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Summary

In a previous contribution, we implemented a finite locus model (FLM) for estimating additive and

dominance genetic variances via a Bayesian method and a single-site Gibbs sampler. We observed

a dependency of dominance variance estimates on locus number in the analysis FLM. Here, we

extended the FLM to include two-locus epistasis, and implemented the analysis with two genotype

samplers (Gibbs and descent graph) and three different priors for genetic effects (uniform and

variable across loci, uniform and constant across loci, and normal). Phenotypic data were

simulated for two pedigrees with 6300 and 12300 individuals in closed populations, using several

different, non-additive genetic models. Replications of these data were analysed with FLMs

differing in the number of loci. Simulation results indicate that the dependency of non-additive

genetic variance estimates on locus number persisted in all implementation strategies we

investigated. However, this dependency was considerably diminished with normal priors for genetic

effects as compared with uniform priors (constant or variable across loci). Descent graph sampling

of genotypes modestly improved variance components estimation compared with Gibbs sampling.

Moreover, a larger pedigree produced considerably better variance components estimation,

suggesting this dependency might originate from data insufficiency. As the FLM represents an

appealing alternative to the infinitesimal model for genetic parameter estimation and for inclusion

of polygenic background variation in QTL mapping analyses, further improvements are warranted

and might be achieved via improvement of the sampler or treatment of the number of loci as an

unknown.

1. Introduction

Epistasis is the effect of interaction of genes at two or

more loci on phenotypes. Epistatic variation can be

partitioned into components arising from additive by

additive (A¬A), additive by dominance (A¬D),

dominance by dominance (D¬D), and interactions

among more than two loci (e.g. Falconer & Mackay,

1996). For prediction of individual additive, domi-

nance and epistatic effects with mixed linear model

methodologies, and for estimation of the correspond-

ing variance components (e.g. Tempelman&Burnside,

1990; Hoeschele, 1991 ; VanRaden et al., 1992; Fuerst

* Corresponding author. Dr Ina Hoeschele, 2160 Litton Reaves
Hall, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061-0315, USA. Tel : ­1 (540) 231 4760. Fax:
­1 (540) 231 5014. e-mail : inah!vt.edu

& Soelkner, 1994), inverses of the different genetic

relationship matrices are often needed. Although

rapid inversion methods are available for some

components (A, D, A¬A), (Henderson, 1976;

Hoeschele & VanRaden, 1991 ; VanRaden &

Hoeschele, 1991), the inversion of relationship matrix

for other components of epistasis in the context of

large, complex pedigrees is still difficult. Inbreeding

introduces further complications in the covariance

structure of a population (de Boer & Hoeschele,

1993), when interaction components of the types D,

A¬D, D¬D, etc., are included.

Due to computational complexity and inaccurate

estimation, non-additive genetic variation has been

ignored in genetic evaluation systems and in many

breeding programmes (Fuerst et al., 1997). However,

estimating non-additive genetic variance components

becomes increasingly important for the following
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reasons. First, the average kinship coefficient among

individuals has increased considerably in some animal

populations such as dairy cattle breeds so that the

covariance structure of a population cannot be

adequately described via the additive genetic and

residual variance components. Ignoring covariances

due to non-additive genetic factors results in biased

estimation of additive genetic variance and inaccurate

prediction of additive genetic effects. Secondly, several

reasonably high estimates of epistatic variances have

been reported in cattle (Allaire & Henderson, 1965;

Fuerst & Soelkner, 1994) and poultry (Abplanalp,

1988), although the importance of epistasis in

explaining quantitative genetic variation is still un-

known. Furthermore, accurate estimation of non-

additive genetic variances could help to evaluate

potential benefits from utilization of specific com-

bining ability in breeding programmes (DeStefano &

Hoeschele, 1992; Fuerst et al., 1998).

A continuously intensifying effort is being made to

map individual quantitative trait loci (QTL) using

genetic markers (e.g. Lander & Botstein, 1989;

Georges et al., 1995; Hoeschele et al., 1997; Zhang et

al., 1998). As multiple QTL mapping methods and

denser marker data become available, it becomes

increasingly important to explore epistatic interactions

among QTL not only in line crosses (Kao & Zeng,

1999) but also in segregating populations such as

human (Mitchell et al., 1997) and livestock. Analyses

may include interaction effects not only between QTL

but also between QTL and polygenic background, as

well as non-additive polygenic variation. Methods

developed in this paper may make such analyses

feasible.

Virtually all estimates of additive and non-additive

genetic variance components found in the literature

were obtained under the infinitesimal model with the

restricted maximum likelihood method (e.g.

Hoeschele, 1991 ; VanRaden et al., 1992; Fuerst &

Soelkner, 1994) or with simpler, non-iterative methods

(e.g. Allaire & Henderson, 1965; Hay et al., 1983).

Finite polygenic models (FPMs) were first proposed

by Thompson & Skolnick (1977) for estimating the

heritability of longevity in complex human pedigrees

and subsequently by Fernando et al. (1994) for

complex segregation analysis, as they lead to more

efficient computation. These early FPMs assumed

biallelic loci, additive gene action, constancy of

additive effects and allele frequencies across loci, and

fitted polygenic number rather than genotypes at

individual loci. Recently, finite locus models (FLMs)

have been explored as an alternative way of estimating

genetic variance components (Du et al., 1999; Pong-

Wong et al., 1998, 1999). These FLMs still assume

biallelic loci but fit genotypes at individual loci, and

allow for non-additive gene action and variable

gene effects across loci. Allele frequencies are still

held constant at 0±5, but could be estimated in the

FLMs.

