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SIX PRIMES AND AN ALMOST PRIME 
IN FOUR LINEAR EQUATIONS 

ANTAL BALOG 

ABSTRACT. There are infinitely many triplets of primes p, q, r such that the arith
metic means of any two of them, ^ , *y-, ^ are also primes. We give an asymptotic 
formula for the number of such triplets up to a limit. The more involved problem of ask
ing that in addition to the above the arithmetic mean of all three of them, £ ^ is also 
prime seems to be out of reach. We show by combining the Hardy-Littlewood method 
with the sieve method that there are quite a few triplets for which six of the seven entries 
are primes and the last is almost prime. 

1. Introduction. The Hardy-Littlewood method is number theorist's best tool for 
additive problems, such as a system of homogeneous linear equations in arithmetically 
interesting sets. A classical example is van der Corput's result on the existence of in
finitely many three-term arithmetic progressions in the set of positive primes [vdC 1939]. 
Generally k equations require at least 2k+ 1 primes for a successful attack by the Hardy-
Littlewood method. Thus the problem of four-term arithmetic progressions in positive 
primes is out of reach at present. As an approximation Heath-Brown proved that there 
are infinitely many non-trivial arithmetic progressions consisting of three primes and an 
almost-prime of type P2 [H-B 1981]. Here, as usual, Pr denotes an integer with at most 
r prime factors counted according to multiplicity. 

The author has recently observed that systems of linear equations with a special struc
ture can sometimes break the 2k + 1 barrier. The most exciting example is the "magic 
triangle" in positive primes, that is the system of equations 

I a + b = 2w 
a + c = 2v 
b + c = 2u 

has infinitely many non-trivial solutions in positive primes a, b, c, u, v, w. Actually more 
is true. For any integer m > 2 let Nm{X) be denote the number of prime m-tuplets/?i < X, 
Pi <X,--,Pm < X such that the arithmetic mean \{pt +pj) of any two of these primes 
is also a prime. Thus N2(X) counts the three-term arithmetic progressions while N3(X) 
counts the "magic triangles". In [B 1992] it is proved that for any fixed m > 2 we have 

(2) Nm{X) > *" 
(iogxr(m+I)/2' 
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It is worth emphasising that the corresponding system consists of k = jm(m — 1) equa
tions in n = \m(m + 1) ~ k+ \flk + 1 variables. 

Note that in [B,B 1995] Balog and Brudern investigated the same question where the 
set of primes was changed to the set of integers representable as a sum of three positive 
cubes. 

Having the result for "magic triangles" one can try to add one more equation and 
variable by asking whether there are infinitely many prime triplets such that not only the 
arithmetic mean of any two of them but also the arithmetic mean of all three of them is 
prime, that is adding the equation a + b + c = 3z to (1) getting 

(3) 

a + b = 2w 
a + c = 2v 
b + c = 2u 

I a + b + c = 3z. 

Like the four-term arithmetic progression case, this is too much to ask. Following the 
foot steps of Heath-Brown we mix the Hardy-Littlewood method with sieve methods to 
produce solutions of (3) in six primes and an almost-prime. Hardly can one hope a sieve 
result for (3) without an asymptotic to (1). Indeed, as a byproduct we get 

THEOREM 1. 

According to the location of the almost-prime among the variables a, b, c, u, v, w and 
z we can state three results. N(X ; z = P3) denotes the number of solutions of (3) in 
positive primes a < X, b < X, c < X, u < X, v < X, w < X, and z = P3 < X with the 
obvious extension to other variables. We have 

THEOREM 2. 

(5) # ( X ; z = P 3 ) > X" (log JO7 ' 

(6) W;v = P i ) > ^ , 

(7) ^(X;fl = P 3 ) > > (bS)7' 

forX>X0. 

The difference between the quality of the results (5), (7) and (6) lays in the difference 
between the level of distribution in the sieve error terms we can reach in the different 
situations. The proof of (7) is analogous to the proof of (5), but we have to use a com
pletely different argument in (6) when dealing with the sieve error term. We will present 
the detailed proof only for (5). The proof of (6) has the same structure than the proof 
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of (5) except the "minor arcs" bound, which can be reduced to a lemma of [H-B 1981]. 
However, this more powerful method is not applicable to the other two situations, be
cause they are too symmetric in a certain sense. In Sections 2-6 we discuss the proof of 
(5) and as well as the general structure of the application of the circle method to "magic 
triangles". In Sections 7—8 we comments the alterations to the proof of (6). 

Heuristic arguments suggest that N(X), the number of solutions of (3) in seven positive 
primes each < X satisfy 

CONJECTURE. 

In this point it is worth mentioning that the same heuristic arguments give that the 
number of four-term arithmetic progressions in positive primes each < Xmust be 

(« 4n^-3 ) * 2/>13 (p-iy aog*)4 ' 

It is transparent that the factors corresponding to p > 3 in (8) are just the squares of 
the factors in (9), however one could not guess this relation from the structure of the 
equations only. 

We want to stress here, that the application of the Hardy-Littlewood circle method 
as described in Section 3, is quite general, and capable to give asymptotics for "magic 
triangles" in other sets than the set of primes or even for other systems of linear equa
tions with "fewer than expected" variables. In a forthcoming paper we plan to use the 
present method to derive a lower bound for the number of solutions of (3) in integers 
representable as a sum of two squares. 

Throughout the paper we will use the standard notations of analytic number theory. 
p will ailways denote a positive prime and a, b, c, u, v, w, z will always be the variables 
of(3). 

