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On the orbit-sizes of permutation

groups containing elements

separating finite subsets

B.J. Birch, R.G. Burns, Sheila Oates Macdonald,
and Peter M. Neumann

It is proved that if G is a permutation group on a set ft

every orbit of which contains more than mn elements, then any

pair of subsets of ft containing m and n elements

respectively can be separated by an element of G .

1 .

This note is the outcome of attempts to find a direct proof of the

following result, which is a translation of a lemma of B.H. Neumann [7]

into the language of permutation groups. (We shall state B.H. Neumann's

lemma and indicate why the two results are equivalent at the end of this

section.)

THEOREM 1 ([3, Lemma 2.3]). If G is a group of permutations of a

set U such that all the orbits of G are infinite, then for each finite

subset A of ft there is an element g € G such that kg n A is

empty.

We shall give a direct proof of this theorem, and also prove the

following quantitative version of it.

THEOREM 2. If G is a group of permutations of a set ft such that

every orbit of G has more than mn elements then corresponding to each

pair r , A c ft with \V\ = m , |A| = n , there exists g € G such, that

Tg n A = 0 .
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We make two remarks. The first one is that the lower bound (rnn+l)

on orbit-size ensuring separability of F and A is best possible. If

G is a transitive group of degree rnn having m blocks of imprimitivity

each of size n then one can choose F, A , of sizes m, n respectively,

such that Tg n A t 0 for all g € G : take T to have one element from

each of the blocks of the imprimitivity system, and take A to be one of

those blocks. The second remark is that the theorem can be proved using

results and methods of B.H. Neumann from ['] and [2]. The proof we give

here is in the more natural combinatorial and permutation group-theoretic

style.

As promised, before proving the theorems (in Section 2) we sketch a

proof of the equivalence of Theorem 1 with the result of B.H. Neumann [/,

k
Lemma it.l] that if a group K is the union U E.g. of finitely many

cosets E.g. of subgroups H. , then at least one of the H. has finite

index in K .

k
Thus assume the statement of Theorem 1 and suppose that K = U H.g. .

Let ft = {E.g | 1 £ i £ k; g £ G} , and let K act on ft by

multiplication on the right. Let A = {H. , . . ., Hv, H g , .. . , H.g1] .
-L K 1 1 K K

Then A is a finite subset of ft ; if g £ K then g € H a for some r

and so H<j € A n hg ; thus A n Lg + 0 for all g € K . From our

assumption it follows that one of the orbits of K in ft is finite, and

so \K : H. | is finite for some i . The converse follows as in [3,

Lemma 2.33, from the observation that, if A is a subset of ft such that

A n &g £ 0 for ail g £ a , then G = U C R where C R is defined as
AxA

{g | ag = g, g € G] . Each set C R is a right coset of the stabiliser

G of a , so that if A is finite then G is covered by finitely many

cosets. By B.H. Neumann's result G has finite index in G for some

a , whence the orbit containing a is finite.
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2.

We first prove a combinatorial lemma which gives Theorem 1 directly.

LEMMA 1. If every orbit of G has more than f(m, n) elements

where

/(I, n) = n ,

f(m, n) i f[m-l, n2+n) (m > l) ,

then for each pair V, A c Q, with \V\ = m , |A| = n , there exists

g € G such that Tg n A = 0 .

Proof. We use induction on m . If m = 1 the result is obvious

since each orbit has more than n elements. Suppose that m > 1 and as

inductive hypothesis that the desired conclusion holds when one set has

fewer than m elements, and the other has any (finite) number, and suppose

further that every orbit has more than f(m, n) elements. Since every

orbit has more than n elements, without loss of generality we may assume

that there exists Y in F - A . Let yh , ..., yh. be the distinct

transforms of Y which lie in A . Note that 0 5 k 5 n . Since every

orbit has more than f(m, n) elements, every orbit must have more than

f[m-l, n +n) elements and so by inductive hypothesis there is h € G such

that

(T-{y})h n (A U 6hx u ... u Afefe) = 0 .

If yh t A then put g = h . If yh € A then yh = yh. for some i ,

in which case put g = hh~. . In both cases yg £ A , and also

n A = 0 . Therefore r<? n A = 0 as required.

Now we set out on the proof of Theorem 2. Unfortunately, we are

unable to prove it directly - we have to use Theorem 1. First we will

prove a second combinatorial lemma, which gives the right numbers but which

'begs the question' by making a strong finiteness assumption.

LEMMA 2. If T, A c U with \T\ = m , |A| = n and each element

of F is in a finite orbit of G with more than mn elements} then there

exists g € G with Tg n A = 0 .

Proof. Let the distinct orbits of G that contain elements of V be
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fi , ..., ft ; for each i = 1, ..., r , suppose that |fi. n A| = v. ,

IJJ. I = t. so that £ V. - n and t. > mn . Let the number of distinct
7s 7s 7s tf

translates Tg , for g £ G , be s (which from our assumptions is

finite). Each element of fi. occurs the same number of times in the

translates Tg , so at most msv-lt. of these translates contain an

element of a.
^

n A . Since

r

i=l

msv.

t .

r

i=l

sv.

n

and TG n A c U(ft. n A) , the lemma follows.
7s

Now we complete the proof of Theorem 2. Let Fn be the subset of T

consisting of elements that are contained in a finite orbit of G . By

Lemma 2, there exists g. (. G such that r g n A = 0 . Now let H be

the subgroup of G that leaves the elements of r g fixed; H has

finite index in G , so the orbits of H containing elements of [T-T^g

are still infinite. So by Theorem 1, there exists g~ € H such that

(r-rQ)^ 2 n A = 0 . So Tg±g2 n A = 0 .
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