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Abstract

Let G be a connected, reductive algebraic group over a number field F and let E be an
algebraic representation of G∞. In this paper we describe the Eisenstein cohomology
Hq

Eis(G, E) of G below a certain degree qres in terms of Franke’s filtration of the space
of automorphic forms. This entails a description of the map Hq(mG, K,Π⊗ E)→
Hq

Eis(G, E), q < qres, for all automorphic representations Π of G(A) appearing in the
residual spectrum. Moreover, we show that below an easily computable degree qmax,
the space of Eisenstein cohomology Hq

Eis(G, E) is isomorphic to the cohomology of the
space of square-integrable, residual automorphic forms. We discuss some more conse-
quences of our result and apply it, in order to derive a result on the residual Eisenstein
cohomology of inner forms of GLn and the split classical groups of type Bn, Cn, Dn.
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Introduction

Let G be a connected, reductive linear algebraic group over an arbitrary number field F . The
cohomology of an arithmetic congruence subgroup Γ of G(F ) is isomorphic to a subspace of
the cohomology of the space of automorphic forms. This identification was conjectured by Borel
and Harder and first established in a conceptual way by Harder in the case of groups of rank
one in [Har75b, Har75a, Har87]. It is finally due to Franke, [Fra98], that such an identification
may also be given in the framework of an arbitrary connected, reductive algebraic group G.
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This makes it possible to study the cohomology of arithmetic congruence subgroups by means
of automorphic representation theory.

Rendering the above more precise, let E be a finite-dimensional irreducible algebraic
representation of G∞ and J the central ideal of U(g∞), which annihilates the contragredient
of E. For simplicity, we shall also assume that a fixed maximally F -split central torus AG of
G acts trivially on E. We view the representation E as a module under mG := g∞/aG. Given
this data, we denote by AJ (G) the space of automorphic forms on G(F )\G(A), which are
annihilated by some power of J . It is a (mG, K, G(Af ))-module, where we let K denote (the
connected component of the identity of) a maximal compact subgroup of G∞. Bearing in mind
what we said above, the object to be studied here is hence the G(Af )-module structure of the
relative Lie algebra cohomology

Hq(G, E) :=Hq(mG, K,AJ (G)⊗ E),

to be called the automorphic cohomology of G/F with respect to E.
As shown by Franke in [Fra98], every automorphic form on G can be written as the sum

of main values of derivatives of cuspidal or residual Eisenstein series, attached to the associate
classes of parabolic F -subgroups {P} of G. This finally amounts to a fine decomposition of the
(mG, K, G(Af ))-module AJ (G), obtained by Franke–Schwermer in [FS98], as

AJ (G)∼=
⊕
{P}

AJ ,{P}(G)∼=
⊕
{P}

⊕
ϕP

AJ ,{P},ϕP (G),

along the associate classes of parabolic F -subgroups {P} and the various cuspidal supports ϕP .
For details see [FS98] or § 2.3. The space of automorphic cohomology hence inherits from the
above decomposition of AJ (G) a decomposition as G(Af )-module:

Hq(G, E) =
⊕
{P}

⊕
ϕP

Hq(mG, K,AJ ,{P},ϕP (G)⊗ E).

As AJ ,{G}(G) consists of all cuspidal automorphic forms in AJ (G), one usually calls
Hq

cusp(G, E) :=Hq(mG, K,AJ ,{G}(G)⊗ E) the space of cuspidal cohomology, while, by the
nature of the spaces AJ ,{P}(G), P 6=G, it is justified to call

Hq
Eis(G, E) :=

⊕
{P}6={G}

⊕
ϕP

Hq(mG, K,AJ ,{P},ϕP (G)⊗ E)

the space of Eisenstein cohomology. In the case when all Eisenstein series attached to a
pair of supports ({P}, ϕP ) are holomorphic at the point of evaluation, the G(Af )-module
structure of the summand Hq(mG, K,AJ ,{P},ϕP (G)⊗ E) is well-understood by the work of
Schwermer [Sch83, Sch94] and Li–Schwermer [LS04].

Apart from this case, the actual contribution of an arbitrary pair of supports ({P}, ϕP ) to
Eisenstein cohomology, i.e., the G(Af )-module structure of Hq(mG, K,AJ ,{P},ϕP (G)⊗ E) for
arbitrary ({P}, ϕP ), is mostly unknown. This is reflected in the fact that for a square-integrable,
residual automorphic representation Π of G(A), only very little can be said about the behaviour
of the natural map

Hq(mG, K,Π⊗ E)→Hq
Eis(G, E).

Even less is known, when Π is an arbitrary automorphic representation supported in ({P}, ϕP ).
It is the aim of this article to use Franke’s filtration of the space of automorphic forms

AJ (G) in order to overcome this problem up to a certain degree qres. In other words, we want
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to describe the summand Hq(mG, K,AJ ,{P},ϕP (G)⊗ E) of Eisenstein cohomology in terms
of Franke’s filtration, where ({P}, ϕP ) is an arbitrary pair of supports of a reductive group
G and q < qres is smaller than a certain degree qres. This includes a description of the map
Hq(mG, K,Π⊗ E)→Hq

Eis(G, E), for Π a square-integrable residual automorphic representation
of G(A) and q < qres.

In [Fra98], Franke introduced a certain kind of filtration on AJ ,{P}(G), which lies at the core
of the decomposition of AJ (G) along the supports ({P}, ϕP ). This filtration depends on the
choice of a function T , which itself depends on the automorphic exponents of f ∈ AJ ,{P}(G).
More precisely, T has to have values in the non-negative integers, such that

T (λ)> T (θ) for λ ∈ θ − +aG0 , λ 6= θ.

For an exact definition of T , which is rather technical, we refer the reader to § 3.1.
If we let A(j)

J ,{P}(G) denote the jth filtration step of the summand AJ ,{P}(G), Franke showed
that each consecutive quotient is spanned by main values of the derivatives of cuspidal and
residual Eisenstein series. In more precise terms, he proved that in the present setup, every
consecutive quotient decomposes as a direct sum of representations, which are induced from a
space of square-integrable automorphic forms. These spaces of square-integrable automorphic
forms are indexed by certain triples t= (R, Λ, χ), where R is a standard parabolic F -subgroup
of G containing an element of {P}, Λ is a continuous character of AR(A), whose derivative is
compatible with the filtration, and χ dictates the infinitesimal character of the inducing module.

It is this important result which is the starting point of this article and which we are going
to use, in order to describe the Eisenstein cohomology of reductive groups in low degrees of
cohomology. First of all, we need to refine Franke’s filtration to the level of cuspidal supports
ϕP , i.e., define spaces A(j)

J ,{P},ϕP (G), and prove an analogue of his theorem on the decomposition
of the resulting consecutive quotients. This is done in Theorem 4, where we pass over from triples
t to quadruples (R,Π, ν, λ) of the form:
(1) R= LRNR, a standard parabolic F -subgroup of G containing a representative of {P};
(2) Π, a unitary discrete series automorphic representation of LR(A) with cuspidal support

determined by ϕP , spanned by iterated residues of Eisenstein series at the point ν ∈ ǎRP,C;

(3) λ ∈ ǎR,C such that <e(λ) ∈ ǎG+
R and such that λ+ ν + χπ̃ is annihilated by J .

We let M (j)
J ,{P},ϕP be the set of all quadruples (R,Π, ν, λ), for which λ contributes to the jth

filtration step. This is a technical condition, made precise in § 3.2, to which we also refer the
reader for all details left out here. We obtain the following result, which takes into account the
cuspidal support ϕP , cf. Theorem 4.

Theorem. For all j > 0, there is an isomorphism of (mG, K, G(Af ))-modules

A(j)
J ,{P},ϕP (G)/A(j+1)

J ,{P},ϕP (G)∼=
⊕

(R,Π,ν,λ)∈M (j)
J ,{P},ϕP

IR(A)[Π⊗ S(ǎGR,C), λ]m(Π),

where m(Π) denotes the finite multiplicity of Π in the intersection of the discrete spectrum of
LR(A) and AJ ,{P∩LR},ϕP (LR).

Observe that the filtration of AJ ,{P}(G) is of finite length. We let m=m({P}) be its length,
which we may assume to have minimized by an appropriate choice of T , see § 3.1.

As a next step, we need to establish a certain purity or rigidity result, see Proposition 10,
on the possible values of −wv(µv + ρv)|aP,v∩mG as v runs through the Archimedean places of F .
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(Here, µ= (µv)v∈S∞ is the highest weight of E, w = (wv)v∈S∞ is a Kostant representative of a
parabolic R⊇ P , and ρ= (ρv)v∈S∞ denotes the half sum of positive roots.) Such a result was
already proved by Harder for G= GL2/F , see [Har87], and later on his arguments were used in
Grbac–Grobner [GG13] in the case of G= Sp4 over a totally real field. Here, we are going to use
Clozel’s ‘Lemme de pureté’, see [Clo90], in order to obtain a general result.

This rigidity result, which is based on a rather intricate analysis, carried out in § 5, implies
a restriction on the length of the Kostant representatives, which one needs to consider, in
order to obtain a valid quadruple (R,Π, ν, λ) ∈M (j)

J ,{P},ϕP , cf. Proposition 12. This finally gives
way to the definition of the above mentioned bound qres. It is the minimum over all quadruples
(R,Π, ν, λ) ∈M (j)

J ,{P},ϕP , 0 6 j < m, of the values∑
v∈S∞

(⌈
1
2

dimR NR(Fv)
⌉

+m(LR,v,Πv)
)
,

where m(LR,v,Πv) is the minimal degree in which Πv has non-zero cohomology. For a more
precise definition of qres, we refer to § 6.1.

The main result of this paper is the following main theorem.

Main Theorem. Let G be a connected, reductive group over a number field F and let E be an
irreducible, finite-dimensional, algebraic representation of G∞ on a complex vector space. Let
{P} be an associate class of proper parabolic F -subgroups of G and let ϕP be an associate
class of cuspidal automorphic representations of LP (A). Let m=m({P}) be the length of
the filtration of AJ ,{P}(G). Then, the map in cohomology, induced from the natural inclusion

A(m)
J ,{P},ϕP (G) ↪→AJ ,{P},ϕP (G), is an isomorphism of G(Af )-modules

Hq(mG, K,A(m)
J ,{P},ϕP (G)⊗ E)

∼=
EisqJ ,{P},ϕP

// Hq(mG, K,AJ ,{P},ϕP (G)⊗ E)

for all degrees 0 6 q < qres.

In other words, the Eisenstein cohomology supported in ({P}, ϕP ) is entirely given by the
(mG, K)-cohomology of the mth filtration step of AJ ,{P},ϕP in all degrees 0 6 q < qres.

Observe that as a consequence, cf. Corollary 16, the Eisenstein cohomology supported in
({P}, ϕP ) has a direct sum decomposition

Hq(mG, K,AJ ,{P},ϕP (G)⊗ E)∼=
⊕

(R,Π,ν,λ)∈M (m)
J ,{P},ϕP

Hq(mG, K, IR(A)[Π⊗ S(ǎGR,C), λ]⊗ E)m(Π),

for all q < qres. Hence, the following corollary, which deals with the contribution of a square-
integrable, residual automorphic representation Π to Eisenstein cohomology, follows immediately
from our main theorem.

Corollary. Let G be a connected, reductive group over a number field F and let E be an
irreducible, finite-dimensional, algebraic representation of G∞ on a complex vector space. Let
{P} be an associate class of proper parabolic F -subgroups of G and let ϕP be an associate
class of cuspidal automorphic representations of LP (A). Let Π be a square-integrable, residual
automorphic representation of G(A) with cuspidal support π ∈ ϕP , spanned by iterated residues
of Eisenstein series at a point ν ∈ ǎGP,C, for which ν + χπ̃ is annihilated by J . Let m(Π) be its finite
multiplicity in the intersection of the residual spectrum of G(A) and the summand AJ ,{P},ϕP (G).
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Then, the map in cohomology

Hq(mG, K,Π⊗ E)m(Π) // Hq(mG, K,AJ ,{P},ϕP (G)⊗ E),

induced from the natural inclusion Πm(Π) ↪→AJ ,{P},ϕP (G), is injective in all degrees 0 6 q < qres.