2. Preparation. Let us concentrate first to the proof of (5). Theorem 1, the asymp
totic result, will follow from this discussion, and it will also be clear that (7) can be 
proved much the same way. 

If one of the variables in (1) is fixed then choosing the value of two other vari
ables determines the rest. Thus the number of "magic triangles" with a fixed entry is 
0(X2 / (logX)2). Therefore we can suppose that neither of the variables is divisible by 2 
or 3, which sets up the following conditions. 

2 )fa9b9c; 

3 )(a, b, c, a + b,a + c, b + c ; 

2|,4 )(a + b,a + c,b + c. 
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One can easily check that these conditions are equivalent to 

a=b=c= 

(I 
5 
7 

111 

mod 12. 

{a,b,c} = mod 9. 

Similarly we can suppose that neither of the variables in (3) is divisible by 2 or 3, 
which sets up the following conditions 

2 ]fa,b,c,a + b + c; 

3 )fa, b, c, a + b, a + c, b + c ; 

2|,4 )(a + b,a + c,b + c; 

3|,9 )(a + b + c. 

One can easily check that these conditions are equivalent to 

{1,1,1 
{2,2,2 
{4,4,4 
{5,5,5 
{7,7,7 
{8,8,8 

{1,1,1} AA r L i {1,1,4 
1 {3,3,3} m 0 d 4 ' ^ C ^ \ \ i i % 

{4,4,7 
{2,5,5 
{1,7,7 
{5,8,8 
{1,4,7 

I {2,5,8 

By the Chinese Remainder Theorem the triplet (a, b, c) is fixed to be congruent to one 
of the 72 admissible triplets modulo 36 when dealing with (3). The 4 admissible triplets 
modulo 12 when dealing with (1) can be written as 108 admissible triplets modulo 36. 
Let us fix an admissible triplet (a0, b0, CQ). 

We will apply the linear sieve to the weighted sequence of positive integers z with 
weight 

«*) = E E E A W ) A ( O A ( ^ ) A ( ^ ) A ( ^ ) , 

where the triple sum is extended to a < X, b < X, c < X, a + b + c = 3z and (a, b, c) = 
(ao, bo, co) mod 36. Here A(n) is the von Mangoldt's function. 

Now let {\<i ;d <D,(d,6)= 1} be a set of sieveing weights, in this stage of the proof 
they are arbitrary real (or complex) numbers defined on square-free numbers coprime to 
6 and satisfying \Xd\ < 1. We are going to study the sum 

d<D z 
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Actually we will need a more general sum, namely let LJ*(Z) be defined similarly to LJ(Z) 

but A(a) is changed to an arbitrary function A* (a) satisfying only \A*(a)\ < log a, that is 

do) <SM = E E E A « ( « ) A ( * ) A ( C ) A ( ^ ) A ( ^ ) A ( ^ ) , 

We will prove the following theorem. 

THEOREM 3. For anyN>0 there isanM = M(N) > 0 such that 

i<D z 1 6 p > 3 0?-l)5
 d% ^p2~5p + l 

a=a0(36) 
(M)=l 

whenever D < n^xf- Especially we have 

a«J with D = 1, Ai = 1 

? V - 5 ^ + 7 ) Y 3 | 0 | - X3 

fp>3 VW(Z)"64/>
13 0-1)^ ^ + °l(log^J-

Theorem 1 follows from this last result by adding to the 108 admissible triplets of 
residues modulo 36 and by standard bunds for prime powers. We leave the details to the 
reader. 

To get better almost-primes we have to use more than a straightforward sieving pro
cess. One of the important steps is the "reversal of roles" principle, developed by Iwaniec 
[11972] and Chen [C 1973] independently. This will require the study of a different sum 
where the roles of a and z are switched. To simplify the notation we restrict our functions 
A(n) and A*(n) to the interval {0 < n < X}. Let Ct(a) be the number of triangles of 
type (3) with a fixed vertex a and weights A(n) at the other six locations, that is 

where the triple sum is extended to 3z — b — c = a and (b, c) = (bo, Co) mod 36, while 
z = ZQ = (<?o + bo + co)/3 mod 12 with the fixed admissible triplet (ao, bo, CQ) of residues 
modulo 36. We also restrict Q*(a) to 0 < a < X. Theorem 3 remains valid with little 
alterations when uf(z) is changed to Q*(a). However, the main term becomes slightly 
more clumsy as we have the additional condition that 0 < 3z — b < IX. We introduce 
the function 

H(z) = H(z ; X) = 3 min ( | , i , 1 - | ) . 

We haive 
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THEOREM 3'. For anyN>0 there is an M' = M(N) > 0 such that 

(z,</)=l 

whenever D< J^M-

The proof of Theorem 37 follows closely the proof of Theorem 3. We will indicate 
the slight differences in due course. This strategy seems more illuminating than proving 
the general statement. In Section 6 we will explaine how to derive (5) and (6) from 
Theorems 3 and 3' via the weighted linear sieve but we will be very brief with respect 
to the sieve. Before that we prove these theorems using the Hardy-Littlewood method. 
Section 3 is devoted to the "minor arcs", Section 4 to the "major arcs" and Section 5 to 
the "singular series" although these terms will not appear in their conventional form. 