For FPM analysis of data simulated under mixed

models of inheritance that contained additive poly-

genic loci along with a segregating major QTL,

Fernando et al. (1994) and Stricker et al. (1995)

reported accurate estimates of major gene effects and

narrow-sense polygenic heritability. Pong-Wong et al.

(1999) estimated variance components under a purely

additive model with FLM analysed by a Bayesian

method in a small pedigree (480 members). They

found that the estimates of additive genetic variance

were dependent on the number of loci in the analysis

FLM with independent uniform distributions as priors

for additive genetic effects across loci. They also

reported that this dependency was greatly diminished

with exponential priors and eliminated with normal

priors. In a Bayesian implemented FLM analysis of a

much larger pedigree with 6300 members, Du et al.

(1999) found that variance components estimation for

a purely additive model was independent of the

number of loci in the analysis FLM, with bounded

uniform priors for genetic effects.

Pong-Wong et al. (1998), Goddard (1998) and Du

et al. (1999) extended the additive FLM to include

dominance effects. Both Pong-Wong et al. (1998) and

Du et al. (1999) found that the variance components

estimation in the presence of dominance was de-

pendent on the number of loci in the analysis FLM. In

both studies, the FLM was implemented with a Gibbs

sampler using single-site updating except for sires and

their final offspring (Pong-Wong et al., 1998) or

parents and their final offspring (Du et al., 1999).

Dependence of variance estimates on the number of

loci in the analysis FLM could be caused by

distribution choices of genetic effects across loci, by

poor mixing of the Gibbs sampler for genotypes, and

(or) by data insufficiency. In this contribution, we

therefore explored an alternative genotype sampling

scheme, based on descent graphs (Thompson, 1994;

Sobel & Lange, 1996; Tier & Henshall, 1999), to

sample the genotypes at all loci jointly, and different

distributions for genetic effects across loci. We also

extended the FLM to include two-locus epistasis, and

the analyses were performed for two pedigrees of

different sizes with phenotypes simulated under

various non-additive genetic models.

2. Methodology

(i) Finite locus model including two-locus epistasis

A FLM with additive, dominance and all two-locus

epistatic effects, conditional on a set of genotypes for

the pedigree and all loci (G), can be written as

y¯Xβ­Za(G) a­Zd(G) d­Zaa(G) aa­Zad(G) ad

­Zda(G) da­Zdd(G) dd­e, (1)
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where y is a vector of phenotypes ; X is a known

design-covariate matrix relating observations in y to

the vector of non-genetic classification and regression

effects (β) ; a is a vector of homozygote differences at

k biallelic loci ; d is a vector of dominance deviations

at k biallelic loci ; aa (ad, da, dd) is a vector of A¬A

(A¬D, D¬A, D¬D) epistatic deviations at s locus

pairs ; Za(G) is a design matrix with k columns

containing coefficients of ®1, 0 or 1 corresponding to

the three genotypes at a biallelic locus ; Zd(G) is a

design matrix with k columns containing coefficients

of 0±5 for heterozygous genotypes and ®0±5 for

homozygous genotypes ; Zaa(G), Zad(G), Zda(G) and Zdd(G)

are design matrices with s columns and can be

constructed by multiplication of appropriate elements

in Za(G) and Zd(G) ; s is the number of two-locus

interactions; and e is a vector of residuals. The

coefficients in the Z matrices are based on the

orthogonal model of Cockerham (1954) and are

identical to those for an F2 population (Kao & Zeng,

1999), as the allele frequency at each biallelic locus

was fixed at 0±5. Model (1) represents the most general

FLM; more restricted models can be obtained by

omitting ad, da and dd effects, by also omitting aa

effects, and by forcing all elements in a, d and in the

interaction effects vectors to be equal across loci.

To accommodate epistasis, unlinked loci in the

analysis FLM were assigned to groups of triplets of

loci. While there were no epistatic interactions between

the loci in different groups, each locus interacted with

the other two loci in the same group. Then, in model

(1), k¯ s holds for any integer number k which is

divisible by 3, as there are three two-locus interactions

per triplet of loci. Letting a locus interact with more

than just one other locus increases the number of

epistatic effects, so that fewer loci need to be included

in the analysis FLM.

(ii) Bayesian analysis of the finite locus model

Model (1) was analysed by a Bayesian method. The

joint posterior probability density of all unknowns

can be written as
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where G
i
is row i of G, G
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¯²g

ij
´ with g

ij
being the

genotype of individual i at locus j ; n
b
is the number of

base (founder) individuals in the population; n is the

total number of individuals ; λ
a
, λ

d
, λ

aa
, λ

ad
, λ

da
and λ
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are hyperparameters of prior distributions for genetic

effects a, d, aa, ad, da and dd, respectively ; f( y
i
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penetrance function evaluated as a normal density ;

f(g
ij
) and f(g
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r g

fij
, g

mij
) are Hardy–Weinberg fre-

quency and transition probability of genotype g
ij
,

respectively ; f
i
is father of i and m

i
is mother ; and f(β),

f(a), f(d), f(aa),…, and f(λ
dd

) are priors for the

respective parameters. Inferences based on (2) were

obtained using different Markov Chain Monte Carlo

(MCMC) sampling schemes. For all the analyses

presented below, model (1) and the corresponding

joint posterior in (2) were restricted to contain only

the aa-component of the two-locus epistasis.

(iii) Sampling location parameters

Bounded uniform distributions were used as priors for

location parameters β and σ#
e
in all cases. A fixed effect

was sampled from its fully conditional univariate

normal, and error variance was sampled from an

inverse chi-square distribution as in Wang et al.