In § 7, we analyze the consequences of our main theorem more closely and comment on its
interplay with some results on Eisenstein cohomology in the literature.

First, we discuss the nature of the bound qres. In § 7.1 we show that one may always replace
the rather involved bound qres by the weaker and easily computable constant

qmax := min
R maximal
R⊇P

(∑
v∈S∞

⌈
1
2

dimR NR(Fv)
⌉)

,

whose calculation does not invoke any quadruples and which already turns out to be a valuable
bound in many cases. Moreover, underlining the profitableness of qmax, we show the following
theorem, which says that below qmax, the cohomology of the space of square-integrable, residual
automorphic forms exhausts the full space of Eisenstein cohomology of a reductive group.

Theorem. Let G be a connected, reductive group over a number field F and let E be an
irreducible, finite-dimensional, algebraic representation of G∞ on a complex vector space. Let
{P} be an associate class of proper parabolic F -subgroups of G and let ϕP be an associate class
of cuspidal automorphic representations of LP (A). Let L2

J ,{P},ϕP (G) be the space of square-

integrable (and hence residual) automorphic forms in AJ ,{P},ϕP (G). Then, the natural inclusion
L2
J ,{P},ϕP (G) ↪→AJ ,{P},ϕP (G) induces an isomorphism of G(Af )-modules

Hq(mG, K, L
2
J ,{P},ϕP (G)⊗ E)

∼= // Hq(mG, K,AJ ,{P},ϕP (G)⊗ E)

for all degrees 0 6 q < qmax.

We refer to Theorem 18 for this fact and to Theorem 24 for families of examples, showing
the use of qmax in the case of the split classical groups.

Further, we show that qres is best possible. This is meant in the sense, that there is a choice
of a reductive group G/F , a coefficient system E and of a pair of supports ({P}, ϕP ), such that
EisqJ ,{P},ϕP is not an isomorphism for q = qres. We give an example in § 7.1.2: one may simply
take G= SL2 /Q, E = C, P =B and ϕB = {1T (A)}.

In § 7.2, we show that our main theorem and its corollary provide a certain generalization as
well as a refinement of a recent result of Rohlfs–Speh, cf. [RS11]. There they show that certain
square-integrable, residual automorphic representations Π have a non-trivial contribution to
Hq1

Eis(G, C), for q1 the minimal cohomological degree of Π. In contrast, our main theorem may
be applied to all square-integrable, residual automorphic representations Π of a reductive group
G/F and it says that Hq(mG, K,Π⊗ E) even injects into Hq

Eis(G, E) in all degrees 0 6 q < qres
with its full multiplicity m(Π) in L2

J ,{P},ϕP (G). Moreover, our coefficient module E does not
need to be the trivial representation. Hence, we obtain a refined version of [RS11], if q1 < qres.

Next we recall a vanishing result for Hq
Eis(G, E), proved by Li–Schwermer, [LS04]. They show

that if E is of regular highest weight, then Hq
Eis(G, E) = 0 in all degrees 0 6 q < q0(G(R)). If one

adapts the proof of our main theorem to regular coefficients, then one obtains an alternative
approach to the theorem of Li–Schwermer, see § 7.3. Indeed, our main theorem may be viewed
as a generalization of a weak version of Li–Schwermer’s result, applying also to non-regular
coefficient modules E. This is made precise in Theorem 20.
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In § 7.4, we discuss the interplay of our Corollary 17, which describes the contribution
of square-integrable, residual automorphic representations Π to Hq

Eis(G, E) for q < qres, with
Franke’s description of the contribution of 1G(A) to H∗Eis(G, C), given in [Fra08]. We show that our
corollary, when applied to Π = 1G(A), is compatible with Franke’s result. In fact, they coincide for
the range of degrees considered. Therefore, our main theorem may also be seen as an independent
way to improve Borel’s classic result on the image of Hq(mG, K, 1G(A))→Hq

Eis(G, C), [Bor74].
In the last two sections, we apply our main theorem to certain families of reductive groups,

in order to give some examples. In § 8, we consider the contribution of residual automorphic
representations to the Eisenstein cohomology of inner forms of GLn over any number field. That
is, we consider this question for G= GL′n, n> 1, by which we denote the general linear group over
a central division-algebra D over F . In this case, the associate classes of parabolic F -subgroups P
of G are indexed by partitions [n1, . . . , nk] of n=

∑
ni. In the special case that all k summands

ni are equal, we simply write P = Pk. Using the recent classification of the residual spectrum
of GL′n(A), see [BR10], in terms of generalized Mœglin–Waldspurger quotients MW ′(ρ′, k), we
obtain the following result, see Theorem 22.

Theorem. Let G= GL′n, n> 1, and let d> 1 be the index of D over F . Let {P}= {P[n1,...,nk]}
be an associate class of proper parabolic F -subgroups and ϕP an associate class of cuspidal
automorphic representations π of L(A) = L[n1,...,nk](A). If either {P} 6= {Pk} or π �⊗ki=1ρ

′,
then there is no residual automorphic representation Π ↪→ L2

J ,{P},ϕP (G) of G(A) supported

by ({P}, ϕP ). If {P}= {Pk} and π ∼=⊗ki=1ρ
′, then the representation Π =MW ′(ρ′, k) appears

precisely once in the residual spectrum of G(A) and the map in cohomology

Hq(mG, K,Π⊗ E) // Hq(mG, K,AJ ,{P},ϕP (G)⊗ E),

induced from the natural inclusion Π ↪→AJ ,{P},ϕP (G), is injective in all degrees

0 6 q <
∑
v∈S∞

v complex

d2(k − 1)
n2

k2
+
∑
v∈S∞
v real

⌈
d2(k − 1)

n2

2k2

⌉
.

If d= 1 and k = 2, i.e., if G= GLn/F is the split general linear group over F and P is the
self-associate maximal parabolic, then this bound can be improved to

0 6 q <
∑
v∈S∞

v complex

1
2

(n2 − n) +
∑
v∈S∞
v real

n2

4
.

In the particular case of the split general linear group, the result is complementary to
Franke–Schwermer, [FS98]. There the authors considered residual Eisenstein cohomology classes
attached to maximal parabolic subgroups of GLn/Q and proved that for P self-associate,
Hq(mG, K, L

2
J ,{P},ϕP (G)) maps surjectively onto the summand Hq(mG, K,AJ ,{P},ϕP (G)) in

degrees q < n2/4 + dn/4e. Here, for q < n2/4 we also prove injectivity.
In § 9, we consider the case of the split classical groups Gn = SO2n+1, Sp2n, SO2n over F =Q

and P a maximal parabolic subgroup. For split classical groups of Q-rank n, the standard
maximal parabolic Q-subgroups are indexed by the simple roots αk, 1 6 k 6 n. We obtain the
following result, see Theorem 24.

Theorem. Let G=Gn be a Q-split classical group of Cartan type Bn, Cn or Dn, i.e., either
the Q-split symplectic or special orthogonal group of Q-rank n. Let P = Pk, 1 6 k 6 n, be the
standard maximal parabolic Q-subgroup of G corresponding to the kth simple root and let {Pk}
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be the so-defined associate class of parabolic Q-subgroups. (Here we leave out the case k = n− 1,
Gn = SO2n.) If ϕPk is an associate class of cuspidal automorphic representations of Lk(A), then
there is an isomorphism of G(Af )-modules

Hq(g, K, L2
J ,{Pk},ϕPk

(G)⊗ E)
∼= // Hq(g, K,AJ ,{Pk},ϕPk (G)⊗ E),

for all degrees 0 6 q < 1
2((n− k)(n− k + 3)/2 + b(n− k)/2c) + q(Gn, k), where

q(Gn, k) =


⌈
k

(
n− 3k + 1

4

)⌉
if Gn = SO2n⌈

k

(
n− 3k − 1

4

)⌉
if Gn = SO2n+1, Sp2n.

In the case of G= SO2n+1 respectively Sp2n, the latter theorem is complementary to the
results in Gotsbacher–Grobner [GG12] respectively Grbac–Schwermer [GS11]. In these references,
necessary conditions for non-trivial residual Eisenstein cohomology classes, stemming from
globally generic cuspidal automorphic representations of maximal Levi subgroups, were given.
Conversely, the conditions provided here are sufficient for the existence of such classes. Moreover,
in the range of degrees given by the above theorem, it is shown that these residual Eisenstein
cohomology classes exhaust the full space Hq(g, K,AJ ,{Pk},ϕPk (G)⊗ E). Also, the condition of
global genericity does not enter the present assumptions.

1. Notation and basic assumptions

1.1 Number fields
We let F be an algebraic number field. Its set of places is denoted S = S∞ ∪ Sf , where S∞ stands
for the set of Archimedean places and Sf is the set of non-Archimedean places. The ring of adeles
of F is denoted A, the subspace of finite adeles is denoted Af .

1.2 Algebraic groups
In this paper, G is a connected, reductive linear algebraic group over a number field F . We assume
to have fixed a minimal parabolic F -subgroup P0 with Levi decomposition P0 = L0N0 and let A0

be the maximal F -split torus in the center ZL0 of L0. This choice defines the standard parabolic
F -subgroups P with Levi decomposition P = LPNP , where LP ⊇ L0 and NP ⊆N0. We let AP
be the maximal F -split torus in the center ZLP of LP , satisfying AP ⊆A0. If it is clear from the
context, we will also drop the subscript ‘P ’. We put ǎP :=X∗(AP )⊗Z R and aP :=X∗(AP )⊗Z R,
where X∗ (respectively X∗) denotes the group of F -rational characters (respectively co-
characters). These real Lie algebras are in natural duality to each other. We denote by 〈·, ·〉 the
pairing between aP and ǎP . The inclusion AP ⊆A0 (respectively the restriction to P ) defines
aP → a0 (respectively ǎP → ǎ0), which gives rise to direct sum decompositions a0 = aP ⊕ aP0 and
ǎ0 = ǎP ⊕ ǎP0 . We let a

Q
P := aP ∩ a

Q
0 and ǎ

Q
P := ǎP ∩ ǎ

Q
0 for parabolic F -subgroups Q and P .

Furthermore, we set ǎP,C := ǎP ⊗R C and aP,C := aP ⊗R C. Then the analogous assertions hold
for these complex Lie algebras. We denote by HP : LP (A)→ aP,C the standard Harish-Chandra
height function, cf. [Fra98, p. 185]. The group LP (A)1 := kerHP =

⋂
χ∈X∗(LP ) ker(‖χ‖A), ‖ · ‖A

the adelic norm, admits a direct complement AR
P
∼= Rdim aP

+ in LP (A) whose Lie algebra is
isomorphic to aP . With respect to a maximal compact subgroup KA ⊆G(A) in good position,
cf. [MW95, I.1.4], we obtain an extension HP :G(A)→ aP,C to all of G(A). The group P acts on
NP by the adjoint representation. The weights of this action with respect to the torus AP are
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denoted ∆(P, AP ) and ρP denotes the half sum of these weights, counted with multiplicity. We
will not distinguish between ρP and its derivative, so we may also view ρP as an element of aP .
In particular, ∆(P0, A0) defines a choice of positive F -roots of G. With respect to this choice,
we shall use the notation ǎG+

P and aG+
P (respectively +ǎGP and +aGP ) for the open positive Weyl

chambers in ǎGP and aGP (respectively the open positive cones dual to them). Overlining one of
these cones denotes its topological closure.

1.3 Lie groups

We put G∞ :=RF/Q(G)(R), where RF/Q denotes the restriction of scalars from F to Q. We
shall also write Gv :=G(Fv), v ∈ S∞ some Archimedean place. The analogous notation is used
for groups different from G. Lie algebras of real Lie groups are denoted by the same but
lower case gothic letter, e.g., g∞ = Lie(G∞) or aP,v = Lie(AP,v). The Lie algebra aP of the
connected Lie group AR

P is viewed as being diagonally embedded into aP,∞. We let mL :=
lP,∞/aP = Lie(LP (A)1 ∩ LP,∞) and denote by Z(g) the center of the universal enveloping algebra
U(g) of g∞,C.

