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On the Bepresentation of the Physical Properties of
Substances by means of Surfaces.

By W. PEDDIE.

If the physical state of a substance is completely defined when
the simultaneous values of three of its properties are given, then, by
measuring off along three rectangular axes, from any point chosen as
origin, lengths proportional to these values, we determine a point
which represents completely the physical state of the substance.
And, evidently, each point lies on a surface, the equation to which is
determined by the three co-ordinate properties. If, in the equation
to the surface, we give one of the variables a definite value, we get
the equation to a contour-line of the surface which represents the
necessary relation subsisting between the remaining two properties
when the other is constant.

The nature of any quantity is completely known when it is
understood what units are involved in its measurement and how
they are involved. Thus a speed involves the unit of length directly,
and the unit of time inversely; an acceleration involves a length
directly, and the square of a time inversely. When we are dealing
with space, however, the unit of length alone is involved. We say
that the space considered has one, two, or three, &c, dimensions,
according as the unit is involved to the first, second, or third, <fec,
power. A line has only one dimension. Given a certain point on
the line as origin, only one number, with the proper sign attached, is
required to completely specify the relative position of any other point
on the line. A surface has two dimensions. Two directed lengths
are necessary to define the position of a point on it with reference to
any other point taken as origin. Thus we speak of the position of a
point on the earth's surface as being so much north or south of a
certain line, and so much east or west of another. In the three-
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dimensioned space to which we are accustomed, three such lengths
are required. Thus we speak of the length, breadth, and thickness
of a solid.

The intersection of any surface which has a constant characteristic
with the surface of a solid of three dimensions is a contour-line. The
analogue in two dimensions of a contour-line is what may be termed
contour-points, that is, the points in which a line, along which some
quantity is constant, cuts the boundary of a surface. The boundary
of a surface is a line and exists in two-dimensional space; so that, in
two-dimensional space, contours have no dimensions. Similarly, in
three-dimensional space, contours are of one dimension. The pro-
perties of four-dimensional space, or even n-dimensional space, can be
treated mathematically ; but, from want of experience, it is impossible
to imagine the nature of such space. Contours in it would be
surfaces,—the surfaces of intersection of solids, throughout which
some quantity was constant, with solid's existing in four-dimensional
space.

The contour-lines most widely known are those formed by the in-
tersection of level surfaces with the surface of the earth. The line
of sea-board is one such contour-line. The essential feature of these
lines is that by means of them a third dimension is represented upon
a surface. An ordinary map with numbers marked upon it indicat-
ing the heights of various places, represents roughly the third dimen-
sion. So also does a chart with numbers corresponding to the various
depths of the sea. A line drawn free-hand through the points of
equal height or depth would approximately coincide with a contour-
line. We may obtain any number of contour-lines by supposing the
sea-level to rise or fall as necessary. It must be specially observed
that the surfaces intersecting the earth's surface are level. From
this it follows that, since the earth is not spherical in shape, contour-
lines are not lines of constant height above, say, ordinary sea-level
taken as a standard. The assumption that they are lines of constant
height will not introduce appreciable error, however, if the value of
gravity is not sensibly different at different parts of the same line.
The quantity which is constant over a level surface is the work
required to be done in order to raise a given mass to it against
gravity from any station on the standard level. This is, therefore,
the quantity which is constant along the contour-line. Since the
work so done is equal to the kinetic energy (the product of the mass
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into half the square of the velocity acquired) which would be gained
by the mass if allowed to slide from the upper to the lower level by
any path, we may define the constant quantity, independently of the
mass, as half the square of the velocity acquired by a body falling,
by any path, from the upper level to the standard point on the lower
level.

To determine the nature of the surface as indicated by peculiarities
in the form of the contour-line3, let us suppose the earth to be
entirely submerged so that we have only one region, and that a
region of depression. If now we suppose the water to be slowly
absorbed by the solid matter of the earth, regions of elevation will be
formed gradually until, finally, we shall have only one region, and
that a region of elevation. Before a region of elevation is formed
we have a summit appearing above the water-level; and, when the
water subsides out of a region of depression, we have a lowest-point,
or immit, appearing. The number of regions of elevation and
depression may vary in two ways. We may have two regions of
elevation running into each other as the water sinks. The point
where they first meet is termed a pass, (see Fig. 24 ; pv p2, &c).
Again, a region of elevation may throw out arms which run into
each other and so cut off a region of depression. The point
where they first meet is termed a bar, (Fig. 24; blt b2, <fcc). The
contour-line for a level immediately underneath that corresponding
to the bar has a closed branch within the region of depression cut off.
Thus the closed curve at I4, Fig. 24, is part of the contour-line ux.
If a chart of an insular high-land be constructed as above indicated,
a pass occurs at the node (see Fig. 24) of a figure-of-eight curve, (or
out-loop curve, as Professor Cayley has termed it); while a bar occurs
at the node of an in-loop curve. If, in Fig, 24, we interchange the
summits and immits, the passes and bars, we see that, in the chart of
an island-basin (Maxwell, on Hills and Dales, Philosophical Magazine,
series 4, vol. 40, Dec. 1870, p. 427), a pass is represented by the node
of an in-loop curve, and a bar corresponds to the node of an out-loop
curve. If there were any advantage in having passes and bars always
indioated by the node of the same kind of curve respectively, this
could be attained by affixing the positive sign not constantly to the
region on the same side of the level surface, but to the region towards
which or from which the surface was moving.