(1993). For genetic effects across loci, three priors

were investigated: bounded uniform and variable

across loci, bounded uniform and constant across

loci, and normal and variable across loci. We assume

that A¬A is the only epistatic component in the

following text.

(a) Uniform and �ariable across loci. With bounded

uniform distributions as priors for genetic effects, the

full conditional distribution of a
i
is given as:
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i
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i
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i
, are the ith elements of vectors a,

d and aa, respectively ; a
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and aa
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used later in the text were defined

similarly) ; µ (population mean) was assumed to be the

only element of β ; z
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, z
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and z
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are the elements at

the ith row and the jth column of matrix Za(G), Zd(G)

and Zaa(G), respectively. Similarly, the full conditional

distributions for d
i
and aa

i
are given as
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and
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(b) Uniform and constant across loci. In this case, one

or several of genetic effect vectors (a, d and aa)

contains only one element. The full conditional

distributions for a
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are given by
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(c) Normal and �ariable across loci. Fold-over normal

for a
i
, normal for d

i
and aa

i
were used as priors with

probability density as :
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The full conditional distributions for a
i
, d

i
and aa

i
are

the product of equations (3) and (9), (4) and (10), and

(5) and (11), respectively.

Bounded uniform distributions were used as priors

for hyperparameters of priors for genetic effects.

Consequently, the full conditional distributions of

these hyperparameters are inverse chi-square distri-

butions with probability density as :
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Parameter estimates were marginal posterior means.

Additive genetic variance (σ#
a
), dominance variance

(σ#
d
), A¬A, A¬D, D¬A and D¬D epistatic

variances (σ#
aa

,σ#
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,σ#
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,σ#
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) were calculated as 0±5 Σk
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are the ith element of vectors a, d,

aa, ad, da and dd, respectively.

(iv) Marko� chain Monte Carlo genotype sampling

schemes

Several different sampling schemes were investigated.

The first scheme is identical to that in Du et al. (1999).

It is a Gibbs sampler with single-site updating of

genotypes and parameters, except that both male and

female parents are sampled unconditionally on the

genotypes of their final offspring. This scheme is a

modification of that of Janss et al. (1995), who

sampled only male parents unconditionally on their

final offspring, and improved the mixing of genotypes

in an earlier study (Du et al., 1999). In this scheme, the

genotype of one individual at one locus is sampled

conditionally on the genotypes of all other individuals,

except for final offspring, at the same locus, and

conditionally on the genotypes of all individuals at all

other loci. Starting values for the genotypes were all

heterozygous, with genotypes 12 and 21 sampled with

equal probability.

The second genotype sampling scheme is based on

a descent graph Markov chain, originally proposed by

Thompson (1994), implemented by Sobel and Lange

(1996), and recently implemented efficiently for major

gene analysis (Tier & Henshall, 1999). Here we extend

the descent graph sampler to perform updates to the

genotypes at all unlinked loci in the FLM jointly. The

sampling scheme consists of a number of Metropolis-

Hastings (MH) steps of genotype sampling given

parameters followed by a Gibbs update of each

parameter conditional on the genotypes. For the
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genotype sampling, a set of initial ordered genotypes

of founders were generated by independently sampling

alleles with frequencies of 0±5 (an ordered genotype is

a genotype with known parental origins). An initial

descent graph for all loci was obtained by sampling

integers from the range of integers available on the

computer, with each bit representing a segregation

indicator for a given individual and locus (Tier &

Henshall, 1999), and with each segregation indicator

taking on a value of ‘0 ’ for grandparental origin or

‘1 ’ for grandmaternal origin. The set of ordered

genotypes of founders and the descent graph determine

the ordered genotypes for descendants. Subsequently,

the ordered genotypes at all loci for all individuals

were updated jointly as follows. At each MH step, a

small number of changes are proposed: either a few

randomly chosen founder alleles are resampled, or the

states of a few segregation indicators are switched

from grandmaternal (grandpaternal) to grandpaternal

(grandmaternal). The proposed changes are then

translated into genotypes, and the acceptance ratio for

this proposal is evaluated. The new sample of

genotypes is accepted or rejected according to the MH

ratio

α¯min ²1.0,R´,

where

R¯
Π

i
f( y

i
rG

il(n)
,…,G

ik(n)
)

Π
i
f( y

i
rG

il(c)
,…,G

ik(c)
)

(15)

and (n) and (c) denote new and current genotypes,

respectively. The acceptance ratio simplifies to the

ratio of the likelihoods of the phenotypes in (15),

because each set of genotypes (n, c) has the same prior

and proposal probability (due to working with ordered

genotypes and an allele frequency of 0±5).

In our implementation, the descent graphs were

stored using bit representation of I¯ 2kN
D
}31

(rounded up to the next integer value) integer numbers,

with N
D

representing the number of descendants. A

starting descent graph was obtained by randomly

sampling I integer values from U[(®2$"), (2$"®1)]. Bit

storage greatly reduces storage requirements, and

several built-in functions for bits manipulations

facilitate choice of initial values and later updates,

simplify programming, and increase the efficiency of

genotyping sampling.

For implementation of the descent graph sampler,

we found that several thousand (3000 to 10000) MH

steps prior to updating parameters was optimum in

terms of Monte Carlo error of parameter estimates for

a given total number of MH steps. In each MH step,

a very small number of changes were made either to

the founder alleles or to the descent graph. More

specifically, at each MH step an update of founder

alleles, of the descent graph portion pertaining to non-

final descendants, or of the descent graph portion

pertaining to final descendants, was chosen with

probabilities of 0±20, 0±20 and 0±60 (obtained by trial

and error based on autocorrelations of parameter

samples), respectively. When an update of founder

alleles was chosen, a single founder allele was changed.

