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Transient creep of polycrystalline ice under uniaxial
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variable models
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ABSTRACT. The efforts to develop damage models for ice cannot be disconnected
from a better knowledge of the undamaged ice behaviour, In this respect the transient
behaviour of polycrystalline ice still needs to be investigated. The present paper is a
contribution to the development of rheological models which can be used in varying
load situations. The deformation processes which should be the foundation of the
models are described. The models of Le Gac and Duval (1980) and of Sunder and Wu
(1989a) are tested against two uniaxial compression tests on isotropic granular ice
under varying load. They fail to describe both primary creep and the response to
increments/decrements of the applied load. A new model, based on a decomposition of
the viscoplastic strain into two components which account separately for kinematic
and isotropic hardening, is shown to give better results.

INTRODUCTION

Civil engincering problems involving ice as a damaging
material have been recently addressed. At very high
strain rates brittle behaviour is predominant and
existing models for continuous damage of rocks or
ceramics (and possibly concrete) can be adapted
without a big risk. At moderate strain rates, of the
order of 10 *s !, the ductile behaviour of ice cannot be
neglected. If the steady creep law of undamaged ice is
now well established, at least in the range of stresses
relevant to engineering problems, including it in a
damage model is not straightforward (Sinha, 1988;
Meyssonnier and Duval, 1989). Concerning the ductile
brittle transition zone, which is probably involved in
most of the ice-structure interaction events, the transient
behaviour of undamaged ice has been the object of
extensive experimental and theoretical studies (Traet-
teberg and others, 1975; Duval, 1978; Sinha, 1978; Cole,
1991) and still needs to be investigated (Gold, 1994). So
far, two kinds of models have been published which
describe the transient creep of ice by means of creep
[unctions (Sinha, 1978) or internal state variables (Le
Gac and Duval, 1980; Sunder and Wu, 1989a).
Although these models are quite different from ecach
other, their respective authors have shown them to work
well in simple loading cases. In our opinion, their ability
to reproduce ice behaviour correctly in complex loading
situations remains to be proven.

The present paper focuses only on models involving
internal variables, since they lead to constitutive
equations which can be easily implemented into
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numerical codes. They can summarize and bring out, at
the macroscopic level, the microscopic processes that
control the ice deformation, a briel review of which is
given below.

DEFORMATION MECHANISMS OF POLYCRYS-
TALLINE ICE

Single crystal deformation

The ice Th single crystal deforms essentially by slip on the
basal plane (0001) normal to the hexagonal symmetry
axis <0001>. Crystals well oriented for basal glide
exhibit an accelerating transient creep until a steady
creep rate, proportional to the square of the stress, is
reached. The accelerating transient creep is explained by
the increase in the dislocation density up to a steady value
(Weertman, 1983). According to Duval and others (1983)
the non-basal deformation under a prescribed strain rate
at —10°C, requires stresses 60 times larger than that for an
easy-glide oriented crystal. Data reviewed by these
authors show that the steady creep rate of easy-glide
oriented crystals, subject to a constant stress, can he more
than 1000 times that of polycrystalline ice.

Polycrystal deformation
Under stresses larger than 0.05 MPa at —10°C (Duval and
others, 1983), the deformation of polycrystalline ice is due

to the movement of dislocations in each grain. Because of

55


https://doi.org/10.3189/1994AoG19-1-55-62

Meysonnier and Goubert: Creep of polyerystalline ice

the strong anisotropy of ice single-crystals, the grains of
polycrystalline ice have only two slip systems available for
deformation, and these are in the basal plane. Duval and
others (1983) suggest that dislocation climb on planes
normal to the basal plane, and possibly on the prismatic
planes, is the most likely process to accommodate an
imposed deformation. Since the dislocations experience a
small resistance to glide motion, the steady creep rate is
then controlled by dislocation climb.