Let K∞ ⊂G∞ be a maximal compact subgroup (the Archimedean factor of the maximal
compact subgroup KA of G(A) in good position). Then K∞ has trivial intersection with
AR
G (but might not have trivial intersection with AG,∞). For any open subgroup K ⊆

K∞, with K◦∞ ⊆K ⊆K∞, one may recover the (mG, K)-cohomology functor by taking the
K/K◦∞-invariants in (mG, K

◦
∞)-cohomology: one has Hq(mG, K, ·) =Hq(mG, K

◦
∞, ·)K/K

◦
∞ , see

[BW80, I.6.2]. We will hence focus on (mG, K
◦
∞)-cohomology in this paper and set once and

for all K :=K◦∞. Observe that this choice of a compact subgroup of G∞ is in accordance with
Franke [Fra98, p. 184]. We refer the reader to Borel–Wallach [BW80], I, for the basic facts and
notations concerning (mG, K)-cohomology. For any Lie subgroup H of G∞, we let KH :=K ∩H.

Let h∞ be a Cartan subalgebra of g∞ that contains a0,∞ (and hence all aP,∞, aP,v and
aP ). The choice of positivity on the set of F -roots of G is extended to a choice of positivity
on the set of absolute roots ∆(g∞,C, h∞,C). The half sum of the positive absolute roots
is denoted ρ= (ρv)v∈S∞ ∈ ȟ∞. In this paper, we always let E = Eµ be a finite-dimensional
irreducible algebraic representation of G∞ on a complex vector space, given by its highest weight
µ= (µv)v∈S∞ ∈ ȟ∞. As G∞ is viewed as a real Lie group, µv has two coordinate vectors µιv and
µῑv at a complex place v ∈ S∞, which correspond to the complex embedding ιv : Fv ↪→ C and its
complex conjugate ῑv. We will assume that AR

G (and so aG) acts trivially on E. There is hence
no difference between the (g∞, K)-module and the (mG, K)-module defined by E.

1.4 Weyl groups

For the various sets of roots (∆(g∞,C, h∞,C), ∆(gv,C, hv,C) . . .), we define the associated
Weyl groups (W (g∞,C, h∞,C), W (gv,C, hv,C) . . .) as the groups generated by all reflections
corresponding to the elements in the defining root system. Let v ∈ S∞ be an Archimedean place
and Pv = P (Fv). The set of Kostant representatives WPv is the set of all elements w of the Weyl
group W (gv,C, hv,C) such that w−1(α)> 0 for all positive roots α ∈∆(lv,C, hv,C). Replacing ‘v’
by ‘∞’ gives WP :=WP∞ =

∏
v∈S∞ W

Pv . For µ ∈ ȟ∞,C we define an affine action of w ∈WP by
w · µ := µw := w(µ+ ρ)− ρ. The same definition applies locally. If v is a complex place, WPv

splits as a product of two sets of Kostant representatives of the same size, WPv =WPιv ×WPῑv .
At such a place, we shall hence write µwv = (µwιv , µwῑv ). Given µ= (µv)v∈S∞ an algebraic,
dominant weight of g∞ and w ∈WP , we let Eµw =⊗v∈S∞Eµwv be the irreducible representation
of LP,∞ of highest weight µw.
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1.5 Induction
The symbol ‘aIndG(A)

P (A)’ denotes un-normalized, algebraic induction from (p∞, KP,∞, P (Af ))- to
(g∞, K, G(Af ))-modules. If V is any (p∞, KP,∞, P (Af ))-module and λ ∈ ǎP,C, we let

IP (A)[V, λ] := aIndG(A)
P (A)[V ⊗ e

〈λ+ρP ,HP (·)〉].

Similarly, locally for a (pv, KP,v)-module (respectively P (Fv)-module) Vv, we let IP (Fv)[Vv, λ] :=
aIndG(Fv)

P (Fv)[Vv ⊗ e
〈λ+ρP ,HPv (·)〉] be the induced (gv, K◦v )-module (respectively G(Fv)-module). If V

factors as restricted tensor product, V ∼=⊗v∈SVv, then we have IP (A)[V, λ]∼=⊗v∈SIP (Fv)[Vv, λ].

2. Spaces of automorphic forms

2.1 Generalities
In this section we would like to summarize some known results from the theory of automorphic
forms. Standard references for the facts presented in this section are Borel–Jacquet [BJ79],
Mœglin–Waldspurger [MW95], Langlands [Lan76], Franke [Fra98] and Franke–Schwermer [FS98].

Our notion of an automorphic form f :G(A)→ C and our notion of an automorphic
representation of G(A) is the one of Borel–Jacquet [BJ79, 4.2 and 4.6], to which we refer. Let
A(G) be the space of all automorphic forms f :G(A)→ C which are constant on the real Lie
subgroup AR

G. We recall that by its very definition, every automorphic form is annihilated by
some power of an ideal J of Z(g) of finite codimension. Let us now, once and for all, fix such an
ideal J : because we will only be interested in cohomological automorphic forms, we take J to be
the ideal which annihilates the contragredient representation Ev

µ of Eµ, cf. § 1.3, and denote by

AJ (G)⊂A(G)

the space consisting of those automorphic forms which are annihilated by some power of J . With
this notation, both spaces A(G) and AJ (G) carry commuting (g∞, K∞) and G(Af )-actions and
hence define a (mG, K, G(Af ))-module. The (mG, K, G(Af ))-submodule of all square-integrable
automorphic forms in AJ (G) is denoted Adis,J (G). An irreducible subquotient of Adis,J (G) will
be called a discrete series automorphic representation, cf. Borel [Bor07, 9.6].

To have the notation ready at hand, recall that a continuous function f :G(A)→ C is called
cuspidal, if its constant term fP (g) :=

∫
NP (F )\NP (A) f(ng) dn= 0 for all g ∈G(A) and along all

proper parabolic F -subgroups P . Let Acusp,J (G) be the space of all cuspidal automorphic forms
in AJ (G). As G(F )AR

G\G(A) has finite volume, Acusp,J (G) coincides with the space of all
smooth, K∞-finite functions in L2

cusp(G(F )AR
G\G(A)) which are annihilated by a power of J .

It is a (mG, K, G(Af ))-module and a submodule of Adis,J (G). Its complement in Adis,J (G) is
denoted Ares,J (G). An irreducible subquotient of Acusp,J (G) (respectively Ares,J (G)) will be
called a cuspidal automorphic representation (respectively residual automorphic representation).
See also [BJ79, 4.6].

2.2 Parabolic supports
Let {P} be the associate class of the parabolic F -subgroup P : it consists by definition of all
parabolic F -subgroups Q= LQNQ of G for which LQ and LP are conjugate by an element in
G(F ). We denote by AJ ,{P}(G) the space of all f ∈ AJ (G) which are negligible along every
parabolic F -subgroup Q /∈ {P}. We recall that the latter condition means that for all g ∈G(A),
the function LQ(A)→ C given by l 7→ fQ(lg) is orthogonal to the space of cuspidal functions
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on LP (F )AR
G\LP (A). Then there is the following decomposition of AJ (G) as a (mG, K, G(Af ))-

module, cf. [BLS96, Theorem 2.4] or [Bor07, 10.3]:

AJ (G)∼=
⊕
{P}

AJ ,{P}(G).

2.3 Cuspidal supports
The various summands AJ ,{P}(G) can be decomposed even further. To this end, recall
from [FS98, 1.2], the notion of an associate class ϕP of cuspidal automorphic representations
of the Levi subgroups of the elements in the class {P}. Therefore, let {P} be represented by
P = LN . Then the associate classes ϕP may be parameterized by pairs of the form (Λ, π̃), where:

(1) π̃ is a unitary cuspidal automorphic representation of L(A), whose central character vanishes
on the group AR

P ;

(2) Λ :AR
P → C∗ is a Lie group character; and

(3) the infinitesimal character χπ̃ of π̃∞ and the derivative dΛ ∈ ǎP,C of Λ are compatible with
the action of J (cf. [FS98, 1.2]).

Each associate class ϕP may hence be represented by a cuspidal automorphic representation

π := π̃ ⊗ e〈dΛ,HP (·)〉

of L(A). Given such a representative, let WP,π̃ be the space of all smooth, K∞-finite functions

f : L(F )N(A)AR
P \G(A)→ C,

such that for every g ∈G(A) the function l 7→ f(lg) on L(A) is contained in the π̃-isotypic
component π̃m(π̃) of L2

cusp(L(F )AR
P \L(A)) (m(π̃) being the finite multiplicity of π̃). For a function

f ∈WP,π̃, λ ∈ ǎGP,C and g ∈G(A) an Eisenstein series is formally defined as

EP (f, λ)(g) :=
∑

γ∈P (F )\G(F )

f(γg)e〈λ+ρP ,HP (γg)〉.

We will also view f · e〈λ+ρP ,HP (·)〉 as an element of IP (A)[π̃, λ]m(π̃). The so-defined Eisenstein series
converges absolutely and uniformly on compact subsets of G(A)× {λ ∈ ǎGP,C | <e(λ) ∈ ρP + ǎG+

P }.
It is known that EP (f, λ) is an automorphic form there and that the map λ 7→ EP (f, λ)(g) can
be analytically continued to a meromorphic function on all of ǎGP,C, cf. [MW95] or [Lan76, § 7]. It
is known that the singularities λ0 (i.e., the poles) of EP (f, λ) lie along certain affine hyperplanes
of the form Rα,t := {ξ ∈ ǎGP,C | 〈ξ, α〉= t} for some constant t and some root α ∈∆(P, AP ), called
‘root-hyperplanes’ ([MW95, Proposition IV.1.11 (a)] or [Lan76, p. 131]). Choose a normalized
vector ν ∈ ǎGP,C orthogonal to Rα,t and assume that λ0 is on no other singular hyperplane of
EP (f, λ). Then define λ0(u) := λ0 + uν for u ∈ C. If c is a positively oriented circle in the complex
plane around zero which is so small that EP (f, λ0(·))(g) has no singularities on the interior of
the circle with double radius, then

Resλ0(EP (f, λ)(g)) :=
1

2πi

∫
c
EP (f, λ0(u))(g) du

is a meromorphic function on Rα,t, called the residue of EP (f, λ) at λ0. Its poles lie on the
intersections of Rα,t with the other singular hyperplanes of EP (f, λ). Iterating this process, one
gets a function, which is holomorphic at a given λ0, in finitely many steps by taking successive
residues as explained above.

1070

https://doi.org/10.1112/S0010437X12000863 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000863


Residues of Eisenstein series and automorphic cohomology

Given ϕP , represented by a cuspidal representation π of the above form, a (mG, K, G(Af ))-
submodule

AJ ,{P},ϕP (G)

of AJ ,{P}(G) was defined in [FS98, 1.3] as follows: it is the span of all possible holomorphic values
or residues of all Eisenstein series attached to π̃, evaluated at the point λ= dΛ, together with
all their derivatives. This definition is independent of the choice of the representatives P and π,
thanks to the functional equations satisfied by the Eisenstein series considered. For details, we
refer the reader to [FS98, 1.2–1.4].

The following refined decomposition as (mG, K, G(Af ))-modules of the spaces AJ ,{P}(G) of
automorphic forms was obtained in Franke–Schwermer [FS98, Theorem 1.4].

Theorem 1 (Franke–Schwermer). There is an isomorphism of (mG, K, G(Af ))-modules

AJ ,{P}(G)∼=
⊕
ϕP

AJ ,{P},ϕP (G).

This gives rise to the following definition.

Definition 2. Let Π be an automorphic representation of G(A), whose central character is
trivial on AR

G. If Π is an irreducible subquotient of the space AJ ,{P},ϕP (G), we call the associate
class {P} a parabolic support and the associate class ϕP a cuspidal support of Π.