As a particular case, two regions of elevation may run into each
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other at a number of points simultaneously. Of these points, one
must be taken as a pass and the others as bars. We may have also
singular paints where, for example, three or more regions of elevation
meet. Such points are termed double, treble, &c, passes. Similarly,
we may have multiple bars.

Before a pass can be formed there must be two summits, and for
every additional pass there is another summit. Thus the number
of summits is one more than the number of passes. So also the
number of immits is one more than the number of bars.

Slope-lines are lines drawn everywhere perpendicular to the
contour-lines. Evidently the steepness of a district is indicated on
a chart by the closeness of the contour-lines. There are two kinds
of slope-lines, however, which are specially important. These are
the slope-lines drawn from summits to passes or bars, and from passes
or bars to immits. The first of these can never reach an immit, and
are termed watersheds. The second can never reach a summit, and
are termed water-courses.

A perpendicular precipice is indicated on a chart by the running
together of two or more adjacent contour-lines (Fig. 24, /). An
over-hanging precipice is indicated by the lapping of the upper-level
line over the lower-level line. Similarly any other characteristic
feature of a country can be indicated.

There is no necessity for taking the level as the quantity which
is constant over the intersecting surface. We might, for example,
make the inclination of the tangent-plane to the vertical constant,
and thus obtain another set of contour-curves by rolling this plane
over the given surface.

As mentioned at the commencement of this paper, we can build
up a solid, the surface of which represents the state of a substance
with regard to three quantities We may then lay down, upon this
surface, contour-lines, each point of each of which indicates the
relation between these quantities when a fourth quantity, character-
istic of the line, remains constant.

Let us take, as a particular example, the thermodynamic surface
representing the state of water-substance with regard to volume,
pressure, temperature, entropy, and energy. If we choose any three
of these quantities to be measured along the axes, the value of the
remaining two at any point of the surface formed may be given by
contour-lines. The model of the surface, with volume, entropy, and
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energy, measured along the axes, has been constructed by Clerk-
Maxwell, and is explained ami figured in his Theory of Heat. Let
us take volume, temperature, and pressure, as the quantities to be
measured off. The surface so obtained was first studied, and some
peculiarities connected with it pointed out, by Professor James
Thomson. Suppose the surface to be cut by a plane of constant
pressure, say px. We thus get a contour-line, the general nature of
which is indicated in Fig. 25. At a low temperature the volume is
small, the substance being solid. As the temperature rises the sub-
stance expands, until it reaches the liquifying point. Its volume then
diminishes without rise of temperature until the substance is com-
pletely liquified. Its temperature then rises and its volume dim-
inishes up to the maximum density point, after which it expands.
When it reaches the boiling point its volume increases, but its
temperature does not rise until the substance is entirely in. the gaseous
state, after -which both increase together. The contour lines for
slightly less pressures, (p-uPs, in the Fig.), are approximately
parallel to pu but lie entirely on the right-hand side of it, since for a
given temperature the volume increases as the pressure diminishes
and the freezing point is lowered and the boiling point is raised
by pressure. The freezing point and boiling point approach as
the pressure diminishes, until finally they coincide (see pv Fig. 26).
After this (pt, Fig. 26) the substance changes directly from the solid
into the gaseous state. The line AB indicates the triple-point
temperature, that is, the temperature at which portions of the sub-
stance in the three states, solid, liquid, and gaseous, can exist together
in equilibrium. The length of the boiling-point line continually
diminishes as the pressure is increased until, finally, there ceases to be
a boiling-point (C, Figs. 25 and 27). The temperature at which this
occurs is called the critical temperature. Similarly, we may assume
a critical temperature for the solid-liquid condition. That is to say,
there may be a temperature such that, if the temperature of the solid
have a less value, no amount of pressure will lower the freezing point
sufficiently to admit of liquifaction. I t is, perhaps, too much to
assume that there is a critical temperature for the solid-gaseous con-
dition,—in other words, that at a certain pressure and temperature the
whole mass of the solid will become gaseous without evaporation.