When an update to the descent graph of non-final

descendants was selected, two segregation indicators

were changed. Finally, when an update to the descent

graph of final descendants was chosen, 10–20 seg-

regation indicators were changed. More segregation

indicators were updated for finals than for non-finals,

because changing a single segregation indicator of a

non-final (or changing a single founder allele) on

average implies changes to the genotypes of several

individuals. In contrast, updating one segregation

indicator of a final only potentially changes one

genotype of this individual. With this scheme, the

number of ordered genotypes changed in each MH

step was reasonably constant across MH steps, and a

fairly high acceptance rate was achieved (0±45–0±65).

With increasing number of changes per MH step,

acceptance rates quickly declined. A substantial

number of different combinations of these updating

parameters were tested, and other combinations

did not improve the scheme described. To improve

efficiency, those individuals whose genotypes could

have changed due to the update of a founder allele or

of segregation indicators, were flagged in each MH

step. Polygenic values and likelihood contributions

were recalculated only for those individuals. After

performing several thousand MH steps for the geno-

types of all individuals at all loci, parameters were

resampled with Gibbs updates as before. The number

of MH steps performed prior to a parameter update

was determined empirically based on the autocorre-

lations of the parameters.

(v) Simulated genetic models, population structures

and analysis schemes

Eight different genetic models were simulated. In all

models, loci were unlinked, and each locus had two

alleles with allele frequency of 0±5. Models 1 and 2

contained no epistasis, residual variance was 50,

additive genetic variance was 50 and dominance

variance was 25 (Table 1). In all other models (3–8),

residual and total genetic variances were equal to 60.

Additive genetic variance was 30 in models 3 to 6, and

20 in models 7 and 8 (see Table 1). No dominance was

simulated in models 3 and 4, while dominance

variances of 15 and 10 were simulated for models 5

and 6 and models 7 and 8, respectively. Epistatic

variances of 30 and 15 were simulated for models 3, 4,

7 and 8, and for models 5 and 6, respectively.

Eighteen loci of diminishing effects and 20 loci of

equal effects accounted for the genetic variation in

models 1 and 2, respectively. The 18 loci in model
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Table 1. Genetic models used for data simulation

Genetic
model σ#

e
σ#

a
σ#

d
σ#

aa
Locia Dominance

1 50 50 25 0 18 diminishing Complete
2 50 50 25 0 20 constant Complete
3 60 30 0 30 20 diminishing No
4 60 30 0 30 40 constant No
5 60 30 15 15 20 diminishing Complete
6 60 30 15 15 40 constant Complete
7 60 20 10 30 20 diminishing Complete
8 60 20 10 30 40 constant Complete

a All loci are unlinked and biallelic with allele frequency of 0±5. Number of loci is
18, 20 or 40. Constant implies equal additive, dominance and epistasis variance
across loci. The 18 loci in model 1 includes one locus with additive genetic variance
25, two loci with variance 5, five loci with variance 2, and ten loci with variance
0±5. The 20 loci of diminishing contribution include: additive variance with one
locus explaining 30%, one 10%, eight 5%, and ten 2%; epistasis variance with
one pair (one locus with 30% and one with 10% additive variance) explaining
20%; 4 pairs of 5% additive variance explaining 15% of epistatic variance; 5
pairs of 2% additive variance explaining 4%.

Table 2. Schemes for data simulation and analysisa

Data}analysis
scheme

Genetic
modelb

Pedigree
size

Genotype
sampling
scheme

Priors for
genetic
effectsc

Genetic effects
(a, d and aa) in
analysis FLM

DA1 3 6300 Gibbs Uniform Variable
DA2 4 6300 Gibbs Uniform Variable
DA3 5 6300 Gibbs Uniform Variable
DA4 6 6300 Gibbs Uniform Variable
DA5 7 6300 Gibbs Uniform Variable
DA6 8 6300 Gibbs Uniform Variable
DA7 2 6300 Gibbs Normal Variable
DA8 1 6300 Gibbs Normal Variable
DA9 5 6300 Gibbs Normal Variable
DA10 2 12300 Gibbs Uniform Variable
DA11 2 12300 Gibbs Normal Variable
DA12 1 6300 Gibbs Uniform Constant
DA13 2 6300 Gibbs Uniform Constant
DA14 2 6300 Descent graph Uniform Variable
DA15 5 6300 Descent graph Uniform Variable

a Other analysis details include: analysis FLM contained same genetic components as corresponding genetic model: bounded
uniform distributions were used as priors for parameters other than genetic effects, including mean, error variance, and
hyperparameters for genetic effects ; all location parameters and hyperparameters were sampled through a single site Gibbs
sampler.
b Genetic models are described in Table 1.
c Uniform implies bounded uniform distribution; normal implies folded-over normal for additive effects, normal for
dominance and (or) epistatic effects.

1 included one locus with additive genetic variance 25,

two loci with variance 5, five loci with variance 2, and

ten loci with variance 0±5. Forty loci contributed

equally to additive genetic variance in models 4, 6 and

8, while 20 loci of diminishing effects accounted for

the genetic variance in models 3, 5 and 7. The 20 loci

of diminishing effect included one locus with 30%,

one with 10%, eight with 5% and ten with 2% of

additive genetic variance. In models 1 to 2, and 5 to 8,

complete dominance was simulated for all loci. For

two-locus epistasis, only A¬A epistatic effects were

simulated using Cockerham’s orthogonal model

(Cockerham, 1954). In the case of 40 equal loci, each

of 20 randomly formed locus pairs contributed equally

to epistatic variance. For 20 diminishing loci, nine

pairs were formed from loci with equal additive

genetic effect, and two loci with largest additive effects

formed the tenth pair. The pair of largest loci, pairs of
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loci with 5% of σ#
a
, and pairs of loci with 2% of σ#

a

explained 20%, 15% and 4% of the epistatic variance

(σ#
aa
), respectively.

