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Abstract

Let L(s, E) =
∑

n≥1ann−s be the L-series corresponding to an elliptic curve E defined over Q and
u = {um}m≥0 be a nondegenerate binary recurrence sequence. We prove that if ME is the set of n such
that an , 0 and NE is the subset of n ∈ME such that |an| = |um| holds with some integer m ≥ 0, then NE

is of density 0 as a subset ofME .
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1. Introduction

Let E be an elliptic curve over the field of rational numbers Q given by the minimal
global Weierstrass equation:

E : y2 + A1xy + A3y = x3 + A2x2 + A4x + A6 (1.1)

and let ∆E be its discriminant. For each prime p we put

ap = p + 1 − #E(Fp),

where E(Fp) is the reduction of E modulo p. If p | ∆E , then E(Fp) has a singularity
and one gets

ap =


0 for the case of a cusp,

1 for the case of a split node,

−1 for the case of a nonsplit node.
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For all primes p we have |ap| ≤ 2
√

p. The L-function associated to E is given by

L(s, E) =
∏
p|∆E

1
1 − ap p−s

∏
p-∆E

1
1 − ap p−s + p1−2s

.

The infinite product above is convergent for Re(s) > 3/2 and therefore we can expand
it into a series L(s, E) =

∑
n≥1 ann−s.

Let u = {um}m≥0 be a binary recurrent sequence of integers satisfying the recurrence

um+2 = rum+1 + sum for all m ≥ 0,

where r and s are nonzero integers such that the quadratic equation

x2 − rx − s = 0

has two distinct roots α and β. It is then well known that there exist two constants c
and d in K = Q(α) such that the Binet formula

um = cαm + dβm

holds for all m ≥ 0. We assume that the sequence u is nondegenerate, meaning that
cd , 0 and α/β is not a root of unity. We put ∆u = (α − β)2 = r2 + 4s , 0 for the
discriminant of the sequence u. The numbers c∆u and d∆u are algebraic integers.

Here we study the set of positive integers n such that |an| = |um| for some
nonnegative integer m. Before we start, we remark that there could be many n such
that an belongs to the sequence {um}m≥0 simply because it may happen that ap = 0 = uk

for some prime p and integer k ≥ 0, in which case n = p` with any positive integer `
coprime to p has the property that an = 0 = uk. To discard this instance, let

ME = {n : an , 0}.

We put
NE = {n ∈ME : |an| = |um| for some m ≥ 0},

and for a positive real number x and subset A of the positive integers we put
#A(x) = #(A∩ [1, x]).

T 1.1. Let E be an elliptic curve defined over Q and u = {um}m≥0 be a
nondegenerate binary recurrent sequence. There is a positive number c = c(E, u)
depending on E and u such that the estimate

#NE(x) = O
(#ME(x)

(log x)c

)
holds for all x ≥ 2. The implied constant depends on E.
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Our notation is standard. The letters p and q with or without subscripts stand for
prime numbers. We useω(n) and τ(n) for the number of distinct prime divisors of n and
the total number of divisors of n, respectively. For a subset P of prime numbers we use
ωP(n) for the number of prime factors p ∈ P of n. We write P(n) for the largest prime
factor of n. Finally, we use the Landau notation O and o as well as the Vinogradov
notation� and� with their regular meanings. The constants implied by these might
depend on E and u. We use x0 for a large positive real number not necessarily the
same at each occurrence and c, c1, c2, . . . for positive constants depending on E and u.

2. Weierstrass equations

With the standard birational transformation (see [9, Ch. III, Section 1]), replacing y
in (1.1) by (y − A1x − A3)/2 gives an equation of the form

y2 = 4x3 + B2x2 + 2B4x + B6,

where
B2 = A2

1 + 4A2, B4 = 2A4 + A1A3, B6 = A2
3 + 4A6.

Further, defining the quantities

C4 = B2
2 − 24B4,

C6 = −B3
2 + 36B2B4 − 216B6,

and then replacing (x, y) by ((x − 3B2)/36, y/108) yields the simpler Weierstrass
equation

E : y2 = x3 − 27C4x − 54C6.