3. Application of the circle method. We will detect the equation b + c = 2u in 
(10) by the circle method, and the equation a + b + c = 3dz by d\a + 2w, 3\a + b + c is 
immediate from the choice of (ao, bo, CQ). (The equation 3z — b — c = da is detected by 
d\3z — 2u instead.) We have for fixed a, b and c 

'Z? + c> 
A{~T~) = /o ? y Mu)e{a(b + c - 2uj) da. 

d\a 

Summing over a, b and c we arrive at 

u<X 
d\a+2u 

i) Z>=6o(36) 

X) A ( c ) A ( ^ ^ ) e ( a c ) £ A(u)e(-2au)da. 

a=a0(36) Z>=60(36) 

X 

C=EC0(36) J|a+2w 

We introduce the next functions defined for any fixed positive integers a and d. 

a + b^ 
f(a;d,a)= £ MMX<XU), fa,b0(a) = £ A(b)A(^-—)e(ab). 

bu<X b<* \ L J 
d\a+2u 

For Theorem 3' these definitions alter to 

bu<X b<X 
d\a+2u b=b0(36) 

3z-6> 
f(a;d,z)= £ Mu)e(aul fzJbo(a) = £ A ( 5 ) A ( ^ — ) « . 

</|3Z-2M fefc0(36) 
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The first one is the well-known generating function of primes in an arithmetic pro
gression, and well studied in the literature, while the second one is the anologue for a 
kind of prime twins, and almost nothing is known about, except on average over a. We 
have 

(11) £ u \ d z ) = £ A*(a) [fa,bo(aVa,Co(aY(-2a ; d, a)da 
z a<X JQ 

a=a0(36) 

and for Theorem 3' we have similarly 

(110 £ " * ( * < ) = £ A\z) [fzA(ay^CQ(aV(-2a;d,z)da. 
a z<X J0 

z=zQ(\2) 

Although not necessary, it will be convenient to use the same weight function in the 
integral as is used in [B 1990]. Let Q > 1 and L > 1 be arbitrary real numbers and 

(12) W{a)=\-Y,lf E E e[(a-{y\ 
q<Q q^ (f,q)=\ 0<t<qL V V H 7 / 

The important properties of this function are summarized in the following lemma (see 
Lemma 1 in [B 1990]). 

LEMMA 1. We have uniformly in Q, L and a 

Q2 

W(a) < 1 + Y ' 

O2 

W(a)<^minL\\aq\\ + ^ . 

Actually this lemma is proved with Q15 in place of Q2 in the upper bounds which is 
perfectly enough for our purposes as Q will be a power of log X while L will be X over 
another power of log X. However, the lemma is true in the above stronger form and the 
proof is straightforward, we leave it to the reader. We will also need Lemma 2 of [B 
1990] 

LEMMA 2. For anyN>0 there is anM = M(N) > 0 such that if 

<13> D £( i^-( , < >^"£ i £( i^-lh-^ll<^ fr-o-1 

then 
_ I _ I x 
V max 

d<D(f,d)=\ 
£ A(u)e(au) 
u<X 

u=f(d) 
(log*)"" 

Especially we have 

x 
(14) Y, A / ( a ; d, a) 

d<D 
< QogXf9 
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under the conditions (13) on a and D, and uniformly in a (or in z). 

Let us fix N > 0, the exponent in the error term in Theorem 3, and choose 

X 
(15) Q = {\ogX)M, L 

(log*) M+N+4 ' 

where M = M(N+4) > N + 4 is given by Lemma 2. By the Dirichlet's Approximation 
Theorem we can find for any a a rational number r/s such that 

(16) a — <S25^, ( v ) = 1 , s < * 
sX ' v ' " ' ^ "-1 {\ogX)M' 

If s > Q = (\ogX)M then Lemma 2 and the first bound of Lemma 1 provide 

X 
(17) J2Xdf(aid,a)W(a) 

d<D 
< ( l o g X p 

while if s < Q then min?<gL||a^|| < (iogX)~N~A and (17) follows from the second 
bound of Lemma 1 and from the trivial bound/(or; d,a) <C X/d. By Cauchy-Schwarz 
inequality, Parseval identity, (17) and trivial upper bounds for the number of primes we 
get 

I = E A*(a) C fa,bo(aYa,c0((x) E V ( - 2 a ; rf,a)»F(-2ar)da 
a<X J0 d<D 

a=a0(36) 

(18) < £ |A*(a)| supl £ Arfflor; J, «)^(a) | E f A ( 6 ) A ( ^ ) ) 

< sup LraogJQ <c x3 

(log*) >w 

4. The "major arcs'9. In this section we evaluate /. The structure of W(a) implies 
that / is the sum we are interested in minus a complicated looking average of it, more 
precisely we have 

/ = E \ , E " W - E A*(«)E E E E 
d<D z a<x q<Q(f,q)=i b<x c<x 

a=aQ(36) b=b0(36) c=c0(36) 

(19) x A ( i ) A ( c ) A ( ^ ) A ( ^ ) i E l , E Ku)e(-f-\ 
\ 2 / V 2 / qL d<D u<x \ q J 

d\a+2u 
0<E<gL 

b+c=2(u+£) 

After splitting the summation over u into residue classes g modulo q we can evaluate the 
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inner sum by the Bombieri-Vinogradov Theorem. 