For all eight genetic models, a population structure

of n¯ 6300 individuals over one base generation and

three discrete offspring generations was simulated. To

evaluate the effect of pedigree size variance com-

ponents estimation, a pedigree with 12300 members

over one base generation and six discrete offspring

generations was simulated for genetic model 2. In

both pedigrees, 50 males and 250 females were

randomly selected at every generation, with each male

randomly mated to 5 females. Females produced

eight-offspring litters (four males and four females),

giving each site 40 progeny.

Genotypes at a finite number of unlinked, biallelic

loci were generated according to Hardy–Weinberg

frequencies for founders and according to Mendelian

transition probabilities for descendants. An indi-

vidual’s genotypic value was calculated by summing

additive, dominance and epistatic effects that were

determined by the individual’s genotypes. Finally,

residuals from a normal distribution with mean 0 and

variance σ#
e

were added to obtain an individual’s

phenotype. No systematic environmental effects were

simulated.

Factors for evaluation include three priors, two

genotype sampling schemes, two pedigree structures

and eight genetic models. Due to time constraints,

only some combinations of these factors were

evaluated, and data}analysis schemes that were

evaluated are described in Table 2.

3. Results

The results presented below are means of MCMC

realizations that were sampled every cycle after burn-

in period. Starting values for location parameters and

hyperparameters were arbitrarily chosen. While

different lengths of MCMC were executed for different

Table 3. Variance component estimates (and empirical standard errors)

a�eraged across 10 replicates and obtained by analysing data simulated

under models 3 and 4 (see Table 1) with data}analysis schemes DA1 and

DA2 (see Table 2)

Data}analysis
scheme

Genetic
model

No. of
analysis
loci σ#

e
σ#

a
σ#

aa

DA1 3 6 63±85 (0±85) 37±44 (1±54) 21±14 (1±43)
12 58±09 (1±33) 33±46 (1±59) 31±28 (1±97)
18 54±04 (1±35) 32±56 (1±49) 37±32 (2±01)

DA2 4 6 66±34 (0±77) 35±92 (1±01) 19±37 (1±05)
12 60±28 (0±71) 33±27 (0±76) 29±08 (0±83)
18 56±35 (0±63) 33±05 (0±64) 34±68 (0±44)

True values for genetic models 3 and 4 are error variance (σ#
e
)¯ 60, additive

variance (σ#
a
)¯ 30, and epistasis variance (σ#

aa
)¯ 30.

data}analysis schemes, the average Monte Carlo

standard errors (Geyer, 1992; Sorensen et al., 1995)

were below 0±6% of the genetic variance (results not

shown).

(i) Gibbs sampling of genotypes, no dominance, 6300-

pedigree, uniform priors

Here we present results for the first genotype sampling

scheme described earlier and for data simulated with

A¬Aepistasis butwithout dominance (genetic models

3 and 4; data}analysis schemes DA1 and DA2). The

analysis FLMs contained 6, 12 and 18 loci with

variable A and A¬A effects but no dominance

effects ; independent bounded uniforms were used as

priors for genetic effects. Gibbs samplers of length

200000 for the 12- and 18-loci FLMs and 300000

cycles for the 6-loci FLM with 10000 burn-in cycles

were applied to 10 replicates to obtain the results

reported in Table 3, which are based on 10 replicates.

Similar to the case with variable additive and

dominance effects (Du et al., 1999), estimates of the

A¬A variance increased, while residual variance

decreased, as the number of loci in the analysis FLM

increased, and the intermediate (12-loci) FLM

produced the best estimates for all variance com-

ponents.

(ii) Gibbs sampling of genotypes, with dominance,

6300-pedigree, uniform priors

Data simulated under genetic models 5 to 8 including

additive, dominance and A¬A epistatic components,

were analysed with data}analysis schemes DA3 to

DA6 with uniform priors for genetic effects (as

described in Table 2). Results presented in Table 4 are

averages of 10 replicates obtained from Gibbs

samplers of length 300000 for the 12- and 18-loci

FLM or 400000 cycles for the 6-loci FLM with 10000

burn-in cycles. For data simulated with models 5 and
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Table 4. Variance component estimates (and empirical standard errors) a�eraged across 10 replicates and

obtained by analysing data simulated under models 5 to 8 (see Table 1) with data}analysis schemes DA3 to

DA6 (see Table 2)

Data}
analysis
scheme

Genetic
model

No. of
analysis
loci σ#

e
σ#

a
σ#

d
σ#

aa

DA3 5 6 59±51 (1±13) 31±52 (0±98) 16±53 (0±97) 13±13 (0±67)
12 52±73 (1±02) 29±60 (0±76) 20±61 (0±86) 19±50 (0±60)

DA4 6 6 61±17 (1±46) 32±10 (1±23) 14±88 (1±04) 13±46 (1±18)
12 52±46 (1±60) 30±33 (1±07) 19±33 (1±06) 21±13 (0±99)

DA5 7 6 60±55 (1±65) 23±63 (1±60) 15±03 (1±11) 22±29 (1±60)
12 52±62 (1±82) 23±17 (1±37) 19±03 (1±03) 28±59 (1±38)

DA6 8 6 64±24 (1±23) 25±91 (1±24) 13±97 (0±33) 18±37 (1±56)
12 55±39 (1±36) 24±73 (1±32) 18±72 (0±62) 25±11 (1±33)

True values for genetic models 5 and 6 are error variance (σ#
e
)¯ 60, additive variance (σ#

a
)¯ 30, dominance variance (σ#

d
)

¯15 and epistasis variance (σ#
aa
)¯15. True values for models 7 and 8 are σ#

e
¯ 60, σ#

a
¯ 20, σ#

d
¯10 and σ#

aa
¯ 30.