We put A = −27C4 and B = −54C6. From now on, we assume that p > 3 is a prime so
the above transformations are well defined modulo p and we work with the equation

E : y2 = x3 + Ax + B.

3. Some preparations

3.1. Removing n with a large square-full part. Recall that b is a square-full
number if p2 | b whenever p | b. Put y = (log x)2. For each n we write

t(n) =
∏
p‖n

p-6∆E

p and c(n) =
n

t(n)
.

Then c(n) = ab, where a is square-free and a | 6∆E and b is square-full. We put

N1(x) = {n ≤ x : c(n) > y}.
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If n ∈ N1(x), then n is divisible by a number of the form ab, where a | 6∆E is square-
free and b > y/a ≥ y/(6|∆E |) is square-full. For fixed a and b, the number of such n ≤ x
is bx/abc ≤ x/ab ≤ x/b. Making a and b vary, we get that

#N1(x) ≤
∑

b>y/(6|∆E |)
b square-full

a|6∆E

x
b
≤ xτ(6|∆E |)

∑
b>y/(6|∆E |)
b square-full

1
b
�

x
y1/2

=
x

log x
, (3.1)

where in the above calculation we use the Abel summation formula together with the
fact that the counting function of the number of square-full numbers b ≤ t is O(t1/2).

3.2. Removing smooth n. Put

z = exp
( log x log log log x

2 log log x

)
.

We let
N2(x) = {n ≤ x : P(n) ≤ z}.

From known results from the distribution of smooth numbers (see [1]), in this range
for z and x, it is known that

#N2(x) = x exp(−(1 + o(1))u log u) as x→∞,

where u = log x/ log z = 2 log log x/ log log log x. Hence,

u log u = (2 + o(1)) log log x,

as x→∞, showing that

#N2(x) = x exp(−(2 + o(1)) log log x) = O
( x
log x

)
. (3.2)

3.3. The size of m. Assume that |an| = |um| holds for some positive integer n ≤ x with
um , 0. Since |an| ≤ τ(n)n1/2, it follows that |an| ≤ x if x > x0. Since um , 0, it follows,
by a result of Stewart (see [11, p. 33]), that the inequality |um| ≥ |α|

m−c1 log(m+1) holds
with some positive constant c1 depending on u. Thus,

x ≥ |an| = |um| ≥ |α|
m−c1 log(m+1).

Since |α| ≥ (1 +
√

5)/2, it follows that m ≤ 5 log x for x > x0.

4. The proof in the CM case

Here, we treat the case when E has complex multiplication (CM). In this
section, we will need the set N2(x). We put L = Q(

√
−D) for the CM field of E,
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where D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}. Recall that if ap = 0, then p is called
supersingular. A result of Deuring [3] asserts that if we put

PE = {p : p supersingular},

then up to finitely many exceptions, p ∈ PE if and only if (−D | p) = −1, where
the above symbol is the Legendre symbol of −D with respect to p. This implies
immediately, via a result of Wirsing (see [12, Satz 1]; [8, Proposition 18]), that the
asymptotic

#ME(x) ∼
cE x

(log x)1/2
as x→∞, (4.1)

holds with some positive constant cE .
Put

N3(x) =NE(x)\(N1(x) ∪ N2(x)).

Assume that n ∈ N3(x). Write |an| = |um| for some m ≥ 0. Recall m ≤ 5 log x by the
argument from Section 3.3. Fix m. Now write n = Pn1, where P = P(n). Since P > z
(because n <N2(x)) and z > y for x > x0, it follows that P(n1) < P once x is sufficiently
large because n <N1(x). Then, by the multiplicativity of an,

|an1 ||aP| = |um|.

We fix n1 such that |an1 | is a divisor of |um|. Then aP = ±|um|/|an1 | takes on one of two
fixed values. By [2, Theorem 9], the number of possibilities for P ≤ x/n1 is of order at
most

√
x/n1

log(x/n1)
�

√
x log log x
√

n1 log x
.

