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ABSTRACT. The efforts to develop da mage models for ice cannot be disconnec ted 
from a better knowledge of the unda maged ice behaviour. In this respec t th e transient 
behaviour of polycrys ta lline ice still needs to be inves tiga ted. The present pa per is a 
contribution to the development of rheological models which can be used in varying 
load situ a ti ons. The deform a tion processes whi ch should be the found a tion of the 
models are described . The mod els of Le Gac and Du va l ( 1980) and of Sunder and Wu 
(1989a) a re tes ted aga inst two uniax ia l compression tes ts on isotropic g ra nular ice 
und er varying load . They fa il to describe bo th prima ry creep a nd the res ponse to 
increments/d ecrements of th e a pplied load . A new model, based on a d ecomposition of 
th e viscopl a ti c stra in into two component whi ch account sepa ra tel y fo r kinemati c 
and isotropi c ha rd ening, is shown to give better res ults. 

INTRODUCTION 

C ivil enginee ring problems in volving ice as a d a maging 
ma teria l have been recentl y addressed . At very high 
stra in r a tes brittle behav iour is pred omin a nt a nd 
ex isting mod els fo r continuous d a mage of rocks or 
ce ra mi cs (a nd possibly co nc re te ) can be adapted 
without a big ri sk. At mod era te stra in ra tes, of th e 
o rde r of 10 't Si , the ductile behaviour of ice cannot be 
neglec ted. If th e stead y cree p la w of und a m aged ice is 
now well es ta blished , a t leas t in the ra nge of stresses 
rel evant to enginee ring problems, including it in a 

d a mage mod el is no t stra ightforwa rd (Sinha, 1988; 
rVleyssonni er a nd Duval, 1989) . Concerning the ductil e 
brittle tra nsiti on zone, which is proba bly involved in 
mos t of th e ice-struc ture in te rac ti on even ts, the transien t 
behaviour of und a maged ice has been the object of 
ex tensive ex perimenta l and theo retical studies (Traet­

teberg a nd o th ers, 1975; Duval, 1978; Sin ha, 1978; Cole, 
199 1) a nd still needs to be in ves tiga ted (Gold , 1994) . So 
fa r, two kinds of m odels have been published whi ch 
d esc ribe th e tra nsient creep of ice by means of creep 
fun ctions (Sin ha , 19 78) or interna l sta te va ri a bles (Le 
G ac a nd Du val, 1980; Sunder a nd Wu , 1989a ) . 
Altho ugh th ese mod els a re quite different from each 
o ther , their respec ti ve a utho rs have shown them to work 
well in simple loading cases . In our opini on , their ability 
to reproduce ice behaviour correctl y in compl ex loading 
si tua tions rema ins to be proven. 

The present paper focuses onl y on models involving 
in te rn a l va ri a bl es , since th ey lead to co nstituti ve 
equ a tions whi ch ca n be eas il y impl em ented into 

numerical codes. They can summarize a nd bring out, a t 
the macroscopi c level, th e microscopic processes that 
control th e ice deform a ti on, a bri ef review of which is 
g ive n below . 

DEFORMATION MECHANISMS OF POLYCRYS­
T AL LINE ICE 

Single cryst a l defortnati on 

Th e ice Ih single crys tal d eforms essenti a ll y by slip on the 
basal pla ne (000 I ) norm al to the hexagona l symmetry 
axi s < 0001 > . Crys ta l well ori ented fo r basal g lide 
exhibit an accelerating transient creep until a stead y 
creep ra te, proportiona l to the sq ua re of the stress, is 
reached. The accelerating tra nsient creep is explained by 
th e increase in th e di slocation density up to a steady va lue 
(W eertm an, 1983) . According to Duva l a nd o thers (1983) 
th e non-basa l deforma ti on under a presc ribed strain ra te 
a t - 10°C, requires stresses 60 times la rger than that for an 
easy-g lid e o ri ented crys ta l. Data reviewed by th ese 
a u thors show tha t the stead y creep ra te of eas y-glide 
ori ented crystals, subject to a consta nt stress , can be more 
than 1000 times th a t of polycrys talline ice. 