According to Duval and others (1983), the initial
strain rate of primary creep corresponds to that of the
easy-glide oriented grains. Then, because of the grain
anisotropy, the macroscopically isotropic polycrystal
has to cope with the strain incompatibilities of easy-
glide versus hard oriented crystals, which cause an
increasingly non-uniform stress field to develop at the
grain scale. These internal stresses oppose forward
deformation, giving kinematic hardening. The recover-
able strain observed when unloading a polycrystal
corresponds to the relaxation of the internal stresses. It
is many times the pure elastic strain corresponding to
the same loading conditions (Duval, 1978; Sinha, 1978;
Ashby and Duval, 1985; Cole, 1991). The energy
storage inside the grains, the release of which permits
strain recovery, is generally explained by the bowing of
dislocation segments in a substructure network or by
the piling of dislocations against obstacles such as grain
boundaries and sub-boundaries (Poirier, 1977). The
recovery processes limiting the stored energy level are,
beside recrystalliz-ation and microcracking which
result in irreversible changes of the structure, disloca-
tion climb and possibly grain-boundary sliding.

According to Sinha (1978), the delayed elastic strain
has its origin in the latter mechanism. Sliding occurs at
grain boundaries until local stresses, due to irregularities
and triple junctions, increase to equilibrate the applied
stress, Crystal accommodation being purely elastic, the
resulting recoverable strain should be of the order of the
pure elastic strain. This reasoning is consistent with
Sinha’s (1978) observations on columnar ice for short
loading durations (10 min).

Along with the long-range processes which yield
kinematic hardening, short-range interactions between
the moving dislocations and the crystal lattice generate
friction forces which act independent of the direction of
motion. According to Duval and others (1983), this
isotropic hardening is responsible for the zero creep rate
periods they observed during stress drop experiments.
The relaxation of the internal stresses associated with
isotropic hardening is linked to the recovery of the
dislocation substructures.

INTERNAL-STATE VARIABLE MODELS FOR ICE

An interesting feature of such models is that they can be
handled using the general framework of thermodynamics.
They consist of constitutive and evolution equations
which involve stress, strain and state variables which
characterize the current state of work-hardening. The
present study focuses on the models of Le Gac and Duval
(1980) and Sunder and Wu (1989a). For con-venience
they are referred to as LGD and SSW models in the
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following, and the same notation is used, when possible,
for the two models.

Common bases for the models

In the absence of microcracking, the minimum creep rate
is given by Norton-Hofl’s law, expressed in a multiaxial
form as

$AT ()"

B

: (1)

Y

where ¢ is the deviatoric part and Jy(g) the second
invariant of the applied stress tensor g. J is defined by

Ja(g) =3 (ay' - o) =82 : 2. (2)

The parameter A is temperature dependent and the value
of exponent n is close to 3.

In the following we consider only deformation at a
constant temperature. Also, we consider neither micro-
cracking nor the dynamic recrystallization processes
which occur after the minimum creep rate has been
reached. In this respect the minimum creep rate is then
seen as a steady creep rate.

The total strain ¢ is split into a pure elastic ¢ and a
visco-plastic €, component as

o (3)
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By convention the transient creep strain ¢ is defined as

A N ¥ S

where € is the creep strain resulting from Equation (1).
The internal state variables of the models are the visco-
plastic strain & and the variables @ and r which
describe, respectively, the kinematic and isotropic
hardening.

The thermodynamic forces are the stress g, the
kinematic internal stress X and the isotropic internal
stress R associated with @ and 7 respectively. They are
defined by the set of equations

aov v ov
= np— X =p—» = p—
5 page y BT Pgg R=g or’ (5)

where ¥(e , T, a,r), is the Helmotz free energy potential.

If an expression for the dual dissipation potential,
¢*(g, X, R) can be found, the evolution equations of the
model are derived by applying the normality rule.

Hence,

_Btp* - dp* 3 By
5% &= ax =" O

{}=3

Clausius-Duhem’s inequality is then automatically ver-
ified, provided that ¢* is positive, convex and null at the

origin (¢ = X = R=0).
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LGD model

The dissipation potential is written as the sum of a flow
potential and a recovery term as

" =", + p*,
* A n+l
wp=n+lLMg*£%—ﬂ ) (7)
B (@
. X n+1 Rn+1 ,
P n+1h@; el

where (z) =z ifz > 0; (z) =0ifz < 0.

The free energy, ¥, is taken as

p¥ = pWe(e ) +3Ha : a+1Kr?. (8)

where W, denotes the component relative to the purely
elastic (Hookean) deformation. The model parameters
A, B, C, H, K are positive constants (which may
depend on the temperature 7).