2.4 A construction map
The above construction of the spaces AJ ,{P},ϕP (G) entails the following assertion: we let S(ǎGP,C)
be the symmetric algebra

S(ǎGP,C) :=
⊕
n>0

SymnǎGP,C,

endowed with a (p∞, KP,∞, P (Af ))-module structure as follows. Since S(ǎGP,C) can be viewed as
the space of polynomials on aGP,C, an element Y ∈ aGP acts on X ∈ S(ǎGP,C) by translation and we
extend this action trivially to all of p∞. The action of P (Af ) is trivial. We may also view S(ǎGP,C)
as the algebra of differential operators ∂n/∂λn (n= (n1, . . . , ndim aGP

) being a multi-index with
respect to a fixed basis of ǎGP,C) on ǎGP,C. Furthermore, one may choose a non-trivial holomorphic
function q(λ) such that for a given associate class ϕP , represented by a cuspidal automorphic
representation π, the function q(λ)EP (f, λ) is holomorphic in a neighborhood of λ= dΛ. Hence,
having said this, by the construction of AJ ,{P},ϕP (G) there is a surjective homomorphism of
(mG, K, G(Af ))-modules

EisJ ,{P},ϕP : IP (A)[π̃ ⊗ S(ǎGP,C), dΛ]m(π̃) −→AJ ,{P},ϕP (G) (2.1)

given explicitly by

f ⊗ ∂n

∂λn
7→ ∂n

∂λn
(q(λ)EP (f, λ))|λ=dΛ.

3. Franke’s filtration

3.1 Definition of the filtration
The spaces AJ ,{P}(G) and AJ ,{P},ϕP (G) can be filtered in a certain way, which, together
with our specific choice of J , allows one to express the consecutive filtration quotients as a
direct sum of induced representations IR(A)[Πm(Π) ⊗ S(ǎGR,C), λ], Π now being a discrete series
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automorphic representation of some parabolic F -subgroupR= LRNR containing a representative
of {P} and λ ∈ ǎGR,C. This result is a direct consequence of the main result of Franke
[Fra98, Theorem 14]. As this will be crucial for what follows, we recall Franke’s filtration in
this section.

Let f ∈ AJ ,{P},ϕP (G). Then the constant term along a standard parabolic F -subgroup Q has
the form

fQ(g) =
∑
λ∈ǎQ,C

fQ,λ(g, HQ(g)) · e〈λ+ρQ,HQ(g)〉,

where fQ,λ is in the second variable a polynomial on aQ with values in the space of automorphic
forms f :G(A)→ C, which are constant on Q(F )NQ(A)AR

Q; this automorphic form can then
be evaluated in the first variable g ∈G(A), which explains fQ,λ(g, HQ(g)) ∈ C. The set of
λ ∈ ǎQ,C, for which fQ,λ 6= 0 for some f , is finite, cf. [Fra98, p. 233]. Let Λ(Q, J ) be this set.
For λ ∈ Λ(Q, J ), the notion <e(λ)+ was defined in [Fra98, p. 233]. Now, let T be a function

T :
{
<e(λ)+ | λ ∈

⋃
Q

Λ(Q, J )
}
→ N,

with the property

T (λ)> T (θ) for λ ∈ θ − +aG0 , λ 6= θ.

Definition 3. (i) The jth filtration step of AJ ,{P}(G) is defined as

A(j)
J ,{P}(G) := {f ∈ AJ ,{P}(G) | fQ,λ = 0 ∀Q ∈ {P} and ∀λ ∈ Λ(Q, J ) : T (<e(λ)+)< j}.

(ii) The jth filtration step of AJ ,{P},ϕP (G) is defined as

A(j)
J ,{P},ϕP (G) := {f ∈ AJ ,{P},ϕP (G) | fQ,λ = 0 ∀Q ∈ {P} and ∀λ ∈ Λ(Q, J ) : T (<e(λ)+)< j}.

Observe that we suppressed the choice of T in the notation of the jth filtration step. In any
case, the length of the filtration is finite, cf. [Fra98, p. 233]. We assume to have chosen T once
and for all such that for every associate class {P}, the length m=m({P}) of the filtration of
AJ ,{P}(G) is minimal. By the very definition, we obtain

A(0)
J ,{P}(G) =AJ ,{P}(G) and A(0)

J ,{P},ϕP (G) =AJ ,{P},ϕP (G).

3.2 Refined consecutive quotients
Given a cuspidal support ϕP , we will need the following collection of data. Let MJ ,{P},ϕP be the
set of quadruples (R,Π, ν, λ) of the form:

(i) R a standard parabolic F -subgroup of G containing a representative of {P};
(ii) Π a unitary discrete series automorphic representation of LR(A) with cuspidal support

determined by ϕP , spanned by iterated residues of Eisenstein series at the point ν ∈ ǎRP,C;
we let m(Π) be its finite multiplicity in Adis,J (LR) ∩ AJ ,{P∩LR},ϕP (LR);

(iii) λ ∈ ǎR,C such that <e(λ) ∈ ǎG+
R and such that λ+ ν + χπ̃ is annihilated by J .

We point out that with this definition, although not entirely obvious, one can show that λ is in
Λ(R, J ). Therefore, taking this for granted, it makes sense to define

M
(j)
J ,{P},ϕP := {(R,Π, ν, λ) | T (<e(λ)+) = j}.
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These sets of quadruples M (j)
J ,{P},ϕP originate from [Fra98, p. 218, 233–234]. There, however, only

the parabolic support {P} and not the cuspidal support ϕP was taken into account. Doing so,
there is the following theorem, which is a slight refinement of [Fra98, Theorem 14].

Theorem 4. For all j > 0, there is an isomorphism of (mG, K, G(Af ))-modules

A(j)
J ,{P},ϕP (G)/A(j+1)

J ,{P},ϕP (G)∼=
⊕

(R,Π,ν,λ)∈M (j)
J ,{P},ϕP

IR(A)[Π⊗ S(ǎGR,C), λ]m(Π).

Proof. In the notation given in [Fra98, Theorem 14], if we take the direct limit τ →∞ in
the positive Weyl chamber, then computing the main value MW, cf. [Fra98, (13)], yields an
isomorphism of (mG, K, G(Af ))-modules

A(j)
J ,{P}(G)/A(j+1)

J ,{P}(G)∼=
rank(P )⊕
k=0

lim
t∈Mk,T,j

J ,{P},∞

M(t). (3.1)

Here, Mk,T,j
J ,{P},∞ is a groupoid, whose elements are by definition, cf. [Fra98, p. 218], triples

t= (R, Λ, χ), where:

(1) R= LRNR is a standard parabolic F -subgroup of G containing an element of {P}, such
that dim aGP = dim aGR + k;

(2) Λ :AR(F )AR
G\AR(A)→ C∗ is a continuous character such that dΛ∞ defines an element

λt ∈ ǎR,C with the property <e(λt) ∈ ǎG+
R and T (<e(λt)+) = j;

(3) χ : Z(mR)→ C is a unitary character such that λt + χ is annihilated by J .

Attached to this datum, a space V (ut) is defined on [Fra98, p. 218], as follows: it is the space of
all smooth, KA-finite functions

f ∈ L2(R(F )NR(A)AR
R\R(A), C)

which satisfy:

(1) fQ is orthogonal to the space of cusp forms of LQ, for all Q⊆R which are not in {P};
(2) if Λ̃ := Λ · e〈−λt,HR(·)〉, then f(ag) = Λ̃(a)f(g) for all a ∈AR(A) and g ∈R(A);

(3) Xf(·g) = χ(X)f(·g) for all X ∈ Z(mR) and f(·g) : LR,∞→ C.

Finally, the space M(t) was defined as

M(t) = IR(A)[V (ut)⊗ S(ǎGR,C), λt],

[Fra98, (11) p. 234].
Since by our choice, J annihilates a finite-dimensional, irreducible algebraic representation

of G∞, J consists of regular elements of ȟ∞ and so no element of the groupoid Mk,T,j
J ,{P},∞ has

non-trivial automorphisms, cf. [Fra98, Theorem 19.I]. Therefore, the direct limit of (3.1) becomes
a direct sum over the (isomorphism classes) of the elements t of Mk,T,j

J ,{P},∞. Letting λ= λt and
ν = χ− χπ̃, then our result follows from the definition of V (ut) and the well-known fact that
the discrete spectrum Adis,J (LR) of LR decomposes discretely with finite multiplicities, or, more
generally, by Franke–Schwermer [FS98, Theorem 1.4]. Compare this also to [Fra98, Proposition 1,
p. 245] and the comment below it. 2

Remark 5 (Sp4 /F ). For a non-trivial case-study, where the above description of the successive
quotients of the filtration of AJ ,{P},ϕP (G) was made explicit, the reader may have a look at
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Grbac–Grobner, [GG13, Theorems 3.3 and 3.6]. There the case G= Sp4 over a totally real field
F was considered.

Remark 6 (The deepest step). We would like to point out that Theorem 4 trivially implies that

A(m)
J ,{P},ϕP (G)∼=

⊕
(R,Π,ν,λ)∈M (m)

J ,{P},ϕP

IR(A)[Π⊗ S(ǎGR,C), λ]m(Π).

Here, m=m({P}) is the deepest step in the filtration of AJ ,{P}(G).

4. Automorphic cohomology

4.1 Automorphic cohomology
We recall the following definition.

Definition 7. The cohomology space

Hq(G, E) :=Hq(mG, K,AJ (G)⊗ E),

endowed with its natural G(Af )-module structure, is called the space of automorphic cohomology
of G.

This G(Af )-module inherits from Theorem 1 a direct sum decomposition. This was
established in Franke–Schwermer, [FS98, Theorem 2.3].

4.2 Cuspidal cohomology
We recall that the summand AJ ,{G}(G) in Theorem 1, indexed by the associate class of G itself,
is precisely the space Acusp,J (G) of all cuspidal automorphic forms in AJ (G). This motivates
the following definition: the G(Af )-submodule

Hq
cusp(G, E) := Hq(mG, K,Acusp,J (G)⊗ E)

= Hq(mG, K,AJ ,{G}(G)⊗ E)

of Hq(G, E) is called the cuspidal cohomology of G. An associate class ϕG degenerates to a
singleton, represented by a unitary cuspidal automorphic representation π̃ of G(A), trivial on
AR
G. Hence, by Theorem 1 and [BW80, XIII], more generally by [FS98, Theorem 2.3], we obtain

the following well-known infinite direct sum decomposition as a G(Af )-module

Hq
cusp(G, E)∼=

⊕
π̃

Hq(mG, K, π̃∞ ⊗ E)⊗ π̃m(π̃)
f ,

the sum ranging over all (isomorphism classes of) unitary cuspidal automorphic representations
π̃ of G(A).

4.3 Eisenstein cohomology
It follows from Theorem 1 that there is a G(Af )-invariant complement of Acusp,J (G) in AJ (G),
given by

AEis,J (G) :=
⊕

{P}6={G}

AJ ,{P}(G)∼=
⊕

{P}6={G}

⊕
ϕP

AJ ,{P},ϕP (G).

The subscript ‘Eis’ shall allude to the fact, that each summand AJ ,{P},ϕP (G) may be constructed
by means of Eisenstein series. In this regard, we define the Eisenstein cohomology of G to be
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the G(Af )-module

Hq
Eis(G, E) := Hq(mG, K,AEis,J (G)⊗ E)

∼=
⊕

{P}6={G}

⊕
ϕP

Hq(mG, K,AJ ,{P},ϕP (G)⊗ E).

See again Franke–Schwermer, [FS98, Theorem 2.3].

Remark 8. The Eisenstein cohomology, as defined above, differs in general from the ‘cohomology
at infinity’, a notion coined by Harder, cf. e.g., [Har75a, Har75b]. This is due to the fact that
there might be residual automorphic representations of G, which contribute non-trivially to
Eisenstein cohomology, but restrict trivially to the boundary of the Borel–Serre compactification
of G(F )AR

G\G(A)/K. In this paper, we prefer to take the above ‘transcendental’ point of view.

4.4 The final goal
It is the main aim of this article to identify a certain range of degrees q of cohomology, in which
we can give a general description of the summands Hq(mG, K,AJ ,{P},ϕP (G)⊗ E) appearing
in the decomposition of Eisenstein cohomology, by use of maximally residual Eisenstein series,
thus serving as a general construction principle of residual Eisenstein cohomology for reductive
groups.