Polycrys tal defortnation 

U nder stresses la rger th an 0.05 MPa at - 10°C (Duval and 
others, 1983), the deform ation of polycrys talline ice is due 
to the movement of dislocati ons in each gra in. Because of 
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the strong ani sotropy of ice single-crystals, the grains of 
polycrystalline ice have onl y two slip sys tems available for 
deform ation, and these are in the basal plane. Duval and 
others (1983 ) suggest that dislocation climb on planes 
normal to the basal plane, and possibly on the prisma tic 
planes, is the most likely process to accommodate a n 
imposed d eformation. Since th e dislocations experience a 
small resistance to g lide motion, the steady creep rate is 
then con trolled by dislocation climb. 

According to Duval a nd others ( 1983) , the initial 

strain rate of primary creep corresponds to that of the 

easy-glide oriented grains. Then, because of the grain 
anisotropy, the m acroscopically isotropic polycrys tal 
has to cope with the strain incompatibilities of easy­
glide vers us hard oriented crystals, which cause a n 
increasingly non-unifo rm stress field to d evelop at the 
grain scale. These interna l stresses oppose forw a rd 
d eform a tion , giving kinematic hardening. The recover­
able stra in observed when unload ing a polycrystal 
corresponds to the relaxation of th e internal stresses. It 
is m a n y times the pure elastic strain corresponding to 
the sam e loading conditions (Duval, 1978; Sinha, 1978; 

Ashby and Duval , 1985; Cole, 1991 ) . The energy 
storage inside the g rains, the release of which permits 
strain recovery, is generally expla ined by the bowing of 
dislocation segmen ts in a substructure network or by 
the piling of di slocations against obstacles such as grain 
bound a ri es and sub-bound ari es (Poirier , 1977) . The 
recovery processes limiting the stored energy level are, 
beside recrystalli z-atio n a nd microc racking which 
res ult in irreversible cha nges of the structure, disloca­
tion climb and possibly grain-bound a ry sliding. 

According to Sinha (1978), the delayed elastic strain 

has its origin in the latter mechanism. Sliding occurs at 

grain boundaries until local stresses, due to irregula riti es 
and triple junctions, increase to eq uilibrate the ap plied 
stress. C rysta l accom mod a tion being purely elastic, the 
resulting recoverable strain should be of the order of the 
pure elastic strain . This reasoning is consistent with 
Sinha's (1978) observations on columnar ice for short 
loading dura tions (10 min ). 

Along with the long-range processes which yield 
kinem atic hardening, short-range interactions between 
the moving dislocations and the crys tal lattice genera te 
friction forces which act independent of the direction of 
motion. According to Duval and others (1983), this 

isotropic ha rdening is responsible for the zero creep rate 
periods they observed during stress drop experiments. 
The relaxation of the internal stresses associa ted with 
isotropic ha rdening is linked to the recovery of the 
dislocation substructures. 

INTERNAL.ST ATE VARIABLE MODELS FOR ICE 

An interesting fea ture of such models is that they can be 
handled using the general framework of thermodynamics. 
They consist of constitutive and evolution equations 
which involve stress, strain and state variabl es which 
cha racterize the current state of work-hardening. The 
present stud y focuses on the models of Le Gac and Duval 
(1980) a nd Sunder and W u (1989a) . For con-venience 
they a re referred to as LGD and SSW models in the 
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following, and the same notation is used, when possible, 
for the two models. 

COlIllD.On bases for the lIlodels 

In the absence of microcracking, the minimum creep rate 
IS given by Norton-Hoffs law, expressed in a multiaxial 
form as 

(1) 

where i is the deviatoric part and J2(g) the second 
invariant of the applied stress tensor g. h is defined by 

J ( )2 - 3 (' ') - 3 a' . a' 2 g - 2 CTij . CTij - 2 = . = . (2) 

The parameter A is temperature dependent and the value 
of exponent n is close to 3. 

In the following we consider only deformation at a 
constant temperature. Also, we consider neither micro­
cracking nor the dynamic recrystallization processes 

which occur after the minimum creep rate has been 

reached. In this respect the minimum creep rate is then 
seen as a steady creep rate . 