- U > £ AO0e(-£) 
qL d<D u<x v q } 

d\a+2u 
0<E<qL 

b+c=2(u+£) 

(g^)=i v q^ * Jjq^d<D b*L-qL<u<b*L 

u=g mod. q 
2u=—a mod d 

2g~-a(q,d) (a,d)=\ 

Here and later we abbreviate (f>([q, d]) by </>[#, J], where [#, J] is the least common mul
tiple. A similar convention applies to the greatest common divisor, already in the above 
formula. (For Theorem 3' we have the condition 2g = 3zmod(q,d) rather than 2g = 
—a mod(q, d).) Writing this into (19) and using the bound (18) to / we get 

£A,£o;*(<fe) 
d<D z 

= £Arf E A » E ^ E £ «(f) 
d<D a<X q<Q VM* a \ (f,q)=l (g,q)=l X ^ ' 

(a,d)=l 2g=-a{q,d) 
a=a0(36) 

To get further we have to split the sum over b and c into residue classes h and A: modulo 
2q. We airrive at 
(20) 

£A,£w*(<fe)=£A r f£-±- s A*(fl) 

</<D z </<D ?<£ ^ W J "J a<X 
a=a0(36) 

x EE?x>(f ).(*).(*) 
x E E mm^H^yo^), 

b~h{2q) c=k{2q) 
b=b0(36) c=cQ(36) 

where E/ and Eg runs over sets of reduced residues modulo q while E/» and Ejt runs over 
sets of reduced residues modulo 2q satisfying 

(21) (f,q)=U 

(g,q)=\, 2g + a = 0 mod(q, d), 
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(h, 2q)=l9 ( ^ > tf) = 1. h = bo mod(36? 2?), 

(*, 2<?) = 1, ( ^ y - ^ ) = U k = c0 mod(36,2q). 

For Theorem 3' we have to alter the conditions slightly 

(210 (f,q)=U 

(g,q)=l, 2g=3z mod(q, d), 

(h, 2q)=l, ( ^ A ?) = 1, h = b0 mod(36,2q), 

2 ,g) = 1, i = c0 mod(36,2g). 

The rnairrresult of [B 1990] is that the prime fc-tuplets conjecture is true on average. 
To evaluate the summation over b and over c in (20) we will need a special case of this. 
Note that what we really need, asymptotics for prime-twins on average, was available in 
the 1960's by the works of Lavrik [L 1961]. 

LEMMA 3. Let A, B, C, f q be integers, ACfq ^ 0, (Af + B,q) = 1 and N > 0 be 
real We have 

£ \£A(An+B)A(Cn + D)- a(A,B,C,D ; / , ? ) £ 1 
(Cf+D,q)=V n n 

X2 

aog^r' 
where Yin runs over all integers n satisfying 0 < An + B < X, 0 < Cn + D < X and 
n = / m o d # , moreover 

and p{p) is the number of solutions of {An + B)(Cn +D) = 0 mod p. The implied constant 
depends on A, C and N only. 

The summation over b and similarly over c can be evaluated by Lemma 3. Writing 
b = 36n+b0 the summation over b becomes E« A(36n+bo)A(lSn+^) over n satisfying 
0 < 36n + b0 < Zand 36n + b0 = h mod2g. Let p(p) be the number of solutions of the 
congruence (36n + b0)(lSn + ^ft) = 0mod;?. As (a, 6) = (60,6) = ( ^ , 6) = 1 for all 
a we are interested in, we have that 

f 0 if/? = 2, 3, 
p(p) = J 1 if ^1^ , 

[2 ifp)(a,p>3. 

Lemma 3 implies that 

https://doi.org/10.4153/CJM-1998-025-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-025-1


MAGIC TRIANGLES 475 

E I E M^-^n^n-^n^ 
*<* I &<* V 2 y 4# > 3 (p - ly . p-2 \a p-2 

(a,d)=\ b=h(2q) / 7 > 3 y 
a=a0(36)b b=b0(36) P ffl 

X2 
(logX)6M+N+2' 

For the other situation Lemma 3 implies 

E I E *m(V) - ̂  n f^i n -*j n f4«a» 
z<z I &<* \ z / 4q p>3 [p — i; * p — L xz p — L 

z=zfc(12) fe60(36) ^/ l? 

X2 

(log^)6M+^+2* 

Writing these into (20) first we change the sum over b than the sum over c into their 
expected main term. We arrive at 

( 2 2 ) 

d<D z 1 0 / ? > 3 V P — 1 > ) </<D a<X 
(a,d)=\ 

a=a0(36) 

4 ^ M !i!v-2i lt\p-2) u{{\ogxfy 

where 

x 
q<Q WW,"! p\q ^p-*<> p\a 

^ Ph 

«(„=.,.(,) -Ei:??.(f).(fH?). 
and E/ and Eg runs over sets of reduced residues modulo # while E/» and E* runs over 
sets of reduced residues modulo 2q satisfying (21) or (21'). 

In the next section we will prove the following explicite formula for K(q). 

LEMMA 4. For any admissible triplet (a0, bQ, c0) and integers (a, d) = (d, 6) = 1 
with a = a0 mod 36 and d is square-free we have that n{q) is multiplicative, K.(pr) = 0 if 
r > 2 and 

f 1, ifp = 2, 3, 
l-p, ifp\a,p)fd, 

4~P, ifP X a- P Xd-
[2p-4, ifpta,p\d. 

