A NOTE ON LOCALLY QUASI-UNIFORM SPACES

BY

TROY L. HICKS AND SHIRLEY M. HUFFMAN

ABSTRACT. Locally quasi-uniform spaces are studied, and it is shown that a topological space \((X, t)\) admits exactly one compatible locally quasi-uniform structure if and only if \(t\) is finite.

1. Introduction. Topological spaces with a unique compatible uniform structure have been characterized by R. Doss [2]. In [3], P. Fletcher initiated the study of spaces with a unique compatible quasi-uniform structure, and he conjectured that \((X, t)\) admits exactly one compatible quasi-uniform structure if and only if \(t\) is finite. C. Barnhill and P. Fletcher [1] showed that if \(t\) is finite, then \((X, t)\) is uniquely quasi-uniformizable. In [6] and [7], W. Lindgren gave examples where \((X, t)\) is uniquely quasi-uniformizable with \(t\) infinite, and showed that the conjecture holds for \(R_t\) spaces. The concept of locally quasi-uniform spaces was defined for \(T_x\) spaces in [5], and it was shown that \((X, t)\) admits a local quasi-uniformity with a countable base if and only if it is a \(\gamma\) space if and only if it is a Nagata first countable space.

A general introduction to quasi-uniform spaces may be found in [8].

2. Locally quasi-uniform spaces.

DEFINITION 1. Let \(X\) be a non-empty set and let \(\mathcal{U}\) be a filter on \(X \times X\) such that:

(i) \(\Delta \subseteq U\) for every \(U \in \mathcal{U}\), where \(\Delta = \{(x, x) : x \in X\}\).
(ii) For each \(x \in X\) and \(U \in \mathcal{U}\), there exists \(V(x, U) = V \in \mathcal{U}\) such that \((V \circ V)[x] \subseteq U[x]\). Then \(\mathcal{U}\) is called a locally quasi-uniform structure for \(X\).

\(\mathcal{U}\) gives a topology

\[t_\mathcal{U} = \{A \subseteq X : \text{for every } x \in A \text{ there exists } U \in \mathcal{U} \text{ such that } U[x] \subseteq A\}. \]

It is clear that every quasi-uniform structure is a locally quasi-uniform structure. If we use a term without defining it, we are using the quasi-uniform space definition. We say that \((X, \mathcal{U})\) is strongly complete if every Cauchy filter converges.

LEMMA 1. Let \((X, t)\) be a topological space and let

\[\mathcal{B} = \{U : U \supseteq \Delta \text{ and for every } x \in X, U[x] \in t\}. \]

Received by the editors March 25, 1976.
Then B is a base for a locally quasi-uniform structure FL, and FL is the finest compatible structure.

Proof. If $V \in B$ and $x \in X$, put

$$U = [(X - V[x]) \times X] \cup (V[x] \times V[x]).$$

If $y \in X$, $U[y] = X$ or $V[x]$. Thus $U \in B$. Also, $(U \circ U)[x] = V[x]$. Hence B is a base for a structure FL. If U is a compatible structure and $U \in U$, $U \supseteq W$, the interior of U in $t^{-1} \times t$. $W[x] \subseteq t$ for every $x \in X$ gives $W \in FL$. Thus $U \subseteq FL$.

Definition 2. [4] A locally quasi-uniform space (X, U) has the Lebesgue property provided that if U is a t_{U}-open cover of X, then there is a $U \in U$ such that $\{U[x]: x \in X\}$ refines U.

Theorem 1. Let (X, U) be a locally quasi-uniform space.

1. If (X, U) has the Lebesgue property, then (X, U) is strongly complete.
2. FL is a compatible strongly complete locally quasi-uniform structure.
3. U is pre-compact if and only if every ultrafilter on X is U-Cauchy.
4. If t_{U} is compact, every Cauchy filter converges.
5. (X, t_{U}) is compact if and only if U is strongly complete and pre-compact.
6. (X, t_{U}) is pre-compact if and only if FL is strongly complete.
7. Suppose FL is pre-compact. By (2), FL is a compatible strongly complete structure. By (5), $t_{U} = t_{FL}$ is compact.

Proof. For (1), we note that the proof in [4] for quasi-uniform spaces carries over.

For (2), we show that FL has the Lebesgue property and apply (1). If U is an open cover and $x \in X$, then there exists $C_{x} \in U$ such that $x \in C_{x}$. Let

$$U = \bigcup \{\{x\} \times C_{x}: x \in X\}.$$

$U \in FL$ and $\{U[x]: x \in X\}$ refines U.

For (3) and (4), we note that the standard quasi-uniform space arguments hold.

(5) follows from (3) and (4).

(6) follows from (5) and the fact that the Pervin structure is pre-compact.

(7) Suppose FL is pre-compact. By (2), FL is a compatible strongly complete structure. By (5), $t_{U} = t_{FL}$ is compact.

Lemma 2. Suppose (X, t) has a finite compatible locally quasi-uniform structure U. Then $FL = U$, and therefore t has only one compatible locally quasi-uniform structure.

Proof. $U = \bigcap \{V: V \in U\} \in U$ gives $U = \{V: V \supseteq U\}$. Clearly, $U[x]$ is the smallest open set containing x. Also, $U \subseteq FL$ by Lemma 1. If $A \in FL$, $A \supseteq V$

https://doi.org/10.4153/CMB-1976-076-2 Published online by Cambridge University Press
where \(V(x) \in t \) for every \(x \in X \). Thus \(V(x) \supseteq U(x) \) for every \(x \in X \), and therefore \(A \supseteq V \supseteq U \) gives \(A \in \mathcal{U} \) or \(\mathcal{F} \subseteq \mathcal{U} \).

