A NOTE ON LOCALLY QUASI-UNIFORM SPACES

TROY L. HICKS AND SHIRLEY M. HUFFMAN

ABSTRACT. Locally quasi-uniform spaces are studied, and it is shown that a topological space (X, t) admits exactly one compatible locally quasi-uniform structure if and only if t is finite.

1. **Introduction.** Topological spaces with a unique compatible uniform structure have been characterized by R. Doss [2]. In [3], P. Fletcher initiated the study of spaces with a unique compatible quasi-uniform structure, and he conjectured that (X, t) admits exactly one compatible quasi-uniform structure if and only if t is finite. C. Barnhill and P. Fletcher [1] showed that if t is finite, then (X, t) is uniquely quasi-uniformizable. In [6] and [7], W. Lindgren gave examples where (X, t) is uniquely quasi-uniformizable with t infinite, and showed that the conjecture holds for R_1 spaces. The concept of locally quasi-uniform spaces was defined for T_1 spaces in [5], and it was shown that (X, t) admits a local quasi-uniformity with a countable base if and only if it is a Nagata first countable space.

A general introduction to quasi-uniform spaces may be found in [8].

2. Locally quasi-uniform spaces.

DEFINITION 1. Let X be a non-empty set and let ${}^{o}\!\! u$ be a filter on $X \times X$ such that:

- (i) $\Delta \subseteq U$ for every $U \in \mathcal{U}$, where $\Delta = \{(x, x) : x \in X\}$.
- (ii) For each $x \in X$ and $U \in \mathcal{U}$, there exists $V(x, U) = V \in \mathcal{U}$ such that $(V \circ V)[x] \subseteq U[x]$. Then \mathcal{U} is called a *locally quasi-uniform* structure for X. \mathcal{U} gives a topology

$$t_{\mathcal{U}} = \{ A \subseteq X : \text{ for every } x \in A \text{ there exists } U \in \mathcal{U} \text{ such that } U[x] \subseteq A \}.$$

It is clear that every quasi-uniform structure is a locally quasi-uniform structure. If we use a term without defining it, we are using the quasi-uniform space definition. We say that (X, \mathcal{U}) is *strongly complete* if every Cauchy filter converges.

LEMMA 1. Let
$$(X, t)$$
 be a topological space and let $\mathfrak{B} = \{U : U \supseteq \Delta \text{ and for every } x \in X, U[x] \in t\}.$

Received by the editors March 25, 1976.

Then \mathcal{B} is a base for a locally quasi-uniform structure \mathcal{FL} , and \mathcal{FL} is the finest compatible structure.

Proof. If $V \in \mathcal{B}$ and $x \in X$, put

$$U = [(X - V[x]) \times X] \cup (V[x] \times V[x]).$$

If $y \in X$, U[y] = X or V[x]. Thus $U \in \mathcal{B}$. Also, $(U \circ U)[x] = V[x]$. Hence \mathcal{B} is a base for a structure \mathcal{FL} . If \mathcal{U} is a compatible structure and $U \in \mathcal{U}$, $U \supseteq W$, the interior of U in $t^{-1} \times t$. $W[x] \in t$ for every $x \in X$ gives $W \in \mathcal{FL}$. Thus $\mathcal{U} \subseteq \mathcal{FL}$.

DEFINITION 2. [4] A locally quasi-uniform space (X, \mathcal{U}) has the Lebesgue property provided that if \mathscr{C} is a $t_{\mathcal{U}}$ -open cover of X, then there is a $U \in \mathcal{U}$ such that $\{U[x]: x \in X\}$ refines \mathscr{C} .

THEOREM 1. Let (X, \mathfrak{A}) be a locally quasi-uniform space.

- (1) If (X, \mathcal{U}) has the Lebesgue property, then (X, \mathcal{U}) is strongly complete.
- (2) \mathcal{FL} is a compatible strongly complete locally quasi-uniform structure.
- (3) \mathfrak{A} is pre-compact if and only if every ultrafilter on X is \mathfrak{A} -Cauchy.
- (4) If t_{n} is compact, every Cauchy filter converges.
- (5) $(X, t_{\mathbb{Q}})$ is compact if and only if \mathbb{Q} is strongly complete and pre-compact.
- (6) follows from (5) and the fact that the Pervin structure is pre-compact.
- (7) Suppose \mathscr{FL} is pre-compact. By (2), \mathscr{FL} is a compatible strongly complete structure. By (5), $t_{\mathscr{U}} = t_{\mathscr{FL}}$ is compact.