Since Norton’s law (1) has to be satisfied at steady
state, the following relations hold:

A_l/" :A_I/" +B71/n JrC—l/'n,

-\ 1/n
_ A ,
g = (E) ) (9)

A 1/n
R=(6) Jz(g),

in which X and R are the steady values of X and R.

Adopting the value m = 3, the multiaxial model
derived from Equations (7) and (8) reduces, in the case of
uniaxial compression, to

119

€E=¢€e 1+ €,

e=0/E,

3 0—X
jo—X]°

& =A(lo— X| - R)
X =H(¢, — BX®),
R =K(|&| - CR),

where o, X, €, €, €, are the tensor components relative
to the direction of loading, and E is the Young’s modulus.

SSW model

The dissipation potential is decomposed into a component
" which corresponds to the steady-state flow, and a

transient flow potential, ¢ *, as

o' =¢", + ¥,

* A v

©y =n—+1J2(g) o (11)
. A JQ(g_é)n‘H

P Tn+1 H® ’
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The last expression implies that the isotropic stress R is
strictly positive. Using the normality rule, it is shown that
the internal variable « is identical to the transient strain
¢, as defined by Equation (4).

The free energy function is

a+g(r), (12)

i
p¥ = pU,(e) +-2-Hc_t :

where H is a positive constant and g is a function of r
only. As a consequence ()i‘gt = a and Equation (12), the
transient strain is totally recoverable,

The rate equation for R is taken independently as

B= 2 JQ—(;)_ ) (13)
3 hlg—X) L
Since Jp() is strictly positive, the condition B >0 is
fulfilled as long as the initial value, Ry, of R is positive.
Equation (13) is essentially the same as Equation (53)
in Sunder and Wu (1989b), on the obvious condition that
the equivalent quantities Teq and €., defined in the
original paper, are effectively tensor invariants (that
reduce to || and |¢| in the uniaxial case, instead of ¢ and
€, as stated by these authors). The uniaxial equations
derived from Equations (11), (12) and (13) are, with
W=

L

€=¢€ + 6+ €,

€ =0/E,

é, =Ad?, (14)
3

.

El:A(oR ) ‘

X =Hg,

5 1o &

RfKM_XV

The last equation does not match identically Equation
(41) in Sunder and Wu (1989a), which is given for
arbitrary loading histories and in which the absolute
values are dropped. Nevertheless the two formulations are
equivalent if =3 and as long as Ry >0 since

&/(c— X) = A(oc — X)*/R®.

EVALUATION OF THE MODELS

The LGD and SSW models have been tested by Sunder
and Wu (1990) against the master curves drawn by
Ashby and Duval (1985) from the data of Jacka (1984)
obtained from constant stress experiments. The two
models have a sufficient number of parameters to provide
a good [it to these relatively simple and smooth master
curves. The present analysis examines their ability to
reproduce relatively complex loading cases.

Experimental data
Since published data concerning varying load experi-
ments are scarce, a series ol uniaxial compression tests was

performed. Samples of granular isotropic ice were
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prepared by freezing a mixture of sieved crystals and
deaerated-deionized water. The ice density was 0.914 +
0.005. Specimens of two average grain-sizes, | and
3.5mm, were prepared. The mean grain-size was
determined by counting the number of grains in a given
area on photographs of thin sections cut from each
specimen. In order to obtain cylindrical specimens
approximately 120mm long and 65mm in diameter,
the moulded samples were frozen on a circular steel
platen, designed to fit the upper platen of the testing
machine, then machined on a lathe. The specimens were
stored at —10°C during 2 days before testing.

The tests were performed in a cold room at the same
temperature with a lever operated machine. The axial
force was measured by a load transducer mounted under
the lower fixed steel platen. The axial strain was measured
by two or three LVDTs mounted on the middle part of the
specimens. The error in the strain measurements was
within +2 x 10 °. The stress and strain measurements
were stored in a data acquisition system.