To this end, it will be necessary to understand the cohomology of the consecutive filtration
quotients A(j)

J ,{P},ϕP (G)/A(j+1)
J ,{P},ϕP (G), whose (mG, K, G(Af ))-module structure was already

described in Theorem 4. This needs a few preparatory results, which make up the contents
of the next section.

5. Cohomology of filtration quotients

5.1 A preparatory result
As a first step, we shall prove the following proposition. Its proof essentially consists in a careful
exercise in using Wigner’s lemma.

Proposition 9. Let {P} be an associate class of parabolic F -subgroups of G and let ϕP be

a cuspidal support. For 0 6 j 6m and (R,Π, ν, λ) ∈M (j)
J ,{P},ϕP , let IR(A)[Π⊗ S(ǎGR,C), λ] be the

attached induced representation. If Hq(mG, K, IR(A)[Π⊗ S(ǎGR,C), λ]⊗ Eµ) is non-zero for some
degree q, then A◦R,∞ acts trivially on

Π⊗ Eµw ⊗ e〈λ+ρR,HR(·)〉,

where w ∈WR is a uniquely determined Kostant representative.

Proof. By Borel–Wallach [BW80, III Theorem 3.3], Hq(mG, K, IR(A)[Π⊗ S(ǎGR,C), λ]⊗ Eµ)
being non-zero implies that

Hq−`(w)(lR,∞ ∩mG, KLR,∞ ,Π∞ ⊗ e
〈λ+ρR,HR(·)|LR,∞ 〉 ⊗ S(ǎGR,C)⊗ Eµw) 6= 0,

for a uniquely determined Kostant representative w ∈WR. See also Franke [Fra98, (2), p. 256].
In general, KLR,∞ will not be connected. However, by [BW80, I.5.1], also the (lR,∞ ∩mG, K

◦
LR,∞

)-
cohomology of the above coefficient module is non-vanishing in degree q − `(w) and so,
using [BW80, I.5.1] again, we also see that under the present assumptions, the relative Lie
algebra cohomology

Hq−`(w)(lR,∞ ∩mG, kLR,∞ ,Π∞ ⊗ e
〈λ+ρR,HR(·)|lR,∞ 〉 ⊗ S(ǎGR,C)⊗ Eµw)
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is non-zero. Now, let us write lR,∞ ∩mG = lssR,∞ ⊕ (aR,∞ ∩mG) and set kssLR := kLR,∞ ∩ lssR,∞. Then
the decomposition kLR,∞ = kssLR ⊕ (aR,∞ ∩ kLR,∞) is direct and hence, we may use the Künneth
rule to obtain that the (aR,∞ ∩mG, aR,∞ ∩ kLR,∞)-cohomology of

(ωΠ ⊗ e〈λ+ρR,HR(·)〉 ⊗ S(ǎGR,C)⊗ Cµw)|aR,∞∩mG

is non-zero in some degree. Here, ωΠ is the central character of Π and Cµw is the one-dimensional
representation of aR,∞ given by the weight µw ∈ ȟ∞. Since aG acts trivially on Eµ and Π, we
also have

H∗(aR,∞, aR,∞ ∩ kLR,∞ ⊕ aG, (ωΠ ⊗ e〈λ+ρR,HR(·)〉 ⊗ S(ǎGR,C)⊗ Cµw)|aR,∞) 6= 0. (5.1)

Using the Künneth rule once more, we obtain that

H∗(aGR, (e
〈λ+ρR,HR(·)〉 ⊗ S(ǎGR,C)⊗ Cµw)|aGR) 6= 0.

Since S(ǎGR,C) is a polynomial algebra, this implies that

prȟ∞→ǎGR
(µw) =−ρR − λ, (5.2)

cf. [Fra98, p. 256], or otherwise put that λ=−prȟ∞→ǎGR
(w(µ+ ρ)). In particular, we see that aGR

acts trivially on ωΠ ⊗ Eµw ⊗ e〈λ+ρR,HR(·)〉. Next, we observe that by (5.1), aR,∞ ∩ kLR,∞ has to
act trivially on the coefficients ωΠ ⊗ e〈λ+ρR,HR(·)〉 ⊗ S(ǎGR,C)⊗ Cµw . Therefore, any Lie algebra
complement a

cpl
R of aR ⊕ (aR,∞ ∩ kLR,∞) in aR,∞ has to act trivially, too, because aR,∞ is abelian.

Collecting all that we obtain so far, we see that

aR,∞ = aG ⊕ aGR ⊕ (aR,∞ ∩ kLR,∞)⊕ a
cpl
R

acts trivially on ωΠ ⊗ Eµw ⊗ e〈λ+ρR,HR(·)〉. This implies the assertion. 2

5.2 A purity result
Proposition 9 implies a certain purity or rigidity result on the possible values of −wv(µv +
ρv)|aR,v∩mG . Such a result was already proved by Harder for G= GL2/F , see [Har87], and later
on his arguments were used in Grbac–Grobner [GG13] for the case of G= Sp4 over a totally real
field. Here, we are going to use Clozel’s ‘Lemme de pureté’, see [Clo90], in order to derive the
following result.

Proposition 10. Let {P} be an associate class of parabolic F -subgroups of G and let ϕP be

a cuspidal support. For 0 6 j 6m and (R,Π, ν, λ) ∈M (j)
J ,{P},ϕP , let IR(A)[Π⊗ S(ǎGR,C), λ] be the

attached induced representation. If Hq(mG, K, IR(A)[Π⊗ S(ǎGR,C), λ]⊗ Eµ) is non-zero for some

degree q, then the attached, uniquely determined Kostant representative w = (wv)v∈S∞ ∈WR

satisfies

prȟv→ǎGR
(wv(µv + ρv)) = prȟv′→ǎGR

(wv′(µv′ + ρv′))

for all Archimedean places v, v′ ∈ S∞.

Proof. Since AR is F -split, we may write AR =
∏s
k=1 GL1 as an algebraic group over F . In this

decomposition, we will also write GL[k]
1 for the kth factor A[k]

R of AR. Similarly, Cµw |A◦R,∞ breaks
as a tensor product

Cµw |A◦R,∞ ∼=
⊗
v∈S∞

s⊗
k=1

C[k]
µw,v ,
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C[k]
µw,v being the representation space of the character of GL[k]

1 (Fv)◦ given by its highest weight

µ[k]
w,v := pr

ȟv→ǎ
[k]
R,v

(µwv).

Recall that if v is complex, then µ
[k]
w,v = (µ[k]

w,ιv , µ
[k]
w,ῑv). As µ is the highest weight of an

algebraic representation, for all k, 1 6 k 6 s, there is a positive integer r(k) ∈ Z>0, such that
(C[k]

µw)r(k) = C[k]
r(k)µw

is algebraic as well. Let ωΠ be the central character of Π. Then, it defines

a character ωΠ :AR(F )\AR(A)→ C∗, which we factor as ωΠ =⊗sk=1ω
[k]
Π , where ω[k]

Π is a Hecke
character GL[k]

1 (F )\GL[k]
1 (A)→ C∗. Similarly, we may write

e〈λ+ρR,HR(·)〉 =
s⊗

k=1

C[k]
λ+ρR

,

where C[k]
λ+ρR

is a Hecke character GL[k]
1 (F )\GL[k]

1 (A)→ C∗. By Proposition 9, we obtain that

H0(aR,∞, A◦R,∞, ωΠ∞ ⊗ e〈λ+ρR,HR(·)〉 ⊗ Cµw) 6= 0.

This implies, using the Künneth rule, that

H0(gl
[k]
1,∞, (GL[k]

1,∞)◦, ω[k]
Π∞
⊗ C[k]

λ+ρR
⊗ C[k]

µw) 6= 0

and hence also
H0(gl

[k]
1,∞, (GL[k]

1,∞)◦, (ω[k]
Π∞
⊗ C[k]

λ+ρR
)r(k) ⊗ C[k]

r(k)µw
) 6= 0

for all 1 6 k 6 s. Therefore, by [Clo90, Lemme 3.14], (ω[k]
Π ⊗ C

[k]
λ+ρR

)r(k) is a regular algebraic

cuspidal automorphic representation of GL[k]
1 /F in the sense of [Clo90, Definition 3.12]. Let

{σ1, . . . , σr} be the set of real places and {τ1, . . . , τc} the set of complex places. Clozel’s ‘Lemme
de pureté’, [Clo90, Lemme 4.9] now implies that for all k

2µ[k]
w,σ1

= 2µ[k]
w,σ2

= · · ·= 2µ[k]
w,σr = µ[k]

w,ιτ1
+ µ

[k]
w,ῑτ1

= µ[k]
w,ιτ2

+ µ
[k]
w,ῑτ2

= · · ·= µ[k]
w,ιτc

+ µ
[k]
w,ῑτc

.

Here, we already divided by r(k) 6= 0. In particular, recalling that µ[k]
w,v = pr

ȟv→ǎ
[k]
R,v

(µwv), we
obtain

prȟv→ǎGR
(µwv) = prȟv′→ǎGR

(µwv′ )
for all Archimedean places v, v′ ∈ S∞. Since ρ= (ρv)v∈S∞ has repeating coordinates in the real
and complex places respectively, the result follows. 2

Corollary 11. With the assumptions of Proposition 10, there are the following identities over
all places v ∈ S∞:

λ=
{
−wv(µv + ρv)|aR,v∩mG ∀v real
−1

2(wιv(µιv + ριv)|aR,ιv∩mG + wῑv(µῑv + ρῑv)|aR,ῑv∩mG) ∀v complex.

Recall that by the definition of the quadruples (R,Π, ν, λ) ∈M (j)
J ,{P},ϕP , the parameter <e(λ)

is in the closure of the positive Weyl chamber ǎG+
R . Since by Corollary 11, λ is necessarily real

valued in order to give rise to a quadruple (R,Π, ν, λ) whose attached induced representation
has non-trivial (mG, K)-cohomology with respect to Eµ, we obtain that λ ∈ ǎG+

R . This, together
with the purity property of the coordinates of prȟ∞→ǎGR

(w(µ+ ρ)) in the Archimedean places v,
cf. Proposition 10, yields serious restrictions on the Kostant representatives w = (wv)v∈S∞ ∈WR.
This will be made precise in the next proposition.
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Proposition 12. Let {P} be an associate class of parabolic F -subgroups of G and let ϕP be

a cuspidal support. For 0 6 j 6m and (R,Π, ν, λ) ∈M (j)
J ,{P},ϕP , let IR(A)[Π⊗ S(ǎGR,C), λ] be the

attached induced representation. If Hq(mG, K, IR(A)[Π⊗ S(ǎGR,C), λ]⊗ Eµ) is non-zero for some

degree q, then the attached, uniquely determined w = (wv)v∈S∞ ∈WR satisfies

`(w) >
∑
v∈S∞

⌈
1
2

dimR NR(Fv)
⌉
,

where dxe denotes the smallest integer greater than or equal to x.

Proof. It is enough to show that locally `(wv) > 1
2 dimR NR(Fv) for all Archimedean places

v ∈ S∞. Therefore, recall that in the course of the proof of Proposition 9 we have shown that

Hq−`(w)(lR,∞ ∩mG, kLR,∞ ,Π∞ ⊗ e
〈λ+ρR,HR(·)|lR,∞ 〉 ⊗ S(ǎGR,C)⊗ Eµw) 6= 0.