Now, suppose the surface to be cut by a plane of constant temper-
ature. The contour-lines so obtained are ordinarily termed isothermal*.
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Let the temperature first be above the triple point but below the critical
point. Then, the substance being taken in the gaseous state, as
the pressure increases the volume diminishes until the boiling-point
is reached. At this stage the volume decreases, without variation of
pressure, until all the substance is liquified. After this, a very great
increase of pressure is required to produce even a small decrease of
volume. Such an isothermal is indicated by the line WXYZ, Fig. 27.
If wo take an isothermal below the triple-point, we find that the
solid state is intermediate between the liquid and the gaseous. As the
pressure increases the volume decreases until the point of sublima-
tion is reached, when the pressure remains constant, the volume
diminishing until all is solidified. Then the volume decreases slowly
for increase of pressure until the melting-point is reached, when the
pressure becomes constant, the volume diminishing, until all is
melted, when the volume again decreases slowly for increase of
pressure. Thus there are two kinds of isothermals having their
transition stage at the triple-point temperature. We have seen that,
similarly, at the triple-point pressure the transition stage for the two
kinds of lines of equal pressure occurs. The form of the isothermals
beyond the critical temperature is indicated in Fig. 27. Evidently, a
second transition temperature for the isothermals is that of the solid-
liquid critical temperature, if sublimation occurs at temperatures
where liquifaction has ceased. It is probable that, as Professor
James Thomson has indicated, the true form of the isothermals
is not indicated by the part of the line parallel to the v-axis (Fig. 27),
but by, for example, the waved line XY. Part of this line represents
an unstable state since pressure and volume increase together. Hence
the substance can only be obtained in nature in states represented by
parts of this line.

On the surface, various contour-lines might be laid down. For
example, we might have lines along which either of the quantities

S. or •£ was constant. Or we might have lines of constant energy,
at dv
or of constant entropy. These latter are ordinarily termed
adiabatics ; that is, as the substance passes from one state to another
along such a line, no heat enters or leaves it. The properties of these

lines in a region where —S has a negative value are rather interest-
dt

ing. This condition is satisfied when the temperature of the sub-
stance is between the maximum-density point and the freezing-point.
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This part of the surface is indicated in Fig. 28, which represents the
projection of lines of equal volume upon the plane (p, t). MN, TC,
TN, TS, are the projections respectively of the maximum-density
curve, and the water-steam, water-ice, and ice-steam surfaces. In

the region TMN, therefore, S has a negative value. If the sub-

stance be in a state represented by a point in this part, and be
allowed to expand adiabatically, its temperature rises until the
maximum-density curve is reached. The adiabatic, however, cannot
pass to the right-hand side of the curve, since the curve slopes
upwards from left to right, and, in the region to the right, adiabatic
expansion is accompanied by fall of temperature. Hence we find
that two adiabatics may intersect on the surface in this region.
That is, the substance may have the same temperature, volume, and
pressure, in two different states corresponding to different amounts
of intrinsic energy.

After the adiabatic reaches the maximum-density curve, the
temperature may either rise or fall. Let us suppose that, (as indic-
ated by Eiicker), the intrinsic energy is such that, having done work
while expanding, its temperature must fall. In this case it is evi-
dent (Fig. 29), that an isothermal can cut an adiabatic twice. Hence,
we can have an isothermal steeper than an adiabatic at their point of
intersection. In Fig. 29 MN is the maximum-density curve, the dotted
curve is an isothermal, and the continuous curve is an adiabatic.
Fig. 30 represents the contour-lines of equal pressure.

In the representation of physical properties by models, use might
be made of tortuous curves. Thus, if we take two quantities, one of
which is a parabolic function of the other, say x and y where y2 = ax,

and therefore y—y = ™, we may measure -^ along a third rect-
ax £ ax

angular axis, and so obtain a tortuous curve the projection of which
on the plane (a;, y) is a parabola, while its projection on the plane

(y, J!\ is a hyperbola. If y represent the time during which a body
* dxf
has been falling under gravity, and x represent the space described
from rest, then the reciprocal of the third co-ordinate quantity
gives the velocity acquired.

P.S.—From the experimental determination of the amount by
which the maximum-density point is lowered by pressure, and the
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theoretical determination of the steepness of the adiabatics in the
plane (p, v), it seems that the latter are'steeper than the former as
regards inclination to the »-axis. Hence there is no point of maxi-
mum temperature on the adiabatic; but, on the other hand, there is
a point of minimum temperature. This temperature for any given
adiabatic, is that corresponding to the isothermal passing through
the point of intersection of the adiabatic with the maximum-density
curve. I have not altered the text above, however, as the remarks
and figure may conceivably apply to some substance other than water.

The Theorems as far as Proposition 32, of the first book of
Euclid's Elements, proved from First Principles.

By DAVID TRAILL, M.A., B.Sc.

Proposition 4.
Given* AB = DE, AC = DF,LA = LD.

Suppose you start from B, and walk along BA a certain distance
a to A ; then at A you turn at a certain angle into another road
AC ; then you walk along AC a certain distance b to C. Again you
start from E, walk a distance a along ED ; turn off at D into DF at
the same angle as before; then walk the distance b along DF to F.
Since you have gone through the same set of movements in the two
cases, and since the same cause always produces the same result,^ the
results in the two cases must be the same, that is, you will arrive in
both cases, at the same distance from the starting point. Hence
BC = EF.

Proposition 5.
Given AB = AC.
From a certain point A, two lines AB, AC are drawn. Two

points B, 0 equally distant from A are joined. The same causes
which determine the size of L B also determine the size of L C.
Hence L B = L C.

* For figures see Mackay's Elements of Euclid.
t This axiom, as well as its converse, is assumed in every Science.
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