Although the specimens were centered carefully, most
tests exhibited a large difference between the strains
measured for each specimen (i.e. during the same test, at
the same time). This reveals a lack of uniformity in the
strain measurements, which may have several causes, e.g.
departure of the load from uniaxial, the testing machine
being too compliant at high stresses; misalignment of the
strain transducers; or small inhomogeneities in the
specimens, increasing during the test. This discrepancy
can be quantified by the ratio Ae/e = (€max — €min)/
(€max + Emin ), Where €y and €y are the maximum and
minimum strains, measured for a specimen, at the end of
the first loading phase. Ae/e was less than 10% for only
one half of the tests. Compared with this, the error
associated with the measuring device (+2 x 1075) was
negligible, since the total strains were always higher than
5 107

For comparison with model predictions, two tests were
used consisting of constant stress loading followed by total
unloading; during Test 2 two stress jumps and drops were
applied during unloading. The corresponding measured

Test 1

¢ grain 1 mm
T=-10°C

1
n

T
stress (MPa)

0 2 4 6 8 10 12 14 16
time (hour)

Fig. 1. Test 1 LVDT creep and recovery measurements;
the loading conditions are shown by shaded area (1.65—
0.07 MPa).
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stress (MPa)
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Fig. 2. Test 2 LVDT measurements with stress jumps
during unleading and mean curve used for model
comparisons; the lvading conditions are shown by shaded

area (1.54, 0.05, 0.98, 0.05, 0.93, 0.05 MPa).

strain curves are shown in Figures 1 and 2, along with the
loading histories. Test 1 (grain-size 1 mm) was selected
because of its very low ratio Aefe (<2%). Test 2 was
taken as representative of “acceptable” tests, with
Ae/e = 12%, for specimens of average grain diameter
3.5 mm.

The model evaluations were made by using, for each
test, the mean arithmetic strain curve calculated as the
point-by-point average (at the same time) of the strains
measured with the extensometers. No smoothing proce-
dure was used in the calculation of this curve. The mean
curve relative to Test 2 is shown in Figure 2; that of Test |
was not drawn on Figure 1, for clarity.

Numerical solutions

Both models were applied using an implicit scheme for the
integration of the sets of differential equations. An
adaptive time step was used so as to ensure numerical
stability. The adjustment of model parameters was done
using an iterative procedure which examined each
parameter in turn and computed the best estimate so as
to minimize the mean square deviation between the
computed strain and the mean strain curve. This
procedure does not require that the mean strain curve
be smoothed before processing, since it constitutes a
regression procedure by itself.

The values of parameters H and K (Equations (10)-
(14)) displayed on the figures are scaled with the
conventional Young's modulus £ = 9500 MPa (Sinha,
1979). The fluidity parameters A, A, B, C (Equations
(1),(10),(14)) are scaled with Ay, = 6 x 10 °MPa *s ',
where th stands for theoretical. This value was derived
from our experimental data at ~10°C and is a little less
than that given by Jacka (1984).

Evaluation of LGD model

When optimized to fit only the loading part of Test 1, the
model exhibits a relaxation time that is too long for the
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Fig. 3. Comparison of Le Gac and Duval’s model with
Test | data. a, compuled strain curve fitted on the entire
observed curve; b, compuled recovered strain when the
parameters are optimized o fit only the loading branch.

recoverable part of the transient strain (see Fig. 3, curve
(b)). This trend is removed when fitting the model over
the whole curve, but then the steady state is reached too
carly at a strain near 4 x 107 (instead of 1% as is
generally agreed) with a strain rate a little too high (see
Fig. 8, curve (a)).

5 T T T T T T T T sy T T
Test 2 LGD |

strain (x 10 )
oY
T

w
T

AN A=307,8 An
B= 2,92 ém
C=1752As
A= 0924,
H=0,1168 E -
K=0,0093 E

i g I o o I
0 1 2 3 4 5 6
time (hour)

Fig. 4. Comparison of Le Gac and Duval’s model with
Test 2 data. Optimized strain curve ( thick curve).

Figure 4 shows that the model fails to simulate the ice
response to the stress jumps applied during the unloading
phase of Test 2. The corresponding strain increments are
lower than expected. Moreover since the model has to
respond quickly to applied stress increments, its response
on first loading is also very fast and does not give a good
description of primary creep (as in Test 1).

