BULL. AUSTRAL. MATH. SOC.
$20 B 05$
VOL. 14 (1976), 7-10.

On the orbit-sizes of permutation groups containing elements separating finite subsets

B.J. Birch, R.G. Burns, Sheila Oates Macdonald, and Peter M. Neumann

Abstract

It is proved that if G is a permutation group on a set Ω every orbit of which contains more than $m n$ elements, then any pair of subsets of Ω containing m and n elements respectively can be separated by an element of G.

1.

This note is the outcome of attempts to find a direct proof of the following result, which is a translation of a lemma of B.H. Neumann [1] into the language of permutation groups. (We shall state B.H. Neumann's lemma and indicate why the two results are equivalent at the end of this section.)

THEOREM 1 ([3, Lemma 2.3]). If G is a group of permutations of a set $\sqrt{ } 6$ such that all the orbits of G are infinite, then for each finite subset Δ of Ω there is an element $g \in G$ such that $\Delta g \cap \Delta$ is empty.

We shall give a direct proof of this theorem, and also prove the following quantitative version of it.

THEOREM 2. If G is a group of permutations of a set Ω such that every orbit of G has more than $m n$ elements then corresponding to each pair $\Gamma, \Delta \subseteq \Omega$ with $|\Gamma|=m,|\Delta|=n$, there exists $g \in G$ such that $\Gamma g \cap \Delta=\emptyset$.

Received 14 October 1975.

We make two remarks. The first one is that the lower bound ($m n+1$) on orbit-size ensuring separability of Γ and Δ is best possible. If G is a transitive group of degree $m m$ having m blocks of imprimitivity each of size n then one can choose Γ, Δ, of sizes m, n respectively, such that $\Gamma g \cap \Delta \neq \emptyset$ for all $g \in G:$ take Γ to have one element from each of the blocks of the imprimitivity system, and take Δ to be one of those blocks. The second remark is that the theorem can be proved using results and methods of B.H. Neumann from [1] and [2]. The proof we give here is in the more natural combinatorial and permutation group-theoretic style.

As promised, before proving the theorems (in Section 2) we sketch a proof of the equivalence of Theorem 1 with the result of B.H. Neumann [1, Lemma 4.1] that if a group K is the union $\bigcup_{i=1}^{k} H_{i} g_{i}$ of finitely many cosets $H_{i} g_{i}$ of subgroups H_{i}, then at least one of the H_{i} has finite index in K.

$$
\text { Thus assume the statement of Theorem } 1 \text { and suppose that } K=\bigcup_{l}^{k} H_{i} g_{i} .
$$

Let $\Omega=\left\{{ }_{H}{ }_{i} \mid 1 \leq i \leq k ; g \in G\right\}$, and let K act on Ω by multiplication on the right. Let $\Delta=\left\{H_{1}, \ldots, H_{k}, H_{1} g_{1}, \ldots, H_{k} g_{k}\right\}$. Then Δ is a finite subset of Ω; if $g \in K$ then $g \in H_{r} g_{r}$ for some r and so $H_{r^{g}} g_{r} \in \Delta \cap \Delta g ;$ thus $\Delta \cap \Delta g \neq \emptyset$ for all $g \in K$. From our assumption it follows that one of the orbits of K in Ω is finite, and so $\left|K: H_{i}\right|$ is finite for some i. The converse follows as in [3, Lemma 2.3], from the observation that, if Δ is a subset of Ω such that $\Delta \cap \Delta g \neq \emptyset$ for all $g \in G$, then $G=\underset{\Delta \times \Delta}{\cup} C_{\alpha \beta}$ where $C_{\alpha \beta}$ is defined as $\{g \mid \alpha g=\beta, g \in G\}$. Each set $C_{\alpha \beta}$ is a right coset of the stabiliser G_{α} of α, so that if Δ is finite then G is covered by finitely many cosets. By B.H. Neumann's result G_{α} has finite index in G for some α, whence the orbit containing α is finite.
2.

We first prove a combinatorial lemma which gives Theorem l directly.
LEMMA 1. If every orbit of G has more than $f(m, n)$ elements where

$$
\begin{gathered}
f(1, n)=n, \\
f(m, n) \geq f\left(m-1, n^{2}+n\right) \quad(m>1),
\end{gathered}
$$

then for each pair $\Gamma, \Delta \subseteq \Omega$ with $|\Gamma|=m,|\Delta|=n$, there exists $g \in G$ such that $\Gamma g \cap \Delta=\varnothing$.