Proof. For (1), we note that the proof in [4] for quasi-uniform spaces carries over.

For (2), we show that \mathscr{FL} has the Lebesgue property and apply (1). If \mathscr{C} is an open cover and $x \in X$, then there exists $C_x \in \mathscr{C}$ such that $x \in C_x$. Let

$$U = \bigcup \{\{x\} \times C_x : x \in X\}.$$

 $U \in \mathcal{FL}$ and $\{U[x]: x \in X\}$ refines \mathscr{C} .

For (3) and (4), we note that the standard quasi-uniform space arguments hold.

- (5) follows from (3) and (4).
- (6) follows from (5) and the fact that the Pervin structure is pre-compact.
- (7) Suppose \mathscr{FL} is pre-compact. By (2), \mathscr{FL} is a compatible strongly complete structure. By (5), $t_{\mathcal{U}} = t_{\mathscr{FL}}$ is compact.

LEMMA 2. Suppose (X, t) has a finite compatible locally quasi-uniform structure \mathfrak{A} . Then $\mathscr{FL} = \mathfrak{A}$, and therefore t has only one compatible locally quasi-uniform structure.

Proof. $U = \bigcap \{V : V \in \mathcal{U}\} \in \mathcal{U}$ gives $\mathcal{U} = \{V : V \supseteq U\}$. Clearly, U[x] is the smallest open set containing x. Also, $\mathcal{U} \subseteq \mathcal{FL}$ by Lemna 1. If $A \in \mathcal{FL}$, $A \supseteq V$

where $V[x] \in t$ for every $x \in X$. Thus $V[x] \supseteq U[x]$ for every $x \in X$, and therefore $A \supseteq V \supseteq U$ gives $A \in \mathcal{U}$ or $\mathscr{FL} \subseteq \mathcal{U}$.

COROLLARY. If t is finite, (X, t) has only one compatible locally quasi-uniform structure.

Proof. If t is finite the Pervin structure is a finite compatible quasi-uniform structure.

DEFINITION 3. If $\{G_n\}$ is a sequence of open sets and $G_1 \subset G_2 \subset G_3 \subset \ldots$, it is called an *ascending sequence* of open sets.

LEMMA 3. Let (X, t) be a topological space with t infinite. There exists an ascending infinite sequence of open sets or there exists a descending infinite sequence of open sets.

Proof. Suppose t contains no ascending infinite sequence of open sets. Then $t-\{X\}$ has the same property. Thus every A in $t-\{X\}$ is contained in a maximal ascending chain in $t-\{X\}$. Let

 $\mathcal{M} = \{M: M \text{ is a maximal ascending chain in } t - \{X\}\}.$

If $M \in \mathcal{M}$, let $V_M = \bigcup \{V : V \in M\}$. Then $V_M \in t - \{X\}$. If $V_{M_1} \neq V_{M_2}$, $V_{M_1} \cup V_{M_2} = X$. For otherwise, M_1 would not be maximal in $t - \{X\}$. Let \mathcal{V} denote the set of distinct V_M , $M \in \mathcal{M}$.

Case 1. $\mathcal V$ is infinite. We show that $\mathcal V$ has the finite intersection property. If $\Phi=\bigcap_{i=1}^n V_{M_i}$, choose $V_M\neq V_{M_i}$, $1\leq i\leq n$. Then $V_M=V_M\cup\Phi=V_M\cup\bigcap_{i=1}^n V_{M_i})=\bigcap_{i=1}^n (V_M\cup V_{M_i})=\bigcap_{i=1}^n X=X$, a contradiction. We show that $\bigcap_{i=1}^{n-1} V_{M_i}\neq\bigcap_{i=1}^n V_{M_i}$. If equality holds, $\bigcap_{i=1}^{n-1} V_{M_i}\subseteq V_{M_n}$. Thus $V_{M_n}=V_{M_n}\cup(\bigcap_{i=1}^{n-1} V_{M_i})=X$, a contradiction. Since $\mathcal V$ is infinite, put $X_n=\bigcap_{i=1}^n V_{M_n}$ and $\{X_n\}$ is a descending infinite sequence of open sets.