This behaviour is explained by the fact that all the
rapid strain variations following stress changes are
controlled by the fluidity parameter, A, in Equation
(10), which characterizes the mobility of the dislocations
in the basal planes of the crystals.
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Evaluation of SSW model

The ability of the model to describe the loading—
unloading cycle of Test 1 was evaluated by computing
the optimized sets of parameters which fit either the whole
cycle, or only the strain recovery branch. The results

T T T T T T T T
10 | Test 1 SSW
ﬂ’-‘ e |
's 8+
28 €, (a) 1
£ 2
s () (b)
A=1214An A =1,500An |1
H=00415E H =01154E
4r K=00141E K =0,0101E |7
Ry= 0,169 Ry=0,0017
2
0

| P i | L
12 14 16
time (hour)
Iig. 5. Comparison of Sunder and Wu's model with Test
I data. a, computed strain curve, [illed on entire observed
curve, along with its transien! and steady-creep compo-

nents; b, computed primary creep branch with parameters
optimized to fil only the observed strain recovery.

shown in Figure 5 indicate that this model cannot
reproduce adequately both the loading and unloading
parts of the strain curve. It can be argued that this result
has no general value since it concerns a single experiment.
Nevertheless, the shape shown in Figure 1 is always
observed when granular ice is unloaded after the steady
creep rate has been reached. The two simulations shown
in Sunder and Wu (1989a, Fig.8), concern tests in which
the steady state was not reached when unloading occured

5 ¥ T E T X T r T L T
o~ | Test2 SSW |
e
=4 1
s r 1
£
B g -

A =1,120 As
2 H =01514E | -
K =0,0007 E
Ry= 0,1678 .
1 -
/ e, ]
0 L TR 1 | 3 OO e

0 1 2 3 4 5 6
time (hour)
Fig. 6. Comparison of Sunder and Wu's model with Test

2 data. Optimized strain curve and transient and steady-
creefy components.
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at a strain of 10 !, and seem reasonably good because the
creep parameter A was overestimated by a factor 3.

When tested against Test 2 (see Fig. 6), the model
shows a good ability to reproduce the fast response to the
increments of stress which were made during unloading.
In contrast, the steady creep rate is too high and attained
too quickly, at a strain of about 1.5 x 10 ® which renders
the computed primary creep curve quite unrealistic.

For the SSW model the viscoplastic strain is
decomposed as €, = €, + €, and all the rapid variations
in the total strain rate are governed primarily by .
Because € reaches its limiting value very soon on first
loading, the steady state is achieved too quickly. In
addition, since the observed recoverable strain is small,
and the model assumes that ¢, is totally recoverable, the
steady state is obtained at too low a value of the total
strain.

ALTERNATIVE MODEL

From this brief evaluation it appears that LGD and S5W
models are unable to provide a correct description of both
fast responses to stress jumps and primary creep.

In order to uncouple the first loading and long-term
behaviour from the short-term response to fast changes in
stress, we propose to split the viscoplastic strain, £ =
€ — ¢, into two components as

Engk—!_%’ (15)

where ¢ _is related to the kinematic hardening processes
and provides the fast variations of strain, and ¢, is related
to the isotropic hardening. The dissipation potential is
then decomposed as

@ =T,
Ay
% 7 _X71+1 J Xn—l—l 16
Fr= e hle - XM+ — (X, (16)
A C
g o i b P n+1 ln-ll
@' n+1(2(g) R) aELT ¢

with () =z if 2>0; (z) =0 if <0, and the free
energy potential is written as

Kr?, a7

1, fl
Hea : —
a:ats

pY = ple(e) +5
where (o, X) and (r, R) are conjugate internal variables
relative to kinematic and isotropic hardening.

Using Equations (16) and (17) and applying the
normality rule, leads to the multiaxial equations of the
model. In the uniaxial case, with n = 3, they reduce to

e A o

€ =0/ E,

& =Ax(oc — X)3,

& =Ailjo] - R)-"‘IL;‘ : (18)
X =H(4 - BX?),

R =K(|l&| — CR?),
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Fig. 7. Comparison of the proposed model with Test 1
data. Optimized strain curve and strain comfponents.

where o, X, €, €, €, € are the tensor components along
the direction of loading.

