turbulent solutions.

Four main mechanisms were identified to interact with each other and influence
the flow in the simulation transitioning between laminar and turbulent states: (i) the
smaller eddies resolved by the simulation; (ii) numerical dissipation from the simulation
algorithms compensating for missing dissipation from unresolved smaller scales;
(iii) spatial and temporal discretization numerical errors that disturb the simulations; and
(iv) perturbations intentionally added to the simulations, with an example here of inlet
boundary perturbations.

In summary, mechanisms (i) and (ii) seem to work together to provide a sink to the
turbulence kinetic energy produced by the larger resolved scales, and mechanisms (iii)
and (iv) work together to perturb the simulation and trigger the production of turbulence
kinetic energy by the simulation. The influence of using coarser spatial and temporal
discretization procedures, which cause larger numerical errors (iii), was found to be similar
to the influence of adding or increasing the amplitude of inlet perturbations (iv). It is
expected that mechanisms (i), (ii) and (iii) will always be present in any turbulent CFD
simulation to some extent, regardless of how refined the resolution or methods of the
simulation are.

Overall, despite the arbitrary inlet perturbations and the numerical errors not being
expected to represent realistic sources of perturbation, the results are remarkably consistent
between themselves and with results from the literature. They also reinforce the notion
that the larger the Reynolds number, the more sensitive the simulation is to the
amplification of perturbations and numerical errors that can result in turbulence. Perhaps
counter-intuitively, this also implies that, in order to observe a laminar solution at
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higher Reynolds numbers, the simulation needs better numerics such as finer grids or
smaller time steps, otherwise numerical errors by themselves can cause perturbations
significant enough to be amplified and trigger turbulence in the flow, regardless of inlet
or other sources of perturbations. On the other hand, if using fine grids and time steps
to minimize numerical discretization errors, the addition of numerical perturbations of
sufficient amplitude is necessary in order to trigger turbulence. Lastly, this demonstrates
how reporting coarse simulations together with refined simulations can give insights into
the simulation due to the differences in numerical disturbances and flow scales resolved.

Finally, turbulence that seems to arise naturally in numerical simulations has probably
been triggered by the amplification of disturbances caused by numerical error. Perfectly
unperturbed simulations without any numerical errors or disturbances would result in
fully laminar solutions, regardless of Reynolds number. The main sources of numerical
disturbances identified in the present study were from spatial and temporal discretization
errors. Similar to how perfectly undisturbed physical experiments are not feasible,
numerical errors in the simulations can be minimized, but it is unlikely that they can be
completely eliminated. In other words, numerical errors are expected always to play a part
in the transition to turbulence of numerical simulations.
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