Summing the above bound over all n1 ≤ x/z and m ≤ 5 log x, we get that

#N3(x)�
∑

n1≤x/z
m≤5 log x

√
x(log log x)
√

n1 log x
�
√

x(log log x)
∑

n1≤x/z

1
√

n1

�
√

x log log x
∫ x/z

1

dt
t1/2
�

x log log x
√

z
�

x
log x

.

(4.2)

Since NE(x) ⊆ N1(x) ∪ N2(x) ∪ N3(x), we get, by (3.1), (3.2), (4.2) and (4.1), that

#NE(x) ≤
3∑

i=1

#Ni(x)�
x

log x
�

#ME(x)
(log x)1/2

,

which is what we wanted to prove with c = 1/2.
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5. Some more preparations for the non-CM case

5.1. Primes p with ap ≡ 0 (mod q). Let q0 be a constant depending on E and u to
be made more precise later. For the moment, we assume that q0 ≥ P(6|∆E |). Let

[q]E = {P = (xP, yP) ∈ E : qP = O in E} ∪ {O}.

Then [q]E is isomorphic to Z/qZ ⊕ Z/qZ. Let Lq = Q(xP, yP : P ∈ [q]E). By a
Theorem of Serre [8], there exists a positive integer ME depending on E such that
if q - ME , then Gal(Lq/Q) = GL2(Z/qZ). So, let us assume that q0 ≥ P(6|∆E |ME) and
q > q0. It follows, by a known application of the Chebotarev density theorem, that if
we put

Pq = {p : ap ≡ 0 (mod q)},

then
#Pq(x)

π(x)
= (1 + o(1))

#{a ∈ GL2(Z/qZ) : tr(a) = 0}
# GL2(Z/qZ)

as x→∞. (5.1)

Put δq for the fraction appearing on the right-hand side of the above asymptotic. Since

#{a ∈ GL2(Z/qZ) : tr(a) = 0} = q3 + O(q2),

# GL2(Z/qZ) = q4 + O(q3),

it follows that δq ≥ 1/(2q) if q is sufficiently large. We shall assume that q0 is
sufficiently large such that all inequalities q0 ≥ P(6|∆E |ME) and δq ≥ 1/(2q) hold for
all q > q0.

For reasons that will become clearer later, we shall also assume that

q0 ≥ P(NK/Q(c∆u)NK/Q(d∆u)s).

In particular, c, d, α, β, as well as their inverses are all defined modulo q.
Let q1 < q2 < · · · be all the prime numbers exceeding q0. Let Qu be the following

subset of primes:

Qu = {q > q0 : un ≡ 0 (mod q) does not have an integer solution n}.

If Qu is nonempty, let qL be the smallest prime in Qu and let K ≥ L be minimal such
that

K∑
i=1

log qi

qi
> 12. (5.2)

If Qu is empty, we only choose K minimal such that (5.2) holds.
We make one additional comment about the case when Qu is empty. It follows from

a result of Somer [10] that u is a scalar multiple of a shift of the Lucas sequence of the
first kind with roots α and β. Namely, let v = {vm}m∈Z be the sequence given by

vm =
αm − βm

α − β
for all m ∈ Z.

Then there exist λ ∈ Q and m0 ∈ Z such that um = λvm+m0 . We shall use this fact later.
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5.2. Sieving away numbers n with few prime factors inPqi for i = 1, . . . , K. Let
ρ ∈ (0, 1) be fixed and assume that P is a subset of primes such that∑

p≤t
p∈P

1
p

= (ρ + o(1)) log log t as t→∞. (5.3)

Then ‘most’ positive integers n have ωP(n)/ log log n ≥ ρ − ε for any ε > 0. To make
this statement quantitative, assume that γ ∈ (0, ρ) and let

M−,γ,P(x) = {n ≤ x : ωP(n) < (ρ − γ) log log x}.

Then
#M−,γ,P(x)�

x
(log x)η+o(1)

(x→∞), (5.4)

where

η = ρ − (ρ − γ) log
( eρ
ρ − γ

)
.