K(p) 

(The same is true for the altered n{q) just every a must be changed to z.) Having this 
lemma we can evaluate the summation over q. It turns out that the sum converges at a 
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rate r{q)q"2, where r(q) is the divisor function. We get 

„ (l8,q)2K(q) (_P_\2 TT (P- l\2 

,ie f+bA P\\[P~2) PI^P-2' 

P\dP-lp\aXP-2J q<Q p\qP(P~l> P\c,KP-21 

x n (p-2? n ( 4 _ ^ n {2p_4)(p_l) 

p\ifl4) l P p\q p\(gA 

p)(6d
 PK6^ PK6 

S,4r5(^),o*™.*i,n(.*5=fei) p\dV-lp\a-P-<-' <• pfc 

pfcd p)(6a 

Note that the "strange" factors (1 + 1)(1 + ±) correspond to the primes 2 and 3 when the 
infinite sum over q is written in product form. After writing this into (22) Theorem 3 and 
Theorem 3' follow by trivial transformations. 

5. The singular series. In this section we prove Lemma 4. First we write q = 2rqf, 
where 2 )(q' and r > 0. We fix two integers 2 and q satisfying 

22 = 1 mod q\ qq = 1 mod 2 r f l . 

We write 

f=flr+f2q', 

g = gi2r2r + g2q'q, 

h = h\2r+l2r+l+hiq'q, 

k=kx2
r+X2r+{+k2q'q, 

and one can easily check that the conditions (21) are equivalent to the following two sets 

of conditions. 

(/!,<?')= 1, 

(gi ,q')=l, 2gl + a = 0 mod(q', d), 

(/*„</) = 1, (a + huq') = 1, A, = b0mod(9,q'), 

(kx,q')=l, (a + kuq')=l, kx = c0 mod(9, q') 
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and 

(^2,20=1, 

fe,2r)=l, 

{h2,T+x)=\, A2 = 60niod(4,2rH), 

{k2,2
r+X)=\, ^ = c0mod(4,2r+1). 

For the altered function n{q) the first set of conditions is replaced by 

(/W) = n 
(guq')=l, 2gi=3zmod(q',d), 

{hx,q')=\, (3z-huq')=l, h^hmod&q'), 

{kx ,q')=h (3z -ki,ef)=\, kx=C() mod(9, q'). 

Writing these into the definition oin{q) we arrive at 

*)-9???.(fMi*M£) 
= E E E E E E E E < ^ ^ 1 P ^ ) 

n si hx h f2 g2 h2 k2 v ^q J 
'-(fi2r+f2q,)(hl2

rH2r+l+h2q'q) 
x e 2 r fy 

*l 2-y J 

x EEEE^f M ^ M ^ ) 
fi Si h2 k2 

= nx{q,)^2{2r) 

In the calculations below we will frequently use, actually we will only use the following 
sums 

whenever (f,q)= 1 and ^ > 1. Here ^(#) is the MQbius function, that is (— l)5 if q is a 
product of 5 different primes and 0 otherwise. We can evaluate the summation overg2 
easily getting 

1 ifr = 0,1, nr, f i ifr = 0, 
K 2 ( 2 ) = i 0 i f r > l . 

Making the change of variable f\ 2 —f and 2g\ = g in the definition of K\{q'), and also 
writing q, h, k for q',h\, k\ we get that (for 2 )[q) 

«,(.) =EEEE<f )0)0\ 
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with the new set of conditions 

(21") (/",«) = 1 , 

fe>?) = h g + a = 0 mod(q, d), 

(h,q)=l, (a + h,q)=l, h = bQ mod(9, q\ 

(k, q) — 1, (a + A:, #) = 1, k = Co mod(9, q). 

We can prove that K \ (q) is multiplicative by much the same argument as the one we used 
in order to separate n(2rq') = K\ (g')ft2(2r), we omit the details. We only have to calculate 
K\(pr) for all odd primes /?. We start with/? = 3. As (d, 6) = 1 the congruence condition 
on g is abundant and we can evaluate the summation over g to get —1 or 0 according to 
r = 1 or r > 1. For r = 1 the summation over h and over k contains the single terms 
h = foo and k = CQ. We arrive at 

«K3) = - ( e ( - I ( 6 0 + Co)) + e ( - | ( 6 0 + co))l = 1 

and we have 
r f l i f r = 0 , l , 

" l ( J ) " l O i f r > l . 

Next we study primes /?| a and therefore/? )(d. (If we do not assume that (a,d) = 1 then 
here we realize that no g satisfies (21') and so K\(pr) = 0.) We have no extra condition 
on g and we can evaluate the summation over g again to get — 1 or 0 according to r = 1 
or r > 1. We also have no extra condition on h and k becausep\h iffp\a + h. We arrive at 

7=1/1=1 *=i v /? ' x P J 

Ifp )[a and/? )(d then again no extra condition on g and we get 

..«-K s<f)r=-!(--(f))2 

~ | M £ M * ) H - » 
Only the case of/? / a and/?|d left. Remember that d is square-free and therefore (pr,d) = 
p. Thus we need g + a = 0 mod/? and we can list these integers by g = — a + m/?, 
m = 1, . . . ,/?r~l and we get 

?-(f)=-(-^)|«(A)-{?-?,^>!: 
In the evaluation of the summation over /z we can suppose that r = 1. 
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Finally we get 

-»-g«(-f )(-> - ( f ) ) ' -!(•(-?)•*•«(?)) - *-* 
The proof of Lemma 4 is complete. (The proof with the altered definition of K{q) proceeds 
exactly the same way.) 

6. A weighted sieve. In this section we apply a weighted linear seive. We use con
stant weights of Kuhn's type, because they are relatively simple and serve our purposes 
very well. Let us define 

n= n P. 