Writing lR,∞ ∩mG = lssR,∞ ⊕ (aR,∞ ∩mG) and kssLR = kLR,∞ ∩ lssR,∞ and using the Künneth rule, it
follows that

Hr(lssR,∞, k
ss
LR ,Π∞|lssR,∞ ⊗ Eµw |lssR,∞) 6= 0

for some degree r. The Lie algebra lssR,∞ is reductive, Π∞ defines a unitary representation of
L◦R,∞ by restriction and Eµw |lssR,∞ is the finite multiple of an irreducible representation (since
LR,∞ needs not to be connected). Hence, by Borel–Wallach [BW80, I, Corollary 4.2] and
Borel–Casselman [BC83, Lemma 1.3], we must have

Eµw |lssR,∞ ∼= Ēv
µw |lssR,∞ ,

where Ēv
µw |lssR,∞ denotes the complex conjugate, contragredient representation of the lssR,∞-module

Eµw |lssR,∞ . In particular, we obtain

Eµwv |lssR,v ∼= Ēv
µwv
|lssR,v (5.3)

for all Archimedean places v ∈ S∞. Without loss of generality, we may assume that the latter
representations are irreducible. Furthermore, by the definition of λ and Corollary 11,

λµwv :=−wv(µv + ρv)|aR,v∩aGR
∈ ǎG+

R (5.4)

where we identify aGR and ǎG+
R with its image in aR,v and ǎR,v, respectively. As a last ingredient,

recall the involution wv 7→ w′v on WRv from [BW80, V.1.4]: if wGv (respectively wLR,v) is the
longest element of the Weyl group W (gv,C, hv,C) (respectively W (lv,C, hv,C)) then

w′v := wLR,vwvwGv and `(wv) + `(w′v) = dimR NR(Fv). (5.5)

Let µv
v be the highest weight of the representation contragredient to Eµ, i.e., µv

v =−wGv(µv).
Hence, the first line of [BW80, p. 153] implies that

λµwv =−λµv
w′v
. (5.6)

In particular, λµwv is in the closure of a Weyl chamber C, if and only if λµv
w′v

is in the closure
of −C.

We claim that (5.3) and (5.4) imply the result. Indeed, if we let Ψwv := wv(−∆+(gv,C, hv,C)) ∩
∆+(gv,C, hv,C), then it is well-known that `(wv) = |Ψwv |. By (5.5) it is hence enough to show that
|Ψwv |> |Ψw′v |. Therefore, let α ∈∆+(gv,C, hv,C) be a positive absolute root. Then w−1

v (α) is again
a root and since µv + ρv is a regular dominant weight, it is straightforward to see that α ∈Ψwv

if and only if 〈wv(µv + ρv), α〉6 0. Of course, the same holds for wv being replaced by w′v
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and µv + ρv being replaced by the regular dominant weight µv
v + ρv. We may decompose the

latter inner product for w′v as

〈w′v(µv
v + ρv), α〉= 〈w′v(µv

v + ρv)|lssR,v , α〉+ 〈w′v(µv
v + ρv)|aR,v∩aGR

, α〉+ 〈w′v(µv
v + ρv)|aR,v∩kLR,v

, α〉.

By (5.4) and (5.6), the second summand on the right-hand side is non-negative. Therefore, if
α ∈Ψw′v , then

〈w′v(µv
v + ρv)|lssR,v , α〉+ 〈w′v(µv

v + ρv)|aR,v∩kLR,v
, α〉6 0.

Since both of these summands are real-valued, the left-hand side of the latter inequality equals

〈w′v(µv
v + ρv)|lssR,v , α〉+ 〈w′v(µv

v + ρv)|aR,v∩kLR,v
, α〉.

By (5.3) and the definition of w′v,

w′v(µv
v + ρv)|lssR,v = wv(µv + ρv)|lssR,v . (5.7)

Moreover,
w′v(µv

v + ρv)|aR,v∩kLR,v
= wLR,vwvwGv(µv

v + ρv)|aR,v∩kLR,v

= −wLR,vwv(µv + ρv)|aR,v∩kLR,v

= −wv(µv + ρv)|aR,v∩kLR,v

= wv(µv + ρv)|aR,v∩kLR,v
.

Here, the first line is the definition of w′v; the second line follows from the equalities µv
v =

−wGv(µv) and ρv =−wGv(ρv); the third line is a consequence of the fact that wLR,v operates
trivially on aR,v; and the forth line follows from aR,v ∩ kLR,v being compact, cf. [BC83, 1.2].
Hence, summarizing what we obtained so far, if α ∈Ψw′v , then

〈wv(µv + ρv)|lssR,v , α〉+ 〈wv(µv + ρv)|aR,v∩kLR,v
, α〉6 0.

But since 〈wv(µv + ρv)|aR,v∩aGR
, α〉6 0 by (5.4), we have proved that

α ∈Ψw′v ⇒ α ∈Ψwv .

As a consequence,
`(w′v) = |Ψw′v |6 |Ψwv |= `(wv)

and by what we observed above, cf. (5.5), this implies the result. 2

5.3 Consequences on degrees of cohomology
Proposition 12 implies the following proposition on the potential degrees where an induced
representation IR(A)[Π⊗ S(ǎGR,C), λ], attached to a quadruple (R,Π, ν, λ), may have non-
trivial (mG, K)-cohomology. Therefore, given an irreducible, unitary LR,v-representation Πv,
let m(LR,v,Πv) be the smallest degree, in which Πv has non-trivial (lssR,v, k

ss
LR,v)-cohomology,

twisted by an irreducible, finite-dimensional, algebraic representation of LR,v. If there is no such
coefficient module, then we let m(LR,v,Πv) = 0. Then we obtain the following proposition.

Proposition 13. Let {P} be an associate class of parabolic F -subgroups of G and let ϕP

be a cuspidal support. For 0 6 j 6m and (R,Π, ν, λ) ∈M (j)
J ,{P},ϕP , let IR(A)[Π⊗ S(ǎGR,C), λ] be

the attached induced representation. If Hq(mG, K, IR(A)[Π⊗ S(ǎGR,C), λ]⊗ Eµ) is non-zero in
degree q, then

q >
∑
v∈S∞

(⌈
1
2

dimR NR(Fv)
⌉

+m(LR,v,Πv)
)
,

where dxe denotes the smallest integer greater than or equal to x.
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Proof. In the course of the proof of Proposition 9 we have shown that

Hq−`(w)(lR,∞ ∩mG, kLR,∞ ,Π∞ ⊗ e
〈λ+ρR,HR(·)|lR,∞ 〉 ⊗ S(ǎGR,C)⊗ Eµw) 6= 0.

Moreover, we have for each Archimedean place v ∈ S∞, Hrv(lssR,v, k
ss
LR,v ,Πv|lssR,v ⊗ Eµwv |lssR,v) 6= 0

for some degree rv. By its definition, necessarily rv >m(LR,v,Πv). In particular, the Künneth
rule implies that ∑

v∈S∞

m(LR,v,Πv) 6 q − `(w).

The assertion now follows from Proposition 12. 2

In contrast to the computation of the dimensions dimR NR(Fv), in practise it may be tedious
to calculate the numbers m(LR,v,Πv). The next corollary, which is a direct consequence of the
last proposition, provides an alternative lower bound, which is weaker than the one given in
Proposition 13, but may be more convenient in calculations. See also Theorem 18 later on.

Corollary 14. Let {P} be an associate class of parabolic F -subgroups of G and let ϕP be

a cuspidal support. For 0 6 j 6m and (R,Π, ν, λ) ∈M (j)
J ,{P},ϕP , let IR(A)[Π⊗ S(ǎGR,C), λ] be the

attached induced representation. If Hq(mG, K, IR(A)[Π⊗ S(ǎGR,C), λ]⊗ Eµ) is non-zero in degree
q, then

q >
∑
v∈S∞

⌈
1
2

dimR NR(Fv)
⌉
.

Proof. By definition, m(LR,v,Πv) > 0. Therefore, the corollary follows from Proposition 13. 2

6. The main result

6.1 Definition of the bound qres

In order to state the main theorem of this paper, we need a certain constant qres = qres({P}, ϕP ),
depending on a pair of supports ({P}, ϕP ), as a last ingredient. So, let {P} be a given
associate class of proper parabolic F -subgroups {P} of G, and ϕP an associate class of cuspidal
automorphic representations of LP (A) and let 0 6 j 6m=m({P}). As a first step, for a
quadruple (R,Π, ν, λ) ∈M (j)

J ,{P},ϕP , we define

qres,j((R,Π, ν, λ)) :=
∑
v∈S∞

(⌈
1
2

dimR NR(Fv)
⌉

+m(LR,v,Πv)
)
,

and set

qres,j({P}, ϕP ) := min
(R,Π,ν,λ)∈M (j)

J ,{P},ϕP

qres,j((R,Π, ν, λ)).

Finally, the constant qres = qres({P}, ϕP ), mentioned above, is defined as

qres := min
06j<m

qres,j({P}, ϕP ).

Observe that we assume j to be strictly smaller than m. We have now accomplished the
preparatory work in order to prove the main result of this paper.

Theorem 15. Let G be a connected, reductive group over a number field F and let Eµ be an
irreducible, finite-dimensional, algebraic representation of G∞ on a complex vector space. Let
{P} be an associate class of proper parabolic F -subgroups of G and let ϕP be an associate
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class of cuspidal automorphic representations of LP (A). Let m=m({P}) be the length of the
filtration ofAJ ,{P}(G) as defined in § 3.1. Then, the map in cohomology, induced from the natural

inclusion A(m)
J ,{P},ϕP (G) ↪→AJ ,{P},ϕP (G), is an isomorphism of G(Af )-modules

Hq(mG, K,A(m)
J ,{P},ϕP (G)⊗ Eµ)

∼=
EisqJ ,{P},ϕP

// Hq(mG, K,AJ ,{P},ϕP (G)⊗ Eµ)

for all degrees 0 6 q < qres.
In other words, the Eisenstein cohomology supported in ({P}, ϕP ) is entirely given by the

(mG, K)-cohomology of the mth filtration step of AJ ,{P},ϕP in all degrees 0 6 q < qres.

Proof. For each 0 6 j < m, we obtain a short exact sequence of (mG, K, G(Af ))-modules

0−→A(j+1)
J ,{P},ϕP (G)−→A(j)

J ,{P},ϕP (G)−→A(j)
J ,{P},ϕP (G)/A(j+1)

J ,{P},ϕP (G)−→ 0.

It induces an long exact sequence of G(Af )-modules in (mG, K)-cohomology:

· · · →Hq(A(j+1)
J ,{P},ϕP (G)⊗ Eµ)−→Hq(A(j)

J ,{P},ϕP (G)⊗ Eµ)

−→Hq(A(j)
J ,{P},ϕP (G)/A(j+1)

J ,{P},ϕP (G)⊗ Eµ)→ · · · ,

where we abbreviated Hq(V ⊗ Eµ) :=Hq(mG, K, V ⊗ Eµ) for V a (mG, K, G(Af ))-module. By
Theorem 4, there is an isomorphism of G(Af )-modules

Hq(A(j)
J ,{P},ϕP (G)/A(j+1)

J ,{P},ϕP (G)⊗ Eµ)

∼=
⊕

(R,Π,ν,λ)∈M (j)
J ,{P},ϕP

Hq(IR(A)[Π⊗ S(ǎGR,C), λ]⊗ Eµ)m(Π). (6.1)

Now, by our Proposition 13, the right-hand side of (6.1) vanishes if q < qres = qres({P}, ϕP ).
Therefore, for all 0 6 j < m and q < qres, there is an isomorphism of G(Af )-modules

Hq(A(j+1)
J ,{P},ϕP (G)⊗ Eµ) ∼−→Hq(A(j)

J ,{P},ϕP (G)⊗ Eµ).

By construction, it is induced from the natural inclusion A(j+1)
J ,{P},ϕP (G) ↪→A(j)

J ,{P},ϕP (G). As

A(0)
J ,{P},ϕP (G) =AJ ,{P},ϕP (G), the result follows. 2

Before we comment on the consequences of our main theorem at length, let us state the
following two immediate corollaries.

Corollary 16. Let G be a connected, reductive group over a number field F and let Eµ be
an irreducible, finite-dimensional, algebraic representation of G∞ on a complex vector space.
Let {P} be an associate class of proper parabolic F -subgroups of G and let ϕP be an associate
class of cuspidal automorphic representations of LP (A). Let m=m({P}) be the length of the
filtration of AJ ,{P}(G) as defined in § 3.1. Then, there is an isomorphism of G(Af )-modules,

Hq(mG, K,AJ ,{P},ϕP (G)⊗ Eµ)

∼=
⊕

(R,Π,ν,λ)∈M (m)
J ,{P},ϕP

Hq(mG, K, IR(A)[Π⊗ S(ǎGR,C), λ]⊗ Eµ)m(Π),

in all degrees q < qres, giving rise to a direct sum decomposition of the Eisenstein cohomology
supported in ({P}, ϕP ). If m({P}) = 0, then the above decomposition even holds for all degrees q.