This can be found in [5, Ch. 0]. Now observe that by (5.1) and Abel’s summation
formula, (5.3) holds with P = Pq and with δ = δq. We thus let ρ = δqi and let
γ = 1/(4qi) for i = 1, . . . , K and consider the set

N4(x) = {n ≤ x : ωPqi
(n) < (δqi − 1/(4qi)) log log x for some i = 1, . . . , K}.

Then, by (5.4),

#N4(x)�
x

(log x)c2
(5.5)

for some constant c2 > 0, which can be computed as

c2 = min{ηi : i = 1, . . . , K},

where

ηi = δqi − (δqi − 1/(4qi)) log
( eδqi

δqi − 1/(4qi)

)
for i = 1, . . . , K.

6. The proof in the non-CM case

Throughout this proof, we will not use the set N2(x). Let again

PE = {p : p supersingular}.

A result of Elkies [4] says that PE is infinite. It follows from a result of Serre [8] that

#PE(x)�
x(log log x)(log log log x)1/2

(log x)3/2
.
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In particular, by Abel’s summation formula,∑
p∈PE

1
p

= O(1),

which implies, via the principle of inclusion and exclusion (or [8, Théorème 14]), that
the asymptotic

#ME(x) ∼ cE x as x→∞, (6.1)

holds with some positive constant cE .
Let

N5(x) =NE(x)\(N1(x) ∪ N2(x) ∪ N4(x)).

We shall in fact show that N5(x) is empty for x > x0. This will imply that the
containment NE(x) ⊆ N1(x) ∪ N2(x) ∪ N4(x) holds, so that, by (3.1), (3.2) and (5.5),

#NE(x) ≤ #N1(x) + #N2(x) + #N4(x)�
x

(log x)c3

for some c3 > 0, which together with (6.1) completes the proof of the theorem.
So, let us show thatN5(x) = ∅ if x > x0. Assume that this is not so and let n ∈ N5(x).
Since n <N1(x), we may write

n = n2 p1 · · · p`, n2 ≤ y, p1 < · · · < p` and gcd(6∆En2, p1 · · · p`) = 1.

Let T = T (x) be the maximal positive integer such that∏
p≤T

p ≤ y.

By the prime number theorem, T = (1 + o(1)) log y = (2 + o(1)) log log x. Therefore
π(T ) = o(log log x) as x→∞.

Since n <N4(x), it follows that for each i = 1, . . . , K, n has at least(
δqi −

1
4qi

)
log log x ≥

1
4qi

log log x

distinct primes in Pqi . Of these, at most π(T ) divide n2. Thus, among p1, . . . , p` there
are at least

log log x
4qi

− π(T ) ≥
log log x

5qi

of them which are in Pqi for i = 1, . . . , K and x > x0. Since an is divisible by
∏`

i=1 api ,
we conclude that if we write

an = qγ1

1 · · · q
γK

K b,

where b is coprime to q1 . . . qK , then γi ≥ (log log x)/(5qi) for i = 1, . . . , K. In
particular, qL | an | um, which is impossible if Qu is nonempty. This shows that N5(x)
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is empty for x > x0 unless Qu is empty. So, let us assume that Qu is empty. Then, by
Somer’s result [10], um = λvm+m0 for some fixed m0 ∈ Z. For each q ≥ q0, let z(q) be
the index of appearance of q in v and let fq be the exponent of q in the factorisation
of vz(q). Recall that the index of appearance of q is the smallest positive integer k
such that q | vk. It is well known that if qk | v` for some k > fq, then qk− fq | ` (see,
for example, the theorem in [7, p. 210]). So, assume that x is sufficiently large
such that (log log x)/(30qi) > fqi for all i = 1, . . . , K once x > x0. Since qγi

i | λvm+m0 ,
λ = cαm0 (α − β) and q0 exceeds the largest prime factor of NK/Q((c∆u)(d∆u)s); hence,
the largest prime factor of the numerator and denominator of λ, we get that qγi

i | vm+m0 .
Hence, m + m0 is a multiple of

q
γi− fqi
i ≥ q

(log log x)/(5qi)− fqi
i ≥ q(log log x)/(6qi)

i for all i = 1, . . . , K. (6.2)

Since m + m0 is a multiple of
∏K

i=1 q
γi− fqi
i and since by (6.2) and the way we have

chosen K (see (5.2)),
K∏

i=1

q
γi− fqi
i ≥ exp

(
log log x

K∑
i=1

log qi

6qi

)
> (log x)2 > |m + m0|

for all x > x0 (because m ≤ 5 log x (see Section 3.3)), we get m + m0 = 0, showing that
um = 0, which is not allowed. Thus,N5(x) is indeed empty for x > x0, which completes
the proof of the theorem.