Case 2. \mathcal{V} is finite. Since $t-\{X\}$ is infinite and each $V \in t-\{X\}$ is contained in V_M for some $V_M \in \mathcal{V}$, there exists $V_M \in \mathcal{V}$ such that an infinite number of members of $t-\{X\}$ are contained in V_M . Put $V_M = X_1$. Let

$$t_1 = \{V: V \in t - \{X\} \text{ and } V \subseteq X_1\}.$$

 t_1 is an infinite topology for X_1 . Repeat the argument just given for (X_1, t_1) and obtain a topological space (X_2, t_2) such that: (1) t_2 is infinite, (2) $X_2 \subset X_1 \subset X$, and (3) $X_2 \in t - \{X_1\} \subset t - \{X\}$. Using induction we obtain a descending infinite sequence of open sets.

THEOREM 2. A topological space (X, t) is uniquely locally quasi-uniformizable if and only if t is finite.

Proof. The Corollary gives one half of the theorem. Suppose t is infinite.

Case 1. t has a descending infinite sequence of open sets. We obtain a sequence $\{a_n\}$ of distinct points and a sequence $\{X_n\}$ of distinct open sets such that $a_n \in X_n$ and $a_n \notin X_m$ for m > n. If (X, t) is uniquely locally quasi-uniformizable, \mathscr{FL} is the Pervin structure, and therefore \mathscr{FL} is totally bounded. Let

$$U = \left[\bigcup_{i=1}^{n} \left(\{a_i\} \times X_i\right)\right] \cup \left[\left(X - \bigcup_{i=1}^{\infty} \{a_i\}\right) \times X\right].$$

 $U \in \mathscr{FL}$ so there exists A_1, \ldots, A_n such that $\bigcup_{i=1}^n A_i = X$ and $A_i \times A_i \subseteq U$. There exists j, $1 \le j \le n$, such that A_j contains infinitely many elements of $\{a_n\}$. Choose m > n such that $a_n, a_m \in A_j$. We have $(a_m, a_n) \in A_j \times A_j \subseteq U$ or $a_n \in U[a_m] = X_m$, a contradiction.

Case 2. t has an ascending infinite sequence of open sets. We obtain a sequence $\{a_n\}$ of distinct points and a sequence $\{X_n\}$ of distinct open sets such that $a_n \in X_n$ and $a_n \notin X_m$ for m < n. Now use the argument in Case 1.

REMARK. After looking at Lemma 3, one might wonder when (X, t) has an ascending infinite sequence of open sets. In [6], it is shown that every subset of (X, t) is compact if and only if every ascending open sequence is finite.

REFERENCES

- 1. C. Barnhill and P. Fletcher, Topological spaces with a unique compatible quasi-uniform structure, Arch. Math. 21 (1970), 206-209.
 - 2. R. Doss, On uniform spaces with a unique structure, Amer. J. Math. 71 (1949), 19-23.
- 3. P. Fletcher, Finite topological spaces and quasi-uniform structures, Canad. Math. Bull. 12 (1969), 771-775.
- 4. P. Fletcher and W. Lindgren, *Transitive quasi-uniformities*, J. Math. Anal. Appl. **39** (1972) 397–405.
- 5. W. Lindgren and P. Fletcher, Locally quasi-uniform spaces with countable bases, Duke Math. J. 41 (1974), 231-240.
- 6. W. Lindgren, Topological spaces with a unique compatible quasi-uniformity, Canad. Math. Bull. 14 (1971), 369-372.
- 7. —, Topological spaces with unique quasi-uniform structure, Arch. Math. 22 (1971), 417-419
- 8. M. G. Murdeshwar and S. A. Naimpally, *Quasi-uniform Spaces*, P. Noordhoff Ltd., Groningen, (1966).

Department of Mathematics University of Missouri-Rolla Rolla, Missouri 65401

DEPARTMENT OF MATHEMATICS SOUTHWEST MISSOURI STATE UNIVERSITY SPRINGFIELD, MISSOURI 65802