Proof. This is a direct consequence of Theorems 4 and 15. See also Remark 6. 2
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Corollary 17. Let G be a connected, reductive group over a number field F and let Eµ be an
irreducible, finite-dimensional, algebraic representation of G∞ on a complex vector space. Let
{P} be an associate class of proper parabolic F -subgroups of G and let ϕP be an associate class
of cuspidal automorphic representations of LP (A). Let Π ↪→Ares,J (G) be a residual automorphic
representation of G(A) with cuspidal support π ∈ ϕP , spanned by iterated residues of Eisenstein
series at a point ν ∈ ǎGP,C, for which ν + χπ̃ is annihilated by J . Let m(Π) be its multiplicity in
Adis,J (G) ∩ AJ ,{P},ϕP (G). Then, the map in cohomology

Hq(mG, K,Π⊗ Eµ)m(Π) // Hq(mG, K,AJ ,{P},ϕP (G)⊗ Eµ),

induced from the natural inclusion Πm(Π) ↪→AJ ,{P},ϕP (G), is injective in all degrees 0 6 q <
qres = qres({P}, ϕP ).

Proof. By our assumptions, (G,Π, ν, 0) is an element of M (m)
J ,{P},ϕP , and m=m({P}) is the

length of the filtration of AJ ,{P}(G). Hence, the corollary follows from Theorems 4 and 15 (or
directly from Corollary 16). 2

7. Consequences and comments

7.1 The bound qres and L2-cohomology
7.1.1 A simplification. Our first remark deals with the constant qres = qres({P}, ϕP ).

Although it maybe seems to be rather complicated in its nature, since it involves quite refined
data attached to the quadruples (R,Π, ν, λ), it is not too difficult to make it explicit in many
cases. See, e.g., Grbac–Grobner [GG13, §§ 3 and 4], for the caseG= Sp4 over a totally real number
field; or Franke–Schwermer [FS98, § 5] for the case G= GLn/Q and {P} being represented by a
maximal parabolic Q-subgroup.

In the general case, qres can always be bounded from below by the weaker bound

qalt := min
06j<m

min
(R,Π,ν,λ)∈M (j)

J ,{P},ϕP

d1
2 dimR NR(Fv)e.

This is clear from the definition of qres and Corollary 14. Even simpler, the following weaker, but
more feasible version of our main theorem holds.

Theorem 18. Let G be a connected, reductive group over a number field F and let Eµ be an
irreducible, finite-dimensional, algebraic representation of G∞ on a complex vector space. Let
{P} be an associate class of proper parabolic F -subgroups of G and let ϕP be an associate class
of cuspidal automorphic representations of LP (A). Let L2

J ,{P},ϕP :=Ares,J (G) ∩ AJ ,{P},ϕP be

the space of square-integrable (and hence necessarily residual) automorphic forms in AJ ,{P},ϕP .
Then, the inclusion L2

J ,{P},ϕP (G) ↪→AJ ,{P},ϕP (G) induces an isomorphism of G(Af )-modules

Hq(mG, K, L
2
J ,{P},ϕP (G)⊗ Eµ)

∼=
EisqJ ,{P},ϕP

// Hq(mG, K,AJ ,{P},ϕP (G)⊗ Eµ),

in all degrees

q < qmax := min
Rmaximal
R⊇P

(∑
v∈S∞

⌈
1
2

dimR NR(Fv)
⌉)

.

Proof. Let qmax be as in the statement of the theorem. We first show that R=G never appears
as the first component of a (R,Π, ν, λ) ∈M (j)

J ,{P},ϕP for j 6=m: arguing by contraposition,
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if R=G, then by its very definition λ= 0, since it has to be in ǎGG,C = 0. As we also have
j = T (<e(λ)+) = T (0), we must have j =m by the definition of T . This is a contradiction. Hence,
if m= 0, then the theorem follows directly from Theorem 4, applied to j =m, and Proposition 12.
If m> 0, then by what we just saw, 0< qmax 6 qres. So, our main theorem, Theorem 15, shows
that

Hq(mG, K,A(m)
J ,{P},ϕP (G)⊗ Eµ)

∼=−−→Hq(mG, K,AJ ,{P},ϕP (G)⊗ Eµ)

for q < qmax. The result now follows again from Theorem 4, applied to j =m, and
Proposition 12. 2

Remark 19. Let rG be the constant introduced in Vogan–Zuckerman [VZ84, 8], Kumaresan
[Kum80] and Enright [Enr79]. In most cases, qmax is already strictly greater than rG. See
Theorem 24 for a family of examples. This shall underline the profitableness of Theorem 18
in practical use.

7.1.2 The bound is ‘sharp’. As another important fact on qres, let us point out that, in this
generality, qres establishes a sharp upper bound for the range of degrees q, where Eisenstein
cohomology supported in ({P}, ϕP ) is entirely given by the (mG, K)-cohomology of the deepest
filtration step of AJ ,{P},ϕP (G). Here ‘sharp’ is meant in the way that there is a choice of a
reductive group G/F , a coefficient system Eµ and of a pair of supports ({P}, ϕP ), such that
EisqJ ,{P},ϕP is not an isomorphism for q = qres.

As an example, this can already be seen by taking G= SL2 /Q, E = C, P =B the Borel
subgroup and ϕB = {1T (A)} the associate class represented by the trivial character of the
torus T . Then m= 1 and qres = dimR U(R) = 1. It is well-known (but can also be seen directly
by considering the long exact sequence in the proof of Theorem 15) that H1

Eis(G, C) is spanned
by so-called regular Eisenstein cohomology classes. One has

H1(mG, K,AJ ,{B},ϕB(G)) ↪→H1(sl2(R), SO(2),AJ ,{B},ϕB(SL2)/1G(A)).

For a more complicated example in this direction, the reader may have a look at Grbac–
Grobner [GG13, Theorems 5.1 and 5.4], which deal with the Eisenstein cohomology of G= Sp4

over a totally real number field F (having made Franke’s filtration explicit before).

7.2 A theorem of Rohlfs–Speh
7.2.1 In [RS11], Rohlfs–Speh considered the contribution of certain automorphic

subrepresentation Π of Ares,J (G) for a semisimple algebraic group over Q to H∗Eis(G, C). They
show that under certain constraints on Π, to be made precise below, the inclusion Π ↪→AEis,J (G)
induces a non-trivial map

Hq1(mG, K,Π)→Hq1
Eis(G, C)

in the lowest degree q1 where Hq(g, K,Π∞) is non-zero. See [RS11, Theorems I.1 and III.1].
To explain their assumptions on Π, let M(w, π) be the intertwining operator defined in
Mœglin–Waldspurger [MW95, II.1.6] attached to a cuspidal support π ∈ ϕP and w ∈ Ω(aP , aP ′).
As usual, the latter space is the set of all linear maps aP → aP ′ which are given by conjugation
by an element w̃ ∈G(F ). In order to obtain their result, Rohlfs–Speh have to assume that
Π∞ is the image of the Archimedean component of the normalized intertwining operator
N(w0, π) = r(w0, π)−1M(w0, π) attached to the longest element w0 ∈ Ω(aP , aP ′) and a cuspidal
automorphic representation π of LP (A) whose unitary factor π̃ is tempered at the Archimedean
component.
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7.2.2 In view of what we said above, our Theorem 15 and its Corollary 17 provide a
generalization as well as a refinement of the result of Rohlfs–Speh, if q1 < qres. Indeed, our
main result, Theorem 15, and its Corollary 17 may be applied to all residual automorphic
representations Π ↪→Ares,J (G) of a reductive group G/F and say that the cohomology
Hq(mG, K,Π⊗ Eµ)m(Π) even injects into Hq

Eis(G, Eµ) in all degrees q1 6 q < qres. In particular,
the restriction that Π∞ is the image of a residual Eisenstein intertwining operator attached to a
pair (π, w0), π∞ being tempered and w0 being the longest element in Ω(aP , aP ′), can be dropped.
Moreover, we allow general coefficient modules Eµ.

7.3 A theorem of Li–Schwermer
7.3.1 In [LS04], Li–Schwermer proved a vanishing result for the Eisenstein cohomology of a

reductive group G/Q in the case of a regular coefficient system Eµ. More precisely, let G be
a connected reductive group over Q and suppose that E is an irreducible, finite-dimensional,
algebraic representation of G(C) on a complex vector space, whose highest weight is regular. Let
q0(G(R)) = 1

2(dimR(G(R))− dimR(K)− (rkC(G(R))− rkC(K))), rkC being the absolute rank of
the group in question. Then Li–Schwermer show that for any pair of supports ({P}, ϕP ), P 6=G,

Hq(mG, K,AJ ,{P},ϕP (G)⊗ Eµ) = 0

for all degrees 0 6 q < q0(G(R)). See [LS04, Theorem 5.5].
If one adapts the proof of our main theorem to regular coefficients, then one obtains

an alternative approach to the theorem of Li–Schwermer. Indeed, if Eµ is a regular highest
weight representation as in § 1.3, then the Archimedean component Π∞ of any discrete series
automorphic representation Π appearing in a quadruple (R,Π, ν, λ) ∈M (j)

J ,{P},ϕP for 0 6 j 6m,
which satisfies

H∗(lssR,∞, k
ss
LR ,Π∞|lssR,∞ ⊗ Eµw |lssR,∞) 6= 0

must be essentially tempered. This follows from the regularity of Eµw (which is a
consequence of the regularity of Eµ, see [Sch94, Lemma 4.9]) and Vogan–Zuckerman’s condition
[VZ84, (5.1), p. 73], together with the last paragraph on p. 58 of the same reference. Hence, by
Wallach [Wal84, Theorem 4.3], respectively Clozel [Clo93, Proposition 4.10], Π is cuspidal and
so R= P .

On the other hand, for Π∞ being essentially tempered, the bound of vanishing in
Proposition 12 may be improved to

∑
v∈S∞d

1
2(dimR NP,v + rkC(Kv)− rkC(KLssP,v))e, see

[LS04, (4.1)]. This, together with an easy calculation using the Cartan decomposition of
G∞ and [BW80, III, Proposition 5.3], shows that for all quadruples (P,Π, ν, λ) ∈M (j)

J ,{P},ϕP ,
0 6 j 6m,

Hq(mG, K, IP (A)[Π⊗ S(ǎGP,C), λ]⊗ Eµ) = 0 for q < q0(G∞).

In particular, the proof of Theorem 15 now shows that

Hq(mG, K,A(m)
J ,{P},ϕP (G)⊗ Eµ)

∼=−→Hq(mG, K,AJ ,{P},ϕP (G)⊗ Eµ)

in all degrees q < q0(G∞). However, by the description of the (mG, K)-cohomology of the deepest
filtration step A(m)

J ,{P},ϕP (G) provided by our Theorem 4, we must have

Hq(mG, K,A(m)
J ,{P},ϕP (G)⊗ Eµ) = 0

in degrees q < q0(G∞) as well. See also Remark 6. Hence, the claim follows.
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7.3.2 As a consequence, our Theorem 15 may also be viewed as a generalization of a weak
version of the vanishing theorem of Li–Schwermer, applying to all coefficient systems Eµ. More
precisely, we obtain the following theorem.

Theorem 20. Let G be a connected, reductive group over a number field F and let Eµ be
an irreducible, finite-dimensional, algebraic representation of G∞ on a complex vector space.
Let {P} be an associate class of proper parabolic F -subgroups of G and let ϕP be an
associate class of cuspidal automorphic representations of LP (A). Let m be the length of the

filtration of AJ ,{P}(G) as defined in § 3.1 and assume that Hq(mG, K,A(m)
J ,{P},ϕP (G)⊗ Eµ) = 0 in

degrees 0 6 q < q′. Then also

Hq(mG, K,AJ ,{P},ϕP (G)⊗ Eµ) = 0

for all degrees 0 6 q <min(q′, qres).