The tota l strain ~ is split into a pure elastic &, and a 
visco-plas ti c to component as 

=p 

to =to +to . = =e =p 
(3) 

By convention the transient creep strain to is defined as 
=t 

to = E -to 
=t =p =v ' 

(4) 

where &, is the creep strain resulting from Eq uation ( I ) . 
The internal state va riables of the models are the visco­
plasti c strain to and the variables g and r which 
describe, resp~tively, the kinematic and isotropic 

hardening. 
The thermodynamic forces are the stress Q, the 

kinema tic internal stress X and the isotropic i~ernal 
stress R associated with g and r respectively . They are 
defin ed by the set of equations 

all! 
X=P---n , - ug 

(5) 

where Il!(&" T , g , r) , is the Helmotz free energy potential. 
If an expression for the dual dissipation potential, 

<P*(g, X, R) can be found , the evolution equations of the 
model are derived by applying the normality rule . 
H ence, 

E 
=p 

(6) 

Clausius-Duhem 's inequality is then automatically ver­
ified, provided tha t <po is positive, convex and null a t the 
origin (g = X = R = 0) . 
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The dissipation potential is written as the sum of a flow 
potential and a recovery term as 

cp' = cp' p + CP*r 

cp' p = n ~ 1 (J2(g - X) - R)n+l , (7) 

• = ~J (X)n+l + ~Rn+! 
CPr n+12= n+1 ' 

where (x) = x if x > 0; (x) = 0 if x ::; o. 
The free energy, W, is taken as 

(8) 

where we denotes the component relative to the purely 

elastic (Hookean) deformation. The model parameters 
A , B , C , H , K are positive constants (which may 
depend on the temperature T ). 

Since Norton's law (1) has to be satisfied at steady 
state, the fo llowing relations hold: 

A. -l/ n = A - l / n + B- 1/ n + C- 1/ n , 

X- I = (~) l / n I 

B g , (9) 

( 

_ ) l /n 

R = ~ h(g) , 

in which X and R are the steady values of X and R. 
Adopting the value n = 3, the multiaxial model 

derived from Equations (7) and (8) reduces, in the case of 
uniaxial compression, to 

10 = Ee + lOp , 

Ee =a/ E, 
. 3 a-X 

lOp = A(la - XI - R) la _ XI ' 
. . 3 

X=H(Ep-BX ), 

R = K (IEpl - CR3
) , 

(10) 

where a, X, 10, Ee, lOp are the tensor components relative 
to the direction ofloading, and E is the Young's modulu . 

SSW lIlodel 

The dis ipation potential is decompo ed into a component 
cpv' which corresponds to the steady-state flow , and a 
transient flow potential, CPt', as 

cp' =cP' y + cP't , 

• -~J (a)n+! 
CPY- n+1 2 = ' (11) 

• A h(Q - xt+! 
CPt=n+l Rn 

M eysonniet and Goubert : Creep of polycrystalline ice 

The las t expression im plie th a t th e iso tropic stress R is 
stri ctly positi ve. Using the normality rul e, it is shown that 
the internal vari able Q is identical to th e transient tra in 
10 as defined by Equation (4) . 
=t 

Th e free energy fun ction is 

(12) 

where H is a positive constant a nd 9 is a function of r 

onl y. As a conseq uence of ~t = g and Eq ua tion (12 ), the 
transien t stra in is tota ll y recovera ble. 

Th e ra te eq uation for R is taken ind ependen tl y as 

(13) 

Since h() is strictly pOSItIve, the condition R > 0 is 
fulfill ed as long as the initi a l value, RQ, of R is positi ve. 