First we show that 

E^)> E ^oofi- E 1̂ 
2=/>3 (2jl)=l V p\z * J 

Xxln<p<Xxl* 
2 1 

- T E u(z)-- E u(z) 
J Z=plp2p3P4 D Z=PlP2P3P4 

(23) Xl/l2<pl<X^4<P2<P3<P4 Xl/l2<Pl<P2<Xl/4<Pl<P4 

-\ E "CO- E E (̂A) 
J Z=pip2P3P4P5 Xl/l2<p z 

X{ln<Pl<P2<XXlA<P3<P4<P5 

2 1 1 
2LJ O Z_y i z_^ i 2—i 2-J' 

1 J 2 J 3 J 4 5 

To verify this inequality we have to check what z have positive weight on the right 
hand side. We clearly have u(z) = 0 for z > X, and the weights attached to z have the 
structure u(z)x a coefficient. This coefficient is always < 1. If z is not square-free and 
counted in the first sum, then also in the last sum and the attached coefficient is < 0. We 
can restrict ourselves to square-free z. z has a chance for positive coefficients if (z, II) = 1 
and z has at most two prime factors in / = {Xxln < p < X1/4}. However, z can have at 
most three prime factors in J = {X1 I4 < p). If it has no prime factor in / then z = P3. If 
z has exactly one prime factor in / and exactly three in J then the attached coefficient is 0 
by the second sum. If z has exactly two prime factors in / and two or three prime factors 
in / then the attached coefficient is 0 again by the third or fourth sum. In the remaining 
cases z = P3. 

The last sum can be handled trivially. For any z, after choosing a and b there is at most 
one choice of c, thus 

E= E E<V*)< E E x\\ogxf 

< £ z 3 ( y 6 «^-'/'2(iog^)6. 
X",2<p P 
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Ei can be estimated by the linear sieve, see Theorem 8.3 of [H,R 1974]. We are 
not going to introduce the general sieve notations, neither the precise definition of the 
functions involved in the lower and upper bound sieves. All the details together with a 
very similar application can be found in Chapter 11 of [H,R 1974]. 

There are some sieveing weights {Aj}, d<D — X{/3 /(logX)M, (d, 6) = 1 such that 

l (z,n)=i V p\z s J 
r« /J 2 <n<^/ 4 (24) xl'l2<p<x] 

d<D z $ Xl/l2<p<Xl/4d<D/p z 

and 

(25) 

The functions/^) and F(s) satisfy 

1 ri2 / 1 2 \ A e7log3 
(26) / ( 4 ) - - / 4 F ( 4 - T ) 7 = - / - . 

where 7 is the Euler's constant. Theorem 3 together with (25) and (26) implies that 

X 
3<9<Xl 

64/>A
3 ( P - D 5 

(H^n*-"114 
32 />A3 ( p - 1 ) 6 logX 

In the last step we used Mertens' prime number theorem. 

In T,2, £3 and E4 we change the roles of z and a and we use an upper bound sieve to 
the prime a. This "reversal of roles" idea is applied in Chen's fundamental work on the 
Goldbach's problem much the same way as we apply here. The treatment of the three 
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sums are analogous, we give the details for £4. We have 

£ = £ o;(z) = £A(a)Q*(a) 
4 Z=PIPIP3PAP5 a 

Xl/l2<Pl<P2<Xl/4<P3<P4<P5 

< logZ^Q*(p) + 0(X5/\logX)6) 
p 

< logX E ^ E & (da) + 0(X5l\\ogXf\ 
d<D a 

where {Xd} is a set of upper bound sieving weights and A*(z) is the characteristic function 
of the set z = P1P2P3P4P5 ^XwhereX1 /1 2 <px <pi< < pi <p4 <ps and z is 
restricted to the residue class z = ZQ mod 12. 

Similarly to (25) we have from the upper bound sieve that these sieving weights pro
vide 

(25'} ^ ^ ^ = (1?)^)) n ( i - ^ z i ^ ) -
d<D q\dQ — J ? + / 3<^<ZJ /6 V # 3q+/' 

Thus Theorem 3' implies (similarly as above) that 

E<(.-<.))fnf^f^EA-(^))2 

Here we used that F(2) — e1'. Next we have to evaluate the sum 

J2A\z)(H(z)f = £ (H(plP2pmp5))
2. 

z P\P2PZP*P5<X 
P\PIP3PAP5^ZQ{\2) 

Xl^2<Pl<p2<Xl^<p3<p4<p5 

This can be derived from the Prime Number Theorem in a standard way. Similar calcu
lations are made in plenty of places, for example in Chapter 11 of [H,R 1974], we do not 
work out all details. If we write pt = Xti then the size conditions are 

jz<t{<t2<- <t3<t4<t5, t{+t2 + t3+t4 + t5 < 1 , 

which also imply that 

1 1 1 - tx -12 , ^ \ - h - h - h 
tl<%> t2<4~tu h < 3 ' k < 2 " 

We get that 

X>*(z)(#(z))2 

z 

_ ( l+o( l ) )X A , j-„ ,i^pa izM^za dttdtidtjdti 

~ 12 logX -4 J<> h -4 <1 W 4 O - t \ - t 2 - h - t4) 
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which leads to 

V - ( 1 + 0 ( 1 ) ) 3 2 n 3 ^ i F i ^ 

X4X, if 7(5 *I*2*3«4(1 — *1 — *2 — ft — <4)" 