Table 5. Variance component estimates (and empirical standard errors) a�eraged across fi�e replicates and

obtained by analysing data simulated under models 1, 2 and 5 (see Table 1) with data}analysis schemes DA7 to

DA9 (see Table 2). Values in square brackets are from Du et al. (1999) and are gi�en for comparison

Data}
analysis
scheme

Genetic
model

No. of
analysis
loci σ#

e
σ#

a
σ#

d
σ#

aa

DA7 2 6 54±20 (1±08) 48±23 (1±20) 22±38 (0±86)
[5] [54±4 (0±92)] [51±0 (0±94)] [20±9 (1±11)]
12 50±21 (1±24) 48±64 (1±16) 26±15 (1±05)
[10] [48±6 (1±05)] [51±9 (1±02)] [26±7 (1±21)]
18 48±79 (1±48) 48±76 (1±28) 27±56 (1±11)
[20] [42±8 (2±18)] [53±8 (0±93)] [32±9 (2±75)]

DA8 1 6 50±62 (1±46) 53±04 (2±46) 24±13 (1±57)
[5] [51±2 (0±91)] [51±9 (1±34)] [23±8 (0±97)]
12 47±35 (1±53) 53±50 (2±59) 27±39 (1±55)
[10] [46±8 (0±96)] [52±7 (1±36)] [28±3 (1±03)]
18 45±72 (1±35) 53±29 (2±61) 29±07 (1±41)
[20] [39±5 (1±83)] [56±0 (2±70)] [35±6 (1±69)]

DA9 5 6 61±79 (1±26) 32±86 (1±06) 15±09 (1±07) 10±02 (1±08)
12 58±78 (1±45) 31±76 (1±25) 16±82 (1±19) 12±49 (1±40)
18 57±41 (1±45) 31±11 (1±46) 17±21 (1±34) 14±07 (1±88)

True values for genetic models 1 and 2 are error variance (σ#
e
)¯ 50, additive variance (σ#

a
)¯ 50, dominance variance (σ#

d
)

¯ 25 and epistasis variance (σ#
aa
)¯ 0. True values for model 5 are σ#

e
¯ 60, σ#

a
¯ 30, σ#

d
¯15 and σ#

aa
¯15.

6 (DA3 and DA4), dominance and epistatic variance

estimates increased more rapidly, compared with the

dominance-only or the epistasis-only case, while

residual variance was decreased, as the number of loci

in the FLM increased. For data simulated with

models 7 and 8 where A¬A epistatic variance was

large (DA5 and DA6), overestimation of dominance

variance was more pronounced, and epistatic variance

more severely underestimated than before.

(iii) Gibbs sampling of genotypes, with dominance,

6300-pedigree, normal priors

In contrast to data}analysis schemes DA1 to DA6 in

which bounded uniform priors were used for genetic

effects, normal priors (folded-over normal for a
i
,

normal for d
i

and aa
i
) were used in DA7 to DA9.

Bayesian analysis of FLMs was implemented by

Gibbs samplers of length 120000 with 10000 burn-in

cycles. Compared with the case of uniform priors,

considerably shorter MCMC was needed using normal

priors for genetic effects.

Results from Du et al. (1999), in which same data

were analysed with uniform priors for genetic effects,

were included in Table 5 for comparison. As shown in

Table 5 (averages of five replicates), normal priors for

genetic effects clearly improved variance components

estimation, as compared with uniform priors. How-

ever, the dependency of variance components es-

timation on locus number in analysis FLM persisted
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Table 6. Variance component estimates (and empirical standard errors) a�eraged across fi�e replicates and

obtained by analyzing data simulated under model 2 (see Table 1) with data}analysis schemes DA10 and DA11

(see Table 2)

Data}analysis
scheme Priors

No of.
analysis
loci σ#

e
σ#

a
σ#

d

D10 Uniform 6 54±84 (0±85) 48±07 (1±40) 22±10 (0±90)
12 50±02 (0±99) 49±53 (1±94) 27±03 (0±89)
18 48±18 (1±07) 49±84 (1±46) 28±93 (1±11)

DA11 Normal 6 55±37 (0±92) 47±56 (1±32) 21±69 (1±03)
12 53±18 (0±82) 46±88 (1±20) 23±86 (0±92)
18 51±68 (0±95) 47±05 (1±22) 25±46 (1±11)

True values for model 2 are error variance (σ#
e
)¯ 50, additive variance (σ#

a
)¯ 50, dominance variance (σ#

d
)¯ 25 and epistasis

variance (σ#
aa
)¯ 0.

in both cases. As the locus number in analysis FLM

increased from 6 to 18 with normal (bounded uniform)

priors for genetic effects, the increase in dominance

variance is 4±95 (11±8) for genetic model 1, and 5±18

(12±0) for genetic model 2. Moreover, the increase in

total non-additive genetic variance resulting from the

increase in locus number in the analysis FLMappeared

to be little affected by the number of non-additive

components in the analysis FLM, with normal priors.