Proof. We use induction on m. If $m=l$ the result is obvious since each orbit has more than n elements. Suppose that $m>1$ and as inductive hypothesis that the desired conclusion holds when one set has fewer than m elements, and the other has any (finite) number, and suppose further that every orbit has more than $f(m, n)$ elements. Since every orbit has more than n elements, without loss of generality we may assume that there exists γ in $\Gamma-\Delta$. Let $\gamma h_{1}, \ldots, \gamma h_{k}$ be the distinct transforms of γ which lie in Δ. Note that $0 \leq k \leq n$. Since every orbit has more than $f(m, n)$ elements, every orbit must have more than $f\left(m-1, n^{2}+n\right)$ elements and so by inductive hypothesis there is $h \in G$ such that

$$
(\Gamma-\{\gamma\}) h \cap\left(\Delta \cup \Delta h_{1} \cup \ldots \cup \Delta h_{k}\right)=\varnothing .
$$

If $\gamma h \neq \Delta$ then put $g=h$. If $\gamma h \in \Delta$ then $\gamma h=\gamma h_{i}$ for some i, in which case put $g=h h_{i}^{-1}$. In both cases $\gamma g \notin \Delta$, and also $(\Gamma-\{\gamma\}) g \cap \Delta=\varnothing$. Therefore $\Gamma g \cap \Delta=\emptyset$ as required.

Now we set out on the proof of Theorem 2. Unfortunately, we are unable to prove it directly - we have to use Theorem l. First we will prove a second combinatorial lemma, which gives the right numbers but which 'begs the question' by making a strong finiteness assumption.

LEMMA 2. If $\Gamma, \Delta \subseteq \Omega$ with $|\Gamma|=m,|\Delta|=n$ and each element of Γ is in a finite orbit of G with more than m elements, then there exists $g \in G$ with $\Gamma g \cap \Delta=\emptyset$.

Proof. Let the distinct orbits of G that contain elements of Γ be
$\Omega_{1}, \ldots, \Omega_{r} ;$ for each $i=1, \ldots, r$, suppose that $\left|\Omega_{i} \cap \Delta\right|=v_{i}$, $\left|\Omega_{i}\right|=t_{i}$ so that $\sum v_{i} \leq n$ and $t_{i}>m n$. Let the number of distinct translates Γg, for $g \in G$, be s (which from our assumptions is finite). Each element of Ω_{i} occurs the same number of times in the translates Γg, so at most $m s v_{i} / t_{i}$ of these translates contain an element of $\Omega_{i} \cap \Delta$. Since

$$
\sum_{i=1}^{r} \frac{m s v_{i}}{t_{i}}<\sum_{i=1}^{r} \frac{s v_{i}}{n} \leq s
$$

and $\Gamma G \cap \Delta \subseteq \cup\left(\Omega_{i} \cap \Delta\right)$, the lemma follows.
Now we complete the proof of Theorem 2. Let Γ_{0} be the subset of Γ consisting of elements that are contained in a finite orbit of G. By Lemma 2, there exists $g_{1} \in G$ such that $\Gamma_{0} g_{\perp} \cap \Delta=\varnothing$. Now let H be the subgroup of G that leaves the elements of $\Gamma_{0} g_{1}$ fixed; H has finite index in G, so the orbits of H containing elements of $\left(\Gamma-\Gamma_{0}\right) g_{1}$ are still infinite. So by Theorem 1, there exists $g_{2} \in H$ such that $\left(\Gamma-\Gamma_{0}\right) g_{1} g_{2} \cap \Delta=\emptyset$. So $\Gamma g_{1} g_{2} \cap \Delta=\emptyset$.

References

[1] B.H. Neumann, "Groups covered by permutable subsets", J. London Math. Soc. 29 (1954), 236-248.
[2] B.H. Neumann, "Groups covered by finitely many cosets", Publ. Math. Debrecen 3 (1953-54), 227-242 (1955).
[3] Peter M. Neumann, "The structure of finitary permutation groups", Arch. Math. (Basel) (to appear).

Mathematical Institute, University of Oxford, St Giles,
Oxford, England;
Department of Mathematics, University of Queensland, St Lucia, Queensland;

Department of Mathematics, York University,
Downsview, Ontario, Canada;

Queen's College, Oxford, England.