Equation ( 13) is essenti a ll y the same as Equation (53 ) 
in Sunder and VVu (1989b), on the obvious condition th a t 
the equivalent quantiti es a eq a nd Eeq , d efined in the 
original paper, are effectively tensor invariants (that 

reduce to lal and 1101 in the uniaxial case, instead of a and 
10, as stated by these authors) . The uniaxial equations 
deri ved from Equations ( 11 ), ( 12 ) and (13) a re, with 
n = 3, 

10 = Ee + Ev + Et , 

Ee =a/E, 
. - 3 
Ey = Aa , 

X=HEt , 

R =K IEtl 
la-XI 

(14) 

The last equ ation does not ma tch identicall y Equation 
(41 ) in Sund er and Wu (1989a), which is given for 
arbitrary loading histori es and in which the absolute 
values a re dropped. Nevertheless the two formulations a re 
eq uivalen I if n = 3 a nd as lo ng as Ra > 0 sin ce 
Et/(a - X ) = A(a - X)2/ R 3 . 

EV ALUA TION OF THE MODELS 

The LGD and SS\V models have been tes ted by Sunder 
and Wu ( 1990) against the mas ter curves drawn by 
Ashby and Duval (1985) from the data of Jacka (1984) 
obtained from constant stress ex periments. The two 
models have a suffici ent number of parameters to provide 
a good fit to th ese relatively simple and smooth ma ter 
curves . The present ana lysis examines their ability to 
reproduce rela tively complex load ing cases . 

Experilllental data 

Since published d a ta concerning va rying load ex peri­
ments a re scarce, a seri es of uniaxia l compression tests was 
performed. Samples of granula r iso tropic ice were 
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prepared by freez ing a mi x ture of sieved crys ta ls and 
deaerated-deionized wa ter. Th e ice density was 0.914 ± 
O.OOS. Specimens of two a verage g ra in-sizes, I and 

3.S mm , we re prepa red. Th e m ean gr a in-size was 
determined by counting the number of grains in a given 
area on pho togra phs of thin sec tions cut from each 
specim en. In ord er to o btain cylindri cal specim ens 
approxima tely 120 mm long and 65 mm in di a meter, 
the moulded samples were frozen on a circula r steel 
platen , desig ned to fit the upper platen of the tes ting 
machine, then m achined on a la the. The specimens were 
stored a t - Iooe during 2 days before tes ting . 

The tests were perform ed in a cold room a t the same 
tempera ture with a lever opera ted mac hine. The a xi a l 
force was m easured by a load transducer mounted und er 

the lower fix ed steel pla ten . The axia l stra in was measured 
by two or three L VDTs moun ted on the middle part of the 
specimens. The error in th e stra in measurements was 
within ± 2 x 10-5

. The stress a nd stra in measurements 
were stored in a da ta acqu isition sys tem. 

Although the specimens were centered carefull y, mos t 

tests exh ibi ted a la rge difference between the strains 
measured for each specimen (i .e. during the same tes t, a t 
the same time). This reveals a lack of uniformity in the 
strain meas urem ents, which may h a ve severa l causes, e.g . 
depa rture of th e load from uniaxia l, th e testing machine 

being too compliant a t high stresses; misalignment of the 

strain transdu cers; or small inhomoge neiti es in th e 
specimens, increasing during the tes t. This discrepa ncy 
can be qu a ntified by the ra tio ~E/E = (Emax - Emin)/ 

(Emax + Emin ), where Emax a nd Emin a re th e maximulTI and 
minimum strains, measured fo r a spec imen, a t the end of 

the first loading ph ase. D. f./f. was less tha n 10% for onl y 

one ha lf of the tests. Compared with this, the error 

associa ted with the measuring devi ce ( ± 2 x 10 5
) was 

neg ligible, sin ce the to tal stra ins were always hig her th a n 
3 x 10 3

. 

For compa rison with mod el predi c tions, two tes ts were 

used consisting of constant stress loading fo llowed by to ta l 

unloading; during T es t 2 two stress jumps a nd drops were 
appli ed during unloading. Th e corres ponding measured 
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Fig. 1. T est 1 LV D T creep and recovery measurements; 
the loading conditions are shown by shaded area (1.65-
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Fig. 2. T est 2 L VDT measurements with stress Jumps 
during unloading and mean curve used Jar model 
comparisons; the Loading conditions are shown by shaded 
area ( 1.54, 0.05, 0.98, 0.05, 0.93, 0.05 MPa) . 

stra in curves a re shown in Fig ures 1 a nd 2, a long with the 
loading hi stori es. T es t I (g rain-size I mm) was selected 
because of its very low ra tio ~E/f. « 2% ). T est 2 was 
ta ken as representa ti ve of "accepta ble" tes ts, with 

D.f./ f. = 12%, for specimens of average grain dia meter 
3.S mm. 