Since the model has to be equivalent to Norton’s law
(1) at steady-state (3 =1 R= 0), the following con-
straint on the fluidities can be derived

A= (AB+B AT L (AR LA, (19)

and the steady values of the internal stresses are

X =0/(1+ (B/A)"?),
R+o/Q + (C/A)'P). (20)

The physical interpretation which can be given is that the
ex component, which includes all the kinematic effects, is
produced only by a fraction of the total mobile
dislocations. These dislocations are trapped in the
networks and pile-ups capable of storing energy. The

(53]

strain (x10°)
B

w
T

=4133An A=4716As
= 101A, C =0,523An

time (hour)

Fig. 8. Comparison of the proposed model with Test 2

data. Optimized strain curve and strain components.
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rate at which this energy is stored and released is
controlled by glide in the basal planes. A part of ¢ is
unrecoverable as dislocations can escape (by climb) from
the substructure traps. In that sense, the model for e is
the same as in LGD model, except that the isotropic
hardening acting on the basal movement of the
dislocations is neglected. The second component ¢ can
be seen as the deformation resulting from the fraction of
dislocations whose basal motion is impeded by local
kinematic stresses and which escape directly by climb,
taking no part in the anelastic processes. It is subject to
isotropic hardening, which increases with the dislocation
density.

Comparison of this model with experimental data
from Test 1 and Test 2 is shown in Figures 7 and 8. Test 1
is very well reproduced by the model, with parameters
optimized to fit only the loading part of the strain curve.
For Test 2, the strain response to stress jumps during total
unloading is quite satisfactory as well as the simulation of
the primary creep curve. Clearly, better results should be
achieved if e, and € were described by a full LGD model,
but with a major price to pay as regards to the great
number of parameters to deal with.

DISCUSSION

Contrary to the SSW model, the LGD and the proposed
models do not involve explicitly the transient creep strain
€ in their formulations. For these models, € must be
calculated as €, = € — €, — Ag®t. In the LGD model, € is
the solution of Equations (10) and A is given by Equation
(9). In the present model the corresponding equations are
(18) and (19).

Sinha’s (1979) equation gives the total strain as
€ =€+ €4 + €, where €, is the (steady) creep strain
resulting from Equation (1). The delayed elastic strain
€4 1s thus formally identical to € as defined by Equation
(4). This component, as well as the anelastic moduli
studied by Gold and Traectteberg (1975), exhibits an
exponential time dependence in the form Exp(-at'’®)
(where a is a temperature-dependent parameter). In the
absence of dislocation creep and recovery processes, the
present model, with A; = B = 0 in Equations (18), does
not involve the same time dependence, since it then
reduces to € =€, + e and é, = Ax(o — Hek)s. Never-
theless this model was shown to be able to give
acceptable responses to varying loads, at the scale of
the total strains achieved during the tests (e > 5 x 107)
and for loading durations higher than three hours. To
conform to Sinha’s (1979) or Gold and Traectteberg’s
(1975) results, while keeping the framework of internal
state variable models, more complexity must be added in
the formulation of the kinematic strain component. The
SSW model and Sinha’s(1979) equation, describe the
transient creep strain, or the delayed elastic strain, as
totally recoverable. This is not the case for the LGD and
the proposed models, in which recovery processes for
kinematic hardening, and the existence of isotropic
hardening, render part of the transient strain unrecover-
able. This latter point seems to be in accordance with
our observations (i.e. for total strains higher than
5% 107%).
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CONCLUSION

An evaluation of the models of Le Gac and Duval (1980)
and Sunder and Wu (1989a) has been presented. It was
based on the simulation by the models of two uniaxial
compression tests performed on isotropic granular ice
under varying load at —-10°C. Examination of the
computed optimized strain curves showed that the two
models fail to reproduce correctly both the fast variations
of strain following stress jumps, and primary creep.

A new model, involving six parameters (instead of five
for LGD model and four for SSW model), based on a
decomposition of the viscoplastic strain into two com-
ponents which account separately for the kinematic and
isotropic hardenings, was shown to improve the quality of
the simulations.

Much work remains to be done to obtain the reliable

data required to confirm the validity of this model for
uniaxial situations involving relatively high total strains,
and to establish its correspondence with rheological
models using delayed elastic and plastic terms.
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