In contrast, the increase in the estimations of total

non-additive genetic variance resulting from the

increase in locus number in the analysis FLM

approximately doubled as the analysis FLM was

expanded from additive­dominance to additive

­dominance­epistasis with uniform priors (Tables

4, 5).

(iv) Gibbs sampling of genotypes, with dominance,

12300-pedigree

We conjectured that the dependency of variance

components estimation on locus number in the

analysis FLM might (partially) result from data in-

sufficiency. To test this hypothesis, a larger pedigree

(12300 members) was simulated for genetic model 2,

and the data set was analysed with uniform and

normal priors for genetic effects. Results in Table 6

are averages of five replicates obtained from Gibbs

samplers of length 100000 with 10000 burn-in cycles.

Compared with the corresponding Gibbs sampler for

the 6300-pedigree, considerably shorter MCMC was

required for the 12300-pedigree, especially when

uniform priors were used for genetic effects.

As expected, increasing sample size clearly improved

variance components estimation (Tables 5, 6). How-

ever, the dependency persists even with data of 12300

members that are reasonably closely related. With

uniform priors for genetic effects, the increase in

dominance variance for changing from 5 (6) loci to 20

(18) loci in the analysis FLM was 12±0 (6±83) for the

6300-pedigree (12300-pedigree). When locus number

in the analysis FLM was changed from 6 to 18 with

normal priors, dominance variance increased from

5±18 (3±77) for the 6300-pedigree (12300-pedigree).

We noticed that additive genetic variance was

significantly (or near to a significant level with a

Student’s t-test) underestimated with normal priors

for genetic effects while it appears to be accurately

estimated with uniform priors for genetic effects

(Table 6). Further research is required to determine

whether this underestimation results from the use of

normal priors for genetic effects on a larger data set.

(v) Gibbs sampling of genotypes, effects constant,

6300-pedigree

To investigate whether the dependency of the variance

components estimates on the number of loci in the

analysis FLM was caused or enhanced by allowing

effects (A, D,…) to vary across loci, we analysed data,

generated under models 1 and 2, with additive and

dominance effects constant across loci in the analysis

FLM (data}analysis schemes DA12 and DA13; see

Table 2). For example, analysis of two data sets for

model 1 produced the following results : 5 loci : 47±5,

55±4, 24±3; 10 loci : 39±9, 54±7, 33±0; and 20 loci : 37±7,

54±9, 34±9 for residual, additive and dominance

variance, respectively. Estimates from analysis of a

data set for model 2 were: 5 loci : 62±94, 49±30, 12±13;

10 loci : 54±72, 49±24, 21±00; and 20 loci : 50±7, 47±99,

25±30. Consequently, holding effects constant across

loci does not seem to eliminate or reduce the

dependency of estimates on the number of loci.

Moreover, accuracy in variance components esti-

mation appeared to be affected by genetic models.

(vi) Descent graph sampling, with dominance, 6300-

pedigree, uniform priors

Gibbs samplers for parameters of length 50000 for the

12- and 18-loci FLMs or 60000 for the 6-loci FLM,
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Table 7. Variance component estimates (and empirical standard errors) a�eraged across fi�e replicates and

obtained by analysing data simulated under models 2 and 5 (see Table 1) with data}analysis schemes DA14 and

DA15 (see Table 2)

Data}
analysis
scheme

Genetic
model

No. of
analysis
loci σ#

e
σ#

a
σ#

d
σ#

aa

DA14 2 6 54±31 (1±71) 51±27 (0±76) 20±63 (1±87)
12 50±70 (0±94) 51±20 (1±41) 25±48 (1±69)
18 45±35 (2±42) 54±00 (0±42) 30±10 (2±61)

DA15 5 6 61±33 (1±14) 31±93 (0±84) 15±47 (1±57) 11±93 (1±16)
12 53±66 (1±18) 30±50 (0±75) 20±34 (1±43) 18±35 (1±06)
18 47±81 (1±58) 29±73 (0±63) 22±97 (1±65) 23±81 (0±96)

True values for model 2 are error variance (σ#
e
)¯ 50, additive variance (σ#

a
)¯ 50, dominance variance (σ#

d
)¯ 25 and epistasis

variance (σ#
aa
)¯ 0. True values for model 5 are σ#

e
¯ 60, σ#

a
¯ 30, σ#

d
¯15 and σ#

aa
¯15.

with 4000 burn-in cycles and 5000 MH steps for

descent graph sampling of genotypes in each Gibbs

cycle, were implemented. Because of the long running

time of this sampling scheme (approximately 8 days of

CPU on a 250 MHz Origin 2000 machine), only five

replicates of data simulated under models 2 and 5

were analysed with uniform priors for genetic effects.

As shown in Table 7, the dependency of variance

components estimates on the locus number in the

analysis FLM remained and showed the same trends

(increasing estimates of non-additive genetic variance

and a decrease in residual variance with increasing

number of loci) as before. The descent graph sampler,

which updates the genotypes of all individuals at all

loci jointly, produced at best a very modest reduction

in the dependency of variance estimate on locus

number (Tables 4, 5, 7).

4. Discussion

Finite locus models may provide a better framework

for the estimation of genetic parameters and for

describing residual polygenic variation in QTL analy-

ses of complex pedigrees than the infinitesimal model.

Conceptually, FLMs can easily be extended to include

dominance, all two-loci epistasis components, and

even higher-order interactions. Moreover, Bayesian

analysis of an FLM requires fewer MCMC cycles for

variance components estimation with larger data sets.

Consequently, computation time required for variance

components estimation under the FLM only increases

slowly as sample size increases.