The model evalua ti o ns were made by using, for each 
tes t, th e mean a rithmeti c stra in curve calcul a ted as the 
point-by-point average (a t the same time) of the stra ins 
measured with the ex tensomete rs. N o smoothing p roce­

dure was used in the calcula ti on o[ this curve . The mean 

curve rela tive to T es t 2 is shown in F igure 2; tha t of T es t I 
was not dra wn on Figure I , fo r cl a rity. 

NUlllerical solutions 

Both models were a pplied using a n implicit scheme [o r the 
integ ra ti on of th e se ts of difTerentia l equations. An 
ad a ptive time step was used so as La ensure nu merical 
sta bility . The adjustment of model pa ra meters was done 
using a n iterative procedure whi ch examin ed each 

para meter in turn and compu ted the bes t es timate so as 

to minimize the mean sq ua re devia ti on between the 
co mputed stra in a nd the mean stra in c urve. T hi s 
procedure does no t require tha t th e mean strain curve 
be sm oo thed before processing, since it consti tutes a 
regression proced ure by itself. 

The values of para meters H a nd K (Equa tions (10)­
( 14)) di splayed on the fi gures a re sca led wi th the 
conventiona l Yo un g's modulus E = 9S00 MPa (Sinh a , 
1979) . Th e fluidit y pa l'ameters A, A, B, e (Equ a ti ons 

- !l 3 I 
( 1), (10), ( 14 )) a re scaled with Alh = 6 x 10 MPa s , 
where th sta nds for th eo re ti cal. Thi valu e was deri ved 
from our experimenta l da ta a t - lOoC a nd is a little less 

th a n tha t given by J acka (1984) . 

Evaluation of LGD lIlodel 

""hen optimized to fit onl y the loading pa rt of T es t I , the 

model exhibits a relaxation time th a t is too long for the 
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Fig . 3. Comparison oJ Le Gac and Duval's model with 
T est 1 data. a, computed strain curve fitted on the entire 
observed curve; b, computed recovered stmin when the 
parameters are optimized to fit only the loading branch. 

recoverable part of the tra nsient strain (see Fig. 3, curve 
(b» . This trend is removed when fitting the model ove r 
the whole curve, but then th e stead y state is reached too 
early at a stra in near 4 x 10- 3 (instead of I % as is 
generally agreed ) with a strain rate a li tt le too high (see 

Fig. 3, curve (a )) . 
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Fig. 4. Comparison oJ Le Cac and Duval's model with 
T est 2 data. Optimized strain curve (thick curve) . 

Figure 4 shows that the model fails to simul a te the ice 

response to the stress jumps appl ied during the unloading 
phase of T est 2. The corresponding strain in crements a re 
lower than expec ted . Moreover since the model has to 
respond quickl y to applied stress increments, its response 
on first loading is also very fast and does not give a good 
d escription of primary creep (as in T est I ). 

This behaviour is exp la ined by the fact that all the 
rapid strain variations fo llowing stress cha nges a re 
controlled by the fluidity parameter, A, in Equation 
(10), which characterizes the mobility of the di sloca tions 
in the basal planes of the crys tals. 

Meysonnier and GOllbert: Creep of flolycrystalline ice 

Evaluation of SSW Inodel 

The abili ty of the model to d esc ribe th e loading­

unloading cycle of T es t I was evaluated by computing 

the optimized se ts of paramete rs which fit eith er the whole 
cycle, o r onl y the stra in recovery branch. The results 
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Fig. 5. Comparison oJ Sunder and Wu's model with Test 
1 data. a, computed strain curve, fitted on entire observed 
curve, along with its transient and steady -creep compo­
nents,' b, computed primmy creep branch with parameters 
optimized to fit only the observed strain recovery. 