Much the same way we get the inequalities 

and 

v < (\+om)- n P4(P~3)2 *3
 x /•* / ^ / ^ dt^^ 

Y ~ l j 32 />* ip -1)6 logx 4 7* k tit2ui -tx-h- hY 
Using the fact that log(3 — 4w)/(l — u) is decreasing i n 0 < « < l / 2 w e can easily see 
that 
(28) 

r\ r\ r ^ dt3dt2dtx c\ c\ dt2dtx 

4 7, k , ^ (1 -„ -* -*) = k L l08(3 - 4h ~ ^tMl-ti-V 
3 

= 5 ' 

We can bound the other two integrals in a similar manner. Collecting all these bounds 
we get that 

27 D^(D — 3^2 X3 

(29) N(X\ z = P3)> 0.23562 x — H 

: (log ^ ) ( log3) 2 < 0.61359 

8 ;>3 ( P - 1 ) 6 (log^)7 

for sufficienfy large X. The proof of (7) is analogous. Note that by numerical integration 
one can get 1.05357 in place of 0.23562 in (29). 

7. The proof of (6). As we have indicated in the introduction, we are not going to 
present the detailed proof for two reasons. First it is a combination of the above ideas 
and Heath-Brown's large sieve technique on the minor arcs, no further idea is necessary. 
Second the technical steps would make the paper too lengthy and unreadable. What we 
do present is how to reach D = X{/2/(\ogX)M in a Theorem 3 like statement. Even in 
this we will only deal with the "minor arcs" bound as the calculation of the main term is 
identical to that of in Section 4. The application to the weighted sieve than follows the 
pattern given in Section 6 and actually well discussed in some places such as [H,R 1974] 
and [H-B 1981]. 

This time we list our triangles in a third different way, namely according to w, b, c 
such that 2w — b, ^ , —^ are primes and we sieve the sequence of v = 2w~fe+c. If 
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(a0,6o, Co) is a fixed admissible triplet modulo (36), and we study triangles with corners 
congruent to this triplet, then in our list we need w = wo = ^r2- mod 18. We define 

"00 = E E E A(w)A(6)A(c)A(2w - * ) A ( ^ ) A ( ^ ) , 

where the triple sum is extended to w < X, b < X, c < X, such that 0 < 2w — b < X, 
2w — b + c = 2v and (b, c) = (bo, Co) mod 36, w = wo mod 18. We simplify notation by 
restricting our functions to the interval 0 < n < X. Actually we have to change A(w) to 
a more general function A*(w) again, because after reversing the roles of w and v in the 
application of the weighted sieve, the set of v becomes the set of unwanted products of 
three primes surviving the sieving process. As we have already seen this does not make 
any difference, and for simplicity we stay with A(w). 

Now let {A</ 'rd <D,(d,6)= 1} be a set of sieveing weights. We are going to study 
the sum 

E A^E^V). 
d<D v 

We will detect the equation b + c = 2w by the circle method, and the divisibility 
d\2w — b + c by the discrete circle method, namely by 

I V ( — \ - I l if d\n> 

We arrive at 

x ^2MC)M —^— ) e ( a + ^ ) c ] X)Mu)e(—2au)da 

=E £ s ?«-*(?) /.' *-(" - sM«+HK-^** 
The definition of the functions gw{oc\ hw(a) and/(a) is transparent from the above line. 
f(a) is the classical trigonometric function over the primes. 

We introduce our weight function W(a) of (12) with a similar choice of the parame
ters as in (15), we specify later, but with a shifted argument. Thus we are interested in 
estimating 
(30) 

The big difference is in the upper bound for 7, the calculation of the main term is almost 
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identical to the previous calculation in Section 4. Indeed, we have 

/=£Ad£n(rfv)- x) A(w)E £ £ £ 
rf<D v w<X q<Q{f,q)=\ b<X c<X 

w=w0(18) b=b0(36) c=c0(36) 

x A(6)A(c)A(2w - 6 ) A ( ? ^ ) -1 £ \d £ A(«)e(-^), 

d\2w-b+c-2t 
0<t<qL 

b+c=2(u+0 

which is pretty much the same as (19). Note that d\2w—b+c—21 is the same as d\w—b+u 
in view of b + c = 2u + 2E and 2 )(d, explaining the shift in the argument of the weight 
function. This makes possible that the divisibility by d is passed to the summation over u 
and can be handled by the Bombieri-Vinogradov Theorem, as far as D < (1£yL, while 
the summations over b and over c are special cases of Lemma 3, exactly like in Section 4. 
However the conditions u = b — wmodd, u = gmodq and b = h modg introduce the 
condition g = h — w mod(q, d). This establishes a connection between g and /z, which 
was not present in (21) or (21'). In spite of this extra connection the evaluation of the 
"singular series" is similar to that of in Section 5, we can safely skip the details. 

The treatment of the "minor arcs", however, is different. First we list the fractions ^ 
in their lowest terms | , (h,g) = 1 in (30). A given \ occures for g\d and the attached 
coefficient is 

E £ < W 
d<D " S 

We get 
(31) 

I « l o g * £ - D ^Hw)[\gJa--)hJa + z)f(-2aw(-2a--) da. 

