On the orbit-sizes of permutation groups containing elements separating finite subsets

B.J. Birch, R.G. Burns, Sheila Oates Macdonald, and Peter M. Neumann

It is proved that if G is a permutation group on a set Ω every orbit of which contains more than mn elements, then any pair of subsets of Ω containing m and n elements respectively can be separated by an element of G.

1.

This note is the outcome of attempts to find a direct proof of the following result, which is a translation of a lemma of B.H. Neumann [1] into the language of permutation groups. (We shall state B.H. Neumann's lemma and indicate why the two results are equivalent at the end of this section.)

THEOREM 1 ([3, Lemma 2.3]). If G is a group of permutations of a set Ω such that all the orbits of G are infinite, then for each finite subset Δ of Ω there is an element $g \in G$ such that $\Delta g \cap \Delta$ is empty.

We shall give a direct proof of this theorem, and also prove the following quantitative version of it.

THEOREM 2. If G is a group of permutations of a set Ω such that every orbit of G has more than mn elements then corresponding to each pair Γ , $\Delta \subseteq \Omega$ with $|\Gamma| = m$, $|\Delta| = n$, there exists $g \in G$ such that $\Gamma g \cap \Delta = \emptyset$.

Received 14 October 1975.

8 B.J. Birch, R.G. Burns, Sheila Oates Macdonald, and Peter M. Neumann

We make two remarks. The first one is that the lower bound (mn+1)on orbit-size ensuring separability of Γ and Δ is best possible. If G is a transitive group of degree mn having m blocks of imprimitivity each of size n then one can choose Γ , Δ , of sizes m, n respectively, such that $\Gamma g \cap \Delta \neq \emptyset$ for all $g \in G$: take Γ to have one element from each of the blocks of the imprimitivity system, and take Δ to be one of those blocks. The second remark is that the theorem can be proved using results and methods of B.H. Neumann from [1] and [2]. The proof we give here is in the more natural combinatorial and permutation group-theoretic style.

As promised, before proving the theorems (in Section 2) we sketch a proof of the equivalence of Theorem 1 with the result of B.H. Neumann [1, Lemma 4.1] that if a group K is the union $\bigcup_{i=1}^{k} H_i g_i$ of finitely many cosets $H_i g_i$ of subgroups H_i , then at least one of the H_i has finite index in K.

Thus assume the statement of Theorem 1 and suppose that $K = \bigcup_{1}^{k} H_{i}g_{i}$. Let $\Omega = \{H_{i}g \mid 1 \leq i \leq k; g \in G\}$, and let K act on Ω by multiplication on the right. Let $\Delta = \{H_{1}, \ldots, H_{k}, H_{1}g_{1}, \ldots, H_{k}g_{k}\}$. Then Δ is a finite subset of Ω ; if $g \in K$ then $g \in H_{r}g_{r}$ for some rand so $H_{r}g_{r} \in \Delta \cap \Delta g$; thus $\Delta \cap \Delta g \neq \emptyset$ for all $g \in K$. From our assumption it follows that one of the orbits of K in Ω is finite, and so $|K:H_{i}|$ is finite for some i. The converse follows as in [3, Lemma 2.3], from the observation that, if Δ is a subset of Ω such that $\Delta \cap \Delta g \neq \emptyset$ for all $g \in G$, then $G = \bigcup_{\Delta \times \Delta} C_{\alpha\beta}$ where $C_{\alpha\beta}$ is defined as $\{g \mid \alpha g = \beta, g \in G\}$. Each set $C_{\alpha\beta}$ is a right coset of the stabiliser G_{α} of α , so that if Δ is finite then G is covered by finitely many cosets. By B.H. Neumann's result G_{α} has finite index in G for some α , whence the orbit containing α is finite. 2.

We first prove a combinatorial lemma which gives Theorem 1 directly.

LEMMA 1. If every orbit of G has more than f(m, n) elements where

$$f(1, n) = n$$
,

$$f(m, n) \ge f(m-1, n^2+n) \quad (m > 1)$$
,

then for each pair Γ , $\Delta \subseteq \Omega$ with $|\Gamma| = m$, $|\Delta| = n$, there exists $g \in G$ such that $\Gamma g \cap \Delta = \emptyset$.