shown in Figure 5 indicate that th is model cannot 
reprod uce ad eq uately bo th the loading and unloading 

parts of the stra in curve. It can be argued that this res ult 
has no genera l \'a lue since it concerns a single ex periment. 
Nevertheless, the shape shown in Figure I is always 
observed when granular ice is unloaded after th e steady 
creep rate has been reached . The two simlllations shown 

in Sunder a nd Wll ( 1989a, Fig.8), conce rn tests in which 

the stead y sta te was not reached when unloading occllred 
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Fig. 6. Com/Jarison if Sunder and Wu's model with T est 
2 data. Optimized strain curve and transient and steady­
creep components. 
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at a strain of 10--4, and seem reasonably good because the 
creep parameter A was overestimated by a factor 3. 

When tested aga inst Test 2 (see Fig. 6), the model 
shows a good a bility to reproduce the fas t res ponse to the 
increments of stress which were made during unloading. 
In contrast, the steady creep rate is too high and attained 
too quickly , at a strain of about 1.5 x 10-3

, which renders 
the computed primary creep curve quite unrealisti c. 

For the SSW mod el the visco pl as ti c strai n is 
decomposed as Ep = Ev + Et, and a ll th e rapid variations 
in the tota l strain rate are governed primarily by Et. 

Because Et reaches its limiting value very soon on first 
loading, th e steady state is achieved too quickl y. In 
addition, since the observed recoverable strain is small , 
and the model assu mes that Et is totally recoverable, th e 
steady state is obta ined a t too Iowa value of the total 
strain. 

ALTERNATIVE MODEL 

From this bri ef evaluation it appears that LGD and SSW 
models are una ble to provide a correc t description of both 
fast responses to stress jumps and primary creep. 

In order to uncouple the first loading and long-term 
behaviour from the short-term response to fast changes in 
stress, we propose to split the viscoplastic strain, E = 

=p 
~ - t" into two components as 

(15) 

where ~k is related to the kinema tic hardening processes 
and provid es the fast varia tions of strain , and E. is related 

=1 

to the iso tropic hardening. The dissipation poten tial is 
then decomposed as 

<p* = <p* k + <p*j , 

* = ~J (0' - x t+l +~J (X) n+l 
<Pk n+ l 2= = n+ 1 2 = ' (16) 

* = ~ (J (0' ) - R )n+l + ~ Rn+! 
<PI n+ l 2= n+l ' 

with (x) = x if X > 0; (x) = 0 if X :::; 0, and the free 
energy poten tia l is wri tten as 

(17) 

where (g, X) and (r , R) are conjugate internal variables 
relative to kinematic and isotropic hardening. 

Using Equations (16) and (17) a nd applying the 
norma lity rule, lead to the mul tiaxial eq uations of the 
model. In the uniaxial case, with n = 3, they reduce to 

60 

E = Ee + tk + tj , 
Ee =O'IE, 
1\ = Ak(O' - X )3 , 

fi =Ai(IO'I- R)3[:[ , 

X =H(Ek - BX3) , 

R = K (lfd - CR3
) , 

(18) 
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Fig. 7. Comparison of the proposed model with T est 1 
data. Optimized strain curve and strain components. 

where 0' , X , E, Ee , Ek, Ei are the tensor components along 
the direc tion of loading. 

Since the model has to be equivalent to Norton's law 
( I ) at steady-state (X = 0, R = 0) , the following con­
straint on the fluidities can be derived 

a nd the steady values of the internal stresses are 

x = 0' 1(1 + (BI Ak)1/3 ), 

R+O'/( 1 + (C/Ai )1 /3) . (20) 

The physical interpretation which can be given is that the 
tk component, which includes all the kinematic effec ts, is 
produced only by a fraction of the total mobile 
disloca tions . These disloca tions are trapped in the 
networks and pile-ups capable of storing energy. The 
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Fig. 8. Comparison of the proposed model with T est 2 
data . Optimized strain curve and strain components. 
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ra te a t which this energy is stored and released is 
controlled by glide in the basal planes . A part of Ek is 
unrecoverable as dislocations can escape (by climb) from 
the substructure traps. In that sense, the model for Ek is 
the same as in LGD model, except tha t the isotropic 
ha rd ening ac ting on th e basa l m ove m en t of the 
dislocations is neglected . The second component Ei ca n 
be seen as the deforma tion resul ting from the fraction of 
dislocations whose basal motion is impeded by local 
kinema tic stresses and which escape directly by climb, 
taking no part in the anelas ti c processes. It is subject to 

iso tropic hardening, which increases with the disloca tion 
density. 