Dependency of variance components estimation on

the locus number in analysis FLM was observed in

this study and in the literature (Pong-Wong et al.,

1998, 1999; Du et al., 1999). To further investigate

this dependency, we experimented with various FLM

implementation strategies including different genotype

sampling schemes, holding genetic effects constant or

allowing them to vary, and different priors for genetic

effects. While no implementation strategy completely

eliminated the dependency, variance components

estimation was clearly affected by implementation

choices.

Compared with bounded uniform priors for genetic

effects, normal priors improved variance components

estimation in two aspects. First, the dependency of

non-additive estimate on locus number diminished for

all genetic models and pedigrees investigated. Second,

the dependency appears not to be affected by the

number of non-additive genetic components in the

analysis FLM. Moreover, fewer MCMC cycles were

necessary for Bayesian variance components esti-

mation. It is not surprising that some improvement in

variance components was observed by replacing

uniform priors with normal priors. With bounded

uniform as priors, genetic effects are treated as fixed

effects. The estimates of genetic effects belong to the

class of shrinkage estimates (genetic effects are

regressed towards their means) with normal distri-

butions as priors, and shrinkage estimates generally

have lower mean squared errors, especially when the

number of classes (i.e. loci) is large. We also

experimented with exponential priors for genetic

effects, but no further improvement in variance

components estimation was found (results not shown).

Further understanding of the properties of in-

dividual QTL would help to choose appropriate

priors for genetic effects and for QTL size in QTL

mapping. Ideally, we would like to choose priors that

are close to their true distributions. While little

information about properties of individual QTL is

available for economically important quantitative

traits in food animals, the distribution of the genetic

effects of newly accumulated mutations on bristle

number in Drosophila was highly skewed and lep-

tokurtic (Mackay et al., 1992; Caballero & Keightley,

1994). In reality, detailed information on the number

and frequencies of alleles, and possibly on linkage

relationships, will be incomplete for quantitative traits
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in food animals, at least for the foreseeable future.

Moreover, the variance components estimation should

be primarily determined by data instead of prior

information. Consequently, introducing some shrink-

age such as using normal priors with unknown scale

parameter appears to be an appropriate choice for

genetic effects.

Overparameterization was suggested as one of the

possible causes of the dependency of variance es-

timation on locus number (Du et al., 1999; Pong-

Wong et al., 1999). Pong-Wong et al. (1999) suggested

that holding genetic effects constant across loci might

avoid overparameterization. However, biases and

dependencies persisted in the presence of non-additive

genetic variation, with genetic effects held constant

across loci in the analysis.

We first conjectured this dependency might be due

to poor mixing of the Gibbs sampler for genotypes.

We therefore implemented a descent graph sampling

scheme, as it appeared to be the most efficient way of

performing joint sampling of the genotypes of all

individuals at all loci, compared with other methods

such as peeling, which would need to be extended to

multiple loci. Our current implementation of the

descent graph Markov chain requires a long chain

with many MH steps within each Gibbs update of the

parameters. Based on the results in Table 7 and other

results not shown, the descent graph sampler produced

little to no improvement in the parameter estimation,

with the dependency between genetic parameter

estimates and number of loci remaining. We also

implemented a MH sampler that updates all genotypes

and parameters jointly by proposing changes to the

genotypes (similar to the second scheme), and to the

parameters based on normal or uniform distributions

with small spread and centred at the previous sample

value in each cycle of sampling. Our current im-

plementation of this scheme did not improve the

estimation of variance components (results not

shown). The sampling scheme does not seem to be the

(major) factor causing the dependency of parameter

estimates on locus number. When we initially imple-

mented the FLM with a single-site Gibbs sampler

updating genotypes conditionally on the genotypes of

final offspring, genetic parameter estimates were very

poor. They remained poor when we sampled fathers

unconditionally on final offspring genotypes but

mothers still conditionally on the genotypes of their

final offspring. Sampling both mothers and fathers

unconditionally on final offspring genotypes sub-

stantially improved parameter estimation and seems

to work (nearly) as well as the joint sampling of all

genotypes. Sampling the genotypes of one locus

conditionally on the genotypes at other loci is not

optimum but should not lead to very poor mixing, as

long as loci are unlinked, as in the FLM, or not closely

linked.

It appears instead that the dependency of genetic

variance component estimates on locus number is due

to data insufficiency. With bounded uniform priors

for additive effects in a purely additive FLM, the

estimate of additive genetic variance for a pedigree

with 480 members increased rapidly as locus number

in analysis FLM increased (Pong-Wong et al., 1999),

while variance estimates were independent of locus

number in the analysis FLM for a pedigree of 6300 we

simulated under a purely additive model (Du et al.,

1999). Moreover, the dependency (with either uniform

or normal priors for genetic effects) considerably

diminished for the non-additive FLMs in this paper,

as the sample size increased from 6300 to 12300. In all

likelihood the dependency should be eliminated by

further increasing sample size.

While the hypothesis that the dependency results

from data insufficiency supports the validity of FLMs,

estimating variance components most accurately with

a limited amount of data is of practical importance. In

addition to the use of non-uniform priors for genetic

effects, it may be worthwhile to investigate extension

of the FLM to including the number of loci as an

additional unknown via a reversible jump Metropolis-

Hastings sampler (Green, 1995), letting the data

determine an optimum number of loci. Although the

genotype sampling scheme did not appear to be a

major factor in this investigation, further research

aimed at optimally sampling genotypes at all loci

and for all individuals jointly is warranted, both

for FLM implementation and QTL mapping. Our

current research focuses on improving descent graph

sampling, implementing genotypic or allelic peeling

for multiple loci in complex pedigrees efficiently, and

comparisons among these schemes.
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