Proof. We use induction on m. If m = 1 the result is obvious since each orbit has more than n elements. Suppose that m > 1 and as inductive hypothesis that the desired conclusion holds when one set has fewer than m elements, and the other has any (finite) number, and suppose further that every orbit has more than f(m, n) elements. Since every orbit has more than n elements, without loss of generality we may assume that there exists γ in $\Gamma - \Delta$. Let $\gamma h_1, \ldots, \gamma h_k$ be the distinct transforms of γ which lie in Δ . Note that $0 \le k \le n$. Since every orbit has more than f(m, n) elements, every orbit must have more than $f(m-1, n^2+n)$ elements and so by inductive hypothesis there is $h \in G$ such that

$$(\Gamma_{-}\{\gamma\})h \cap (\Delta \cup \Delta h_{\gamma} \cup \ldots \cup \Delta h_{k}) = \emptyset$$
.

If $\gamma h \notin \Delta$ then put g = h. If $\gamma h \notin \Delta$ then $\gamma h = \gamma h_i$ for some i, in which case put $g = h h_i^{-1}$. In both cases $\gamma g \notin \Delta$, and also $(\Gamma - \{\gamma\})g \cap \Delta = \emptyset$. Therefore $\Gamma g \cap \Delta = \emptyset$ as required.

Now we set out on the proof of Theorem 2. Unfortunately, we are unable to prove it directly - we have to use Theorem 1. First we will prove a second combinatorial lemma, which gives the right numbers but which 'begs the question' by making a strong finiteness assumption.

LEMMA 2. If Γ , $\Delta \subseteq \Omega$ with $|\Gamma| = m$, $|\Delta| = n$ and each element of Γ is in a finite orbit of G with more than mn elements, then there exists $g \in G$ with $\Gamma g \cap \Delta = \emptyset$.

Proof. Let the distinct orbits of G that contain elements of Γ be

10 B.J. Birch, R.G. Burns, Sheila Oates Macdonald, and Peter M. Neumann

 $\Omega_1, \ldots, \Omega_r$; for each $i = 1, \ldots, r$, suppose that $|\Omega_i \cap \Delta| = v_i$, $|\Omega_i| = t_i$ so that $\sum v_i \leq n$ and $t_i > mn$. Let the number of distinct translates Γg , for $g \in G$, be s (which from our assumptions is finite). Each element of Ω_i occurs the same number of times in the translates Γg , so at most msv_i/t_i of these translates contain an element of $\Omega_i \cap \Delta$. Since

$$\sum_{i=1}^{r} \frac{msv_i}{t_i} < \sum_{i=1}^{r} \frac{sv_i}{n} \le s$$

and $\Gamma G \cap \Delta \subseteq \cup (\Omega, \cap \Delta)$, the lemma follows.

Now we complete the proof of Theorem 2. Let Γ_0 be the subset of Γ consisting of elements that are contained in a finite orbit of G. By Lemma 2, there exists $g_1 \in G$ such that $\Gamma_0 g_1 \cap \Delta = \emptyset$. Now let H be the subgroup of G that leaves the elements of $\Gamma_0 g_1$ fixed; H has finite index in G, so the orbits of H containing elements of $(\Gamma - \Gamma_0)g_1$ are still infinite. So by Theorem 1, there exists $g_2 \in H$ such that $(\Gamma - \Gamma_0)g_1g_2 \cap \Delta = \emptyset$. So $\Gamma g_1g_2 \cap \Delta = \emptyset$.

References

- B.H. Neumann, "Groups covered by permutable subsets", J. London Math. Soc. 29 (1954), 236-248.
- [2] B.H. Neumann, "Groups covered by finitely many cosets", Publ. Math. Debrecen 3 (1953-54), 227-242 (1955).
- [3] Peter M. Neumann, "The structure of finitary permutation groups", Arch. Math. (Basel) (to appear).

Mathematical Institute, University of Oxford, St Giles, Oxford, England; Department of Mathematics, University of Queensland, St Lucia, Queensland; Department of Mathematics, York University, Downsview, Ontario, Canada;

Queen's College, Oxford, England.