7.4 A theorem of Franke and a theorem of Borel
7.4.1 In [Fra08], Franke described the contribution of the trivial residual automorphic

representation 1G(A) of G(A) to Eisenstein cohomology for a connected, reductive algebraic group
G/Q, improving a result of Borel, [Bor74, Theorem 7.5]. Implicit in his general construction is
the fact that the natural inclusion 1G(A) ↪→AEis,J (G) defines an injective map

Jq :Hq(mG, K, 1G(A))→Hq
Eis(G, C)

in all degrees q 6 minR maximal(dimR NR,∞). This follows from [Fra08, (7.2), p. 59]. In particular,
Jq is injective for all degrees q < qmax. Since in this special case of the trivial residual
representation, qmax = qres, our Theorem 15, or more explicitly Corollary 17, applied to Π = 1G(A)

is compatible with Franke’s theorem. As a remark, let us also point out that Corollary 17
independently improves Borel’s above mentioned result: this can already be seen for G= Sp4

over a totally real number field, cf. [GG13, Corollary 6.1].

8. Applications I: Eisenstein cohomology of inner forms of GLn

8.1 Preliminaries
In this section we would like to apply our Theorem 15, in order to derive a result on the
contribution of the residual automorphic representations to the Eisenstein cohomology of inner
forms of the general linear group over a number field F .

Let D be a central division-algebra over a number field F of index d, i.e., d2 = dimF D.
The local algebras Dv =D ⊗F Fv are central simple algebras over Fv and hence isomorphic
to a matrix algebra Mrv(Av), for some integer rv > 1 and a central division algebra Av over
Fv. The algebra D is said to be split at v if Av = Fv and non-split at v otherwise, i.e., Av is
not a field. Analogous to the global situation, let dv be the index of Dv, i.e., d2

v = dimFv Av.
Then rvdv = d for all v. If v ∈ S∞ is real then dv ∈ {1, 2}, i.e., Av = R or H and Dv =Md(R)
if v is split and Md/2(H) if v is non-split (in which case d is even). Given any n> 1 we set
` := nd/2.

The determinant det′ of an n× n-matrix X ∈Mn(D), n> 1, is the generalization of the
reduced norm to matrices: det′(X) := det(ϕ(X ⊗ 1)), for some isomorphism ϕ :Mn(D)⊗F Q

∼−→
Mdn(Q). It is independent of ϕ and is an F -rational polynomial in the coordinates of the entries
of X. So the group

G(F ) := GL′n(F ) := {X ∈Mn(D) | det′(X) 6= 0}
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defines an algebraic group GL′n over F . It is reductive and is an inner F -form of the split group
GLdn/F . At a real place v ∈ S∞ we hence obtain Gv = GLdn(R) if v is split and Gv = GL`(H) if
v is not split. At a complex place, Gv = GLdn(C). Hence, for the connected compact subgroup
K ⊂G∞ we may choose locally

K◦v =


Sp(`) if v non-split
SO(dn) if v split and real
U(dn) if v complex.

Here, Sp(`) is the compact real form of the symplectic group of split-rank `.

8.2 The residual spectrum of GL′
n

The associate classes of parabolic F -subgroups P = LN of G= GL′n are in one-to-one
correspondence with unordered partitions [n1, . . . , nk] of n, i.e., n=

∑k
i=1 ni, ni > 1. We will

write {P[n1,...,nk]} for the associate class corresponding to [n1, . . . , nk]. A Levi subgroup L[n1,...,nk]

of an element of {P[n1,...,nk]} is always isomorphic to

L[n1,...,nk]
∼= GL′n1

× · · · ×GL′nk .

In the special case that all ni are equal, the partition is determined by k and we shall abbreviate
our notation to L[n1,...,nk] = Lk, if this is the case.

The following theorem, classifying the residual spectrum of G(A), was obtained in Badulescu–
Renard, [BR10, Proposition 18.2]. For the special case D = F , i.e., G= GLn/F , this result is a
theorem of Mœglin–Waldspurger, cf. [MW89].

Theorem 21. Every residual automorphic representation Π of G(A) = GL′n(A) is given by a
pair (ρ′, k), where k|n, k 6= 1, and ρ′ is a unitary cuspidal automorphic representation of GL′r(A)
with r = n/k.

More precisely, let π =⊗kj=1ρ
′ be the product representation of Lk(A) and let λk(π) =

kρ((k − 1)/2, . . . ,−(k − 1)/2) ∈ aGPk . Here, kρ is the uniquely determined integer of [BR10,
Proposition 18.2(i)] and the coordinates are in the projections on the GL′r-factors of Lk. Then,
Π is the unique irreducible quotient MW ′(ρ′, k) of the induced representation

ILk(A)[π, λk(π)].

As a direct consequence of this result, only those associate classes {P} of parabolic F -
subgroups of G matter for the description of the residual spectrum Ares,J (G), which are
parameterized by a partition [r, . . . , r], n= kr, k 6= 1.

8.3 Eisenstein cohomology of GL′
n

We obtain the following theorem on the contribution of the residual automorphic representations
of G= GL′n/F to Eisenstein cohomology.

Theorem 22. Let G= GL′n/F , n> 1, {P}= {P[n1,...,nk]} be an associate class of parabolic F -
subgroups, k > 2, and ϕP be an associate class of cuspidal automorphic representations π of
L(A) = L[n1,...,nk](A). If either {P} 6= {Pk} or π �⊗ki=1ρ

′, then there is no residual automorphic

representation Π ↪→Ares,J (G) of G(A) supported by ({P}, ϕP ). If {P}= {Pk} and π ∼=⊗ki=1ρ
′,

then the representation Π =MW ′(ρ′, k) appears precisely once in Ares,J (G) and the map in
cohomology

Hq(mG, K,Π⊗ Eµ) // Hq(mG, K,AJ ,{P},ϕP (G)⊗ Eµ),
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induced from the natural inclusion Π ↪→AJ ,{P},ϕP (G), is injective in all degrees

0 6 q <
∑
v∈S∞

v complex

d2(k − 1)
n2

k2
+
∑
v∈S∞
v real

⌈
d2(k − 1)

n2

2k2

⌉
.

If d= 1 and k = 2, i.e., if G= GLn/F is the split general linear group over F and P is the
self-associate maximal parabolic subgroup, then this bound can be improved to

0 6 q <
∑
v∈S∞

v complex

1
2

(n2 − n) +
∑
v∈S∞
v real

n2

4
.

Proof. The first assertions follow from Theorem 21 together with multiplicity one for discrete
series automorphic representations of G(A), cf. Badulescu–Renard [BR10, Theorem 18.1(b)]. A
direct calculation gives

qmax =
∑
v∈S∞

v complex

d2(k − 1)
n2

k2
+
∑
v∈S∞
v real

⌈
d2(k − 1)

n2

2k2

⌉
,

see also Theorem 18. Hence, the first part of the theorem is a consequence of Corollary 17
and Theorem 18. Next, recall that a cohomological cuspidal automorphic representation of
GLr(A) has necessarily an essentially tempered Archimedean component. Hence, Borel–Wallach
[BW80, III, Proposition 5.3] provides a lower bound for m(LPk,v,Πv) for all v ∈ S∞ and all Πv

appearing as a local Archimedean component of a representation Π showing up in a quadruple
(Pk,Π, ν, λ). Distinguishing the cases of complex and real v, the result follows from a direct
computation of this lower bound and Corollary 17, respectively Theorem 15. 2

Remark 23. In the case of G= GLn/Q and for maximal parabolic subgroups P , Franke–
Schwermer considered the contribution of residual automorphic representations to Hq

Eis(G, C)
in [FS98, Theorem 5.6]. Our Theorem 22 improves their result in the sense, that for n even and
P being the self-associate maximal parabolic subgroup, the map

Hq(mG, K, L
2
J ,{P},ϕP (G)⊗ Eµ)−→Hq(mG, K,AJ ,{P},ϕP (G)⊗ Eµ)

is not only an epimorphism, but also injective in all degrees 0 6 q < n2/4. Compare this result
also to Rohlfs–Speh [RS11, Theorem IV.3].

In the case d= n= 2, F =Q, Theorem 22 is essentially contained in Grobner [Gro13,
Theorem 3.2].

9. Applications II: Eisenstein cohomology of split classical groups

9.1 Preliminaries
In this last section we would like to apply our Theorem 15 to families of split classical groups
over Q, in order to obtain another series of examples. Therefore, let n> 2 be an integer and
define Gn/Q to be one of the following groups

Gn :=


SO2n+1/Q
Sp2n/Q
SO2n/Q.

1087

https://doi.org/10.1112/S0010437X12000863 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000863


H. Grobner

Here, SOk denotes the Q-split special orthogonal group of Q-rank bk/2c and Sp2k denotes the
Q-split symplectic group of Q-rank k. In view of § 8, we left out the general linear group.
Furthermore, we let {P} be an associate class of maximal parabolic Q-subgroups of Gn.

9.2 Eisenstein cohomology of classical groups
The standard maximal parabolic Q-subgroups P = LN of G=Gn are parameterized by the n
simple roots αk, 1 6 k 6 n. None of them are associate, except in the case Gn = SO2n, n odd
and the standard parabolic subgroups Pn−1 and Pn. A Levi subgroup Lk of an element of {Pk}
is always isomorphic to

Lk ∼= GLk ×Gn−k,
where Gn−k is the Q-split classical group of rank n− k of the same type as G=Gn.

Theorem 24. Let G=Gn be a Q-split classical group of Cartan type Bn, Cn or Dn, i.e., either
the Q-split symplectic or special orthogonal group of Q-rank n. Let P = Pk, 1 6 k 6 n, be the
standard maximal parabolic Q-subgroup of G corresponding to the kth simple root and let {Pk}
be the so-defined associate class of parabolic Q-subgroups. (Here we leave out the case k = n− 1,
Gn = SO2n.) If ϕPk is an associate class of cuspidal automorphic representations of Lk(A), then
there is an isomorphism of G(Af )-modules

Hq(g, K,A(m)
J ,{Pk},ϕPk

(G)⊗ Eµ)
∼= // Hq(g, K,AJ ,{Pk},ϕPk (G)⊗ Eµ),

for all degrees 0 6 q < 1
2((n− k)(n− k + 3)/2 +

⌊
(n− k)/2c) + q(Gn, k), where

q(Gn, k) =


⌈
k

(
n− 3k + 1

4

)⌉
if Gn = SO2n⌈

k

(
n− 3k − 1

4

)⌉
if Gn = SO2n+1, Sp2n.

Proof. Without loss of generality, m 6= 0. One directly computes that dimR Nk(R) equals
2k(n− (3k + 1)/4) for Gn = SO2n and k 6= n− 1 and 2k(n− (3k − 1)/4) for Gn = SO2n+1, Sp2n

and any k. Furthermore, as a cohomological cuspidal automorphic representation of GLk(A)
has necessarily an essentially tempered Archimedean component, combining Borel–Wallach
[BW80, III, Proposition 5.3] and Vogan–Zuckerman [VZ84, Table 8.2], shows that 1

2((n− k)
(n− k + 3)/2 + b(n− k)/2c) is a lower bound for m(Lk(R),Π∞) for all Π∞ appearing as the
Archimedean component of a representation Π showing up in a quadruple (Pk,Π, ν, λ). The
claim now follows from Theorem 15. 2

Remark 25. IfGn = SO2n+1, Sp2n, n> 2, then the bound q(Gn, k) = qmax of Theorem 24 serves as
an example where Vogan–Zuckerman’s constant rG is smaller than qmax, and hence, in particular,
smaller than qres. The same holds true for Gn = SO2n, n> 5 and k 6= 1.

Remark 26. In the case of G= SO2n+1 respectively Sp2n, the latter theorem is complementary
to the results in Gotsbacher–Grobner [GG12] respectively Grbac–Schwermer [GS11]. In these
references, necessary conditions for non-trivial residual Eisenstein cohomology classes, stemming
from globally generic cuspidal automorphic representations of maximal Levi subgroups, were
given. In contrast, the conditions provided in Theorem 24 are sufficient for the existence of such
classes. Moreover, in the range of degrees given by the above theorem, it is shown that these
residual Eisenstein cohomology classes exhaust the full space Hq(g, K,AJ ,{Pk},ϕPk (G)⊗ Eµ), cf.
Theorem 18. Also, the condition of global genericity does not enter the present assumptions.
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