7. Comments and heuristics

Better, or more explicit, results can be proved about the problem studied in this
paper if one makes additional assumptions. For example, in [6], the first and third
authors showed, by a different method, that in the conclusion of Theorem 1.1 one can
take c(E, u) = 0.0007 for the particular case when u = F is the Fibonacci sequence,
and the curve E is non-CM and has nontrivial 2-torsion. Further improvements can
be obtained in the non-CM case if one assumes the generalised Riemann hypothesis
for the Dedekind zeta function of the division fields of E. Let u = (um)m≥0 be any
nondegenerate linearly recurrent sequence of order d, such that |um| is neither constant
nor a linear polynomial in m for all sufficiently large values of m. Assume that its
characteristic polynomial is f (X) ∈ Z[X] and write f (X) = (X − α1)σ1 · · · (X − αk)σk ,
where α1, . . . , αk are nonzero complex numbers and σ1, . . . , σk are positive integers.
Recall that the nondegeneracy condition means that αi/α j is not a root of 1 for all i , j
in {1, . . . , k}. In this case,

um =

k∑
i=1

Pi(m)αm
i for all m ≥ 0,

where Pi(X) ∈ C[X] is of degree σi − 1 for i = 1, . . . , k. We shall further assume
that |α1| ≥ · · · ≥ |αk|. If |α1| > 1, then it is known that, for all ε > 0, the inequality
|um| > |α1|

(1−ε)m holds for all m ≥ 0 with finitely many exceptions. In particular,
|um| > |α1|

m/2 holds for all but finitely many m.
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Define similarlyNE(x) = {n ≤ x : |an| = |um| for some integer m}. We conjecture that
there exists η > 0 such that #NE(x)� x1−η and give some heuristic support to this
conjecture. Indeed, since |an| ≤

√
nτ(n) for all n ≥ 1, it follows that if n ≤ x, then

|an| ≤ x1/2+o(1) for all n ≤ x as x→∞. In particular, this suggests that perhaps the
estimate

#{n ≤ x : |an| = a} � x1/2+o(1) (7.1)

holds uniformly in a as x→∞. Assume that (7.1) holds. As we have seen,
if n ∈ NE(x), then |an| = |um| for some m. Hence, if |α1| > 1, then with finitely
many exceptions in m, we have that |α1|

m/2 < |um| = |an| ≤ x1/2+o(1) as x→∞, so
m = O(log x). If |α1| = 1, then by Kronecker’s theorem, all roots of f (X) are roots
of unity. Since the ratio of any two of them cannot be a root of unity, it follows that
k = 1 and α1 ∈ {±1}. Thus, |um| = |P1(m)|, where P1(X) is a polynomial of degree d
with rational coefficients. Since P1(X) is neither constant nor a linear polynomial in
X, it follows that d ≥ 2. Then |P1(m)| � md, showing that

md � |P1(m)| = |um| = |an| ≤ x1/2+o(1) as x→∞.

Therefore m ≤ x1/(2d)+o(1) as x→∞. By (7.1), for each possible m,

#{n ≤ x : |an| = |um|} ≤ x1/2+o(1) as x→∞

independently in m. This heuristic argument suggests that

#NE(x) ≤ x1/2+o(1) × {m : |um| ≤ x1/2+o(1)} ≤

x1/2+o(1) if |α1| > 1

x1/2+1/(2d)+o(1) if |α1| = 1,

which indeed seems to suggest that the inequality #NE(x)� x1−η holds for all x ≥ 1
with some η > 0. Further, one may perhaps take any η ∈ (0, 1/2) provided that |um| is
not a polynomial of degree d ≥ 2 for all sufficiently large m.
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