We choose M = M(15N + 5) given by Lemma 2. For any fixed | with g < Go = 

(logZ)14Ar the classical case (D = 1) of Lemma 2 and Lemma 1 imply that 

fi-2a)w(-2a - | ) « ^ J — +LGo{lo%Xf + *£ « ^ | — 

provided that Q = (log Xf+HN and L = X(logX)-M-29N-5. Parseval identity gives that 

£ - £ ^ ^ ) [Ucc-^)hja+~)f(-2a)w(-2a-^-) 
g<G0^(^)=l w ' # & 

da<<vS> N+\ ' 

We split the remaining range of g into diadic intervals of type G < g < 2G where 
Go < G < D. As | W(a)\ <C 1 it is enough to show that uniformly in w < X we have 

(32) E E CHa-i)h-{a+iy^2^ 
GX2 

(logJ0w+1 
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This is essentially Lemma 2 of [H-B 1981] and requires only D < Xl/2(logX)l3N+22. 
Note that he had functions with rather special coefficients in place off, gw and hw, how
ever nothing is used about the coefficients during the proof. Actually Sections 6, 7 and 
8 of [H-B 1981] give (32) for any three trigonometric polynomials of length X with 
bounded coefficients. The main tools of the proof are the Large Sieve and Lemma 3 of 
[H-B 1981] which reflects an elementary property of the rational numbers. 

8. Concluding remarks. We have expressed the (weighted) number of solutions 
of (3) in three different ways so far, and the "reversal of roles" in Section 7 requires a 
fourth one. It is clear that we can do this in many other ways as well. The general shape 
of such an expression is 

? ? ? A W A ( i > A W A ( ^ W ^ ) 
(33) 
v ' (A3a + B3b + C3c\ (A4a + B4b + C4c\ 

\ D~3 / V 1)4 )9 

where <z, b and c can denote any three of the seven variables, not only the three corners, in 
contrast to the former convention. This is, actually, the weighted number of the solutions 
of the system 

(
Aia + B{b + 0c = Diw 
A2a + 0b + C2c = D2v 
A3a + B3b + C3c = D3u 
A4a + B4b + C4c = D4z. 

In addition, remember that we did use very little about a, actually A(a) in (33) can be 
changed to any function A*(a) with very mild growing and averaging conditions. The 
method works for any system having the above structure, that is if after diagonaliza-
tion we ended up with at least two more zeros in different lines and columns. Note that 
the method of [B 1992] for the first three equations in six variables required only one 
additional zero. 

We intend to detect the third equation by the circle method and approximate A(z) by 
a sieve method. To this end we transform the last equation to 

(A4C3 - A3C4)a + (B4C3 - B3C4)b + C4D3u = C3D4z. 

Whether we have to use the method of Section 3 (and get a P3) or Section 7 (and get a P2) 
depends on how the condition d\(A4C3 — A3C4)a + (B4C3 — B3C4)b + C4D3u affects the 
three generating functions, correspond to the variables b, c and u. If B4C3 — B3C4 = 0 
then the method of Section 3 is applicable as only u is affected by d. The method of 
Section 7 is, unfortunately, not applicable because (32) requires that the three generating 
functions are shifted to three different places by the rational numbers -. This is exactly 
the case when B4C3 — B3C4 ^ 0 (and B4C3 ^ 0 is required anyway). 

It turns out, that no matter how we write the number of solutions of (3) in the above 
form, if we intend to use a sieve method for the center (z formerly) or one of the corners 
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(a, b or c formerly) then B4 C3 —£3 C4 = 0 in the corresponding system and the divisibility 
condition affects two of the generating functions in an identical way. This is the symmetry 
which blocks the application of Heath-Brown's approach in those cases. 

It is also worth mentioning that this is true on the other way around, if the divisibility 
condition affects the three generating functions in three different ways, that is B4C1 — 
B3 C4 7̂  0 then we cannot use the (simpler, but less powerful) method of Section 3. 

REFERENCES 

[B 1990] A. Balog, The prime k-tuplets conjecture on average. Analytic Number Theory, (eds. B. Brendt, 
H. G. Diamond, H. Halberstam and A. Hildebrand), Birkhauser, 1990, 47-75. 

[B 1992] , Linear equations in primes. Mathematika 39(1992), 367-378. 
[B,B 1995] A. Balog and J. Briidem, Sums of three cubes in three linked three-progressions. J. Reine Angew. 

Math. 466(1995), 45-85. 
[C 1973] J.-R. Chen, On the representation of a large even integer as the sum of a prime and a product of at 

most two primes. Sci. Smica 16(1973), 157—176. 
[H,R 1974] H. Halberstam and H. E. Richert, Sieve methods. Academic Press, London, 1974. 
[H-B 1981] D. R. Heath-Brown, Three primes and an almost-prime in arithmetic progression. J. London Math. 

Soc. (2) 23(1981), 396-414. 
[11972] H. Iwaniec, Primes of the type <f>(x,y)+A, where <f> is a quadratic form. Acta Arith. 21(1972), 203-234. 
[L 1961] A. F. Lavrik, On the theory of distribution of primes based on I. M. Vinogradov's method of trigono

metric sums. Trudy Mat. Inst. Steklov 64(1961), 90-125. 
[vdC 1939] J. G. van der Corput, Uber Summen von Primzahlen und Primzahlquadraten. Math. Ann. 116 

(1939), 1-50. 

Mathematical Institute Mathematics Department 
Budapest 1364, P. O. Box 127 University of Michigan 
Hungary Ann Arbor, Michigan 48109-1003 

e-mail: balog@math-inst.hu U.S.A. 
e-mail: balog@math. Isa. umich. edu 

https://doi.org/10.4153/CJM-1998-025-1 Published online by Cambridge University Press

mailto:balog@math-inst.hu
https://doi.org/10.4153/CJM-1998-025-1