Corollary. If \(t \) is finite, \((X, t)\) has only one compatible locally quasi-uniform structure.

Proof. If \(t \) is finite the Pervin structure is a finite compatible quasi-uniform structure.

Definition 3. If \(\{G_n\} \) is a sequence of open sets and \(G_1 \subset G_2 \subset G_3 \subset \ldots \), it is called an *ascending sequence* of open sets.

Lemma 3. Let \((X, t)\) be a topological space with \(t \) infinite. There exists an ascending infinite sequence of open sets or there exists a descending infinite sequence of open sets.

Proof. Suppose \(t \) contains no ascending infinite sequence of open sets. Then \(t - \{X\} \) has the same property. Thus every \(A \) in \(t - \{X\} \) is contained in a maximal ascending chain in \(t - \{X\} \). Let

\[\mathcal{M} = \{M : M \text{ is a maximal ascending chain in } t - \{X\}\}. \]

If \(M \in \mathcal{M} \), let \(V_M = \bigcup \{V : V \in M\} \). Then \(V_M \in t - \{X\} \). If \(V_M \neq V_{M_1} \), \(V_{M_1} \cup V_M = X \). For otherwise, \(M_1 \) would not be maximal in \(t - \{X\} \). Let \(\mathcal{V} \) denote the set of distinct \(V_M, M \in \mathcal{M} \).

Case 1. \(\mathcal{V} \) is infinite. We show that \(\mathcal{V} \) has the finite intersection property. If \(\Phi = \bigcap_{i=1}^n V_{M_i}, \) choose \(V_M \neq V_{M_i}, \) \(1 \leq i \leq n \). Then \(V_M = V_M \cup \Phi = V_M \cup (\bigcap_{i=1}^n V_{M_i}) = \bigcap_{i=1}^n (V_M \cup V_{M_i}) = \bigcap_{i=1}^n X = X \), a contradiction. We show that \(\bigcap_{i=1}^n V_{M_i} \neq \bigcup_{i=1}^n V_{M_i} \). If equality holds, \(\bigcap_{i=1}^n V_{M_i} \subseteq V_{M_i} \). Thus \(V_M = V_{M_i} \cup (\bigcap_{i=1}^n V_{M_i}) = X \), a contradiction. Since \(\mathcal{V} \) is infinite, put \(X_n = \bigcap_{i=1}^n V_{M_i} \) and \(\{X_n\} \) is a descending infinite sequence of open sets.

Case 2. \(\mathcal{V} \) is finite. Since \(t - \{X\} \) is infinite and each \(V \in t - \{X\} \) is contained in \(V_M \) for some \(V_M \in \mathcal{V} \), there exists \(V_M \in \mathcal{V} \) such that an infinite number of members of \(t - \{X\} \) are contained in \(V_M \). Put \(V_M = X_1 \). Let \(t_1 = \{V : V \in t - \{X\} \text{ and } V \subseteq X_1\} \).

\(t_1 \) is an infinite topology for \(X_1 \). Repeat the argument just given for \((X_1, t_1)\) and obtain a topological space \((X_2, t_2)\) such that: (1) \(t_2 \) is infinite, (2) \(X_2 \subset X_1 \subset X \), and (3) \(X_2 \in t - \{X_1\} \subset t - \{X\} \). Using induction we obtain a descending infinite sequence of open sets.

Theorem 2. A topological space \((X, t)\) is uniquely locally quasi-uniformizable if and only if \(t \) is finite.

Proof. The Corollary gives one half of the theorem. Suppose \(t \) is infinite.
Case 1. \(t \) has a descending infinite sequence of open sets. We obtain a sequence \(\{a_n\} \) of distinct points and a sequence \(\{X_n\} \) of distinct open sets such that \(a_n \in X_n \) and \(a_n \notin X_m \) for \(m > n \). If \((X, t)\) is uniquely locally quasi-uniformizable, \(\mathcal{F} \) is the Pervin structure, and therefore \(\mathcal{F} \) is totally bounded. Let

\[
U = \bigcup_{i=1}^{n} (\{a_i\} \times X_i) \cup \left(X - \bigcup_{i=1}^{\infty} \{a_i\} \right) \times X.
\]

\(U \in \mathcal{F} \) so there exists \(A_1, \ldots, A_n \) such that \(\bigcup_{i=1}^{n} A_i = X \) and \(A_i \times A_j \subseteq U \). There exists \(j, 1 \leq j \leq n \), such that \(A_j \) contains infinitely many elements of \(\{a_n\} \). Choose \(m > n \) such that \(a_n, a_m \in A_j \). We have \((a_m, a_n) \in A_j \times A_j \subseteq U \) or \(a_n \in U[a_m] = X_m \), a contradiction.

Case 2. \(t \) has an ascending infinite sequence of open sets. We obtain a sequence \(\{a_n\} \) of distinct points and a sequence \(\{X_n\} \) of distinct open sets such that \(a_n \in X_n \) and \(a_n \notin X_m \) for \(m < n \). Now use the argument in Case 1.

Remark. After looking at Lemma 3, one might wonder when \((X, t)\) has an ascending infinite sequence of open sets. In [6], it is shown that every subset of \((X, t)\) is compact if and only if every ascending open sequence is finite.

References