Compari son of this model with experim ental d a ta 
from T est 1 and T es t 2 is shown in Figures 7 and 8. T es t I 
is very well rep rod uced by the model, wi th paramete rs 
optimized to fit onl y the loading part of the stra in curve. 
For T es t 2, the strain response to stress jumps during total 

unloading is quite sa tisfacto ry as well as the simula tion of 
the primary creep curve. Clearl y, better res ults should be 
achieved if Ek and Ei were described by a full LGD model, 
but with a major price to pay as regards to the great 
number of parameters to deal with. 

DISCUSSION 

Contrary to the SSW model, the LGD and the proposed 
models do not involve explicitly the transient creep strain 
Et in their formulations. For these models, Et must be 
calculated as Et = E - Ee - Aa3t. In the LGD model, E is 
the solution of Equations (10) and A is given by Equa tion 
(9) . In the present model the corresponding equa tions are 
(18) and (19). 

Sinha 's (1979 ) equa tion gives the tota l strain as 
E = Ee + Ed + Ev wh ere Ev is the (stead y) creep strain 
resulting from Equa tion ( I ) . The delayed elas ti c strain 
Ed is thus formally identical to Et as defin ed by Equa tion 
(4) . This componen t, as well as the a nelas ti c moduli 
studied by Gold and Trae tteberg (1975 ), exhibits a n 
exponenti a l time dependence in the form Exp (-a t 1/3) 

(where a is a tempera ture-dependent para meter) . In the 
absence of dislocation creep and recovery processes, the 
present model, with Ai = B = 0 in Equ a tions (18), does 
not involve the sam e time dependence, since it then 
reduces to E= Ee +Ek and t\= Ak(a - H Ek)3 . Never­
theless this model was shown to be a ble to give 
acceptable responses to varying loads, at the scale of 
the to tal strains achieved during the tes ts (E 2: 5 x 10- 3

) 

and for loading dura tions higher than three hours. T o 
conform to Sinh a's (1979) or Gold and Trae tteberg's 
(1975) results, while keeping the fra mework of internal 
sta te varia ble models, more complexity must be added in 
the formula tion of the kinema tic stra in component. The 
SSW model and Sinha's ( 1979) equa tion , describe the 
transient creep stra in , or the delayed elas tic strain, as 
to ta lly recoverable. This is not the case for the LGD a nd 
th e proposed models, in which recove ry processes for 
kinematic hardeni ng, and the existence of iso tropi c 
ha rdening, render part of the transien t strain unrecover­
able. This la tter point seems to be in accordance with 
our o bse rvations (i. e. for to ta l strains higher tha n 
5 x 10-3) . 

M eysonnier and Goubert: Creep of poLycrystalline ice 

CONCLUSION 

An evaluation of the models of Le Gac a nd Duval ( 1980) 
and Sunder and Wu ( 1989a) has been presented. It was 
based on the simula tion by the models of two uni axia l 
compression tests performed on isot ropic granula r ice 
und er varying load a t - 10°C. Examin a tion o[ the 
compu ted optimized strain curves showed th at the two 
models fail to reproduce correctl y both the fas t va ri a tions 
of strain following stress jumps, and prima ry creep. 

A new model, involving six para meters (ins tead of fi ve 
for LGD model a nd four for SSW model), based on a 
decomposition of the viscoplas tic strain into two com­
ponents which account separa tely [or the kinema ti c a nd 
iso tropic hardenings , was shown to improve the qua lity of 
the simula tions. 

Much work remains to be done to obtain the reli able 
data req uired to confirm the validity of this model for 

uniaxia l situ ations involving rela ti vely high to ta l strains, 
a nd to es tablish its co rres pond ence wi th rheologica l 
models using delayed elasti c and pi a ti c terms. 
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