FULLNESS OF MAPS

BY
ABRAHAM BOYARSKY* AND WILLIAM BYERS

Abstract. An example is given of a surjective map $\tau:[0,1] \rightarrow$ [0,1] which takes every interval of [0,1] onto [0,1] eventually, but does not do so for certain other sets of positive measure.

1. Introduction. Let $I=[0,1], \mathscr{B}=\{A: A \subset I, A$ Lebesgue measurable $\}$ and let λ denote the Lebesgue measure on (I, \mathscr{B}).

Definition. Let $\tau: I \rightarrow I$ be measurable and surjective. We say τ is full if for all $A \in \mathscr{B}, \lambda(A)>0$, and $\tau(A), \tau^{2}(A), \ldots$, measurable,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lambda\left(\tau^{n}(A)\right)=1 \tag{1}
\end{equation*}
$$

holds. If (1) is true for any interval $A \subset I$, we say τ is interval full.
In this note we prove the existence of a surjective map that is interval full but not full. The key to the construction lies in the observation that while topological conjugation preserves topological properties it does not preserve measure-theoretic properties.
2. Main Results. Define the continuous surjective map $\tau: I \rightarrow I$ as follows:

$$
\tau(x)=\left\{\begin{array}{cl}
3 x, & x \in I_{1}=\left[0, \frac{1}{3}\right] \tag{2}\\
2-3 x, & x \in I_{2}=\left[\frac{1}{3}, \frac{2}{3}\right] \\
3 x-2, & x \in I_{3}=\left[\frac{2}{3}, 1\right]
\end{array}\right.
$$

Lemma 1. τ is interval full.
Proof. Let $J=[\alpha, \mathscr{B}]$ be any subinterval of I. If $\frac{2}{3} \in J$, then since $\tau\left(\frac{2}{3}\right)=0$ and $\tau(0)=0, \tau^{n}(J)$ is an interval about 0 for all $n=1,2, \ldots$. If $\tau^{k}(j) \subseteq\left[0, \frac{1}{3}\right]$, $k=1, \ldots, n-1$, then the length of $\tau^{n}(J)$ is 3^{n-1} times the length of $\tau(J)$ since $\tau \left\lvert\,\left[0, \frac{1}{3}\right]\right.$ is given by $\tau(x)=3 x$. Thus for some n we must have $\frac{1}{3} \in \tau^{n}(J)$. Then $\tau^{n+1}(J)$ is an interval containing 0 and $\tau\left(\frac{1}{3}\right)=1$ and $\tau^{n+1}(J)=[0,1]$. On the other hand, if $\frac{1}{3} \in J$ then $\tau^{n}(J)$ is an interval about 1 since $\tau\left(\frac{1}{3}\right)=1$ and $\tau(1)=1$. Reasoning as above $\tau^{n}(J)$ must contain $\frac{2}{3}$ for some n and then $\tau^{n+1}(J)=[0,1]$.

If now $J \subset I_{i}, i=1,2$, or 3 , then $\lambda(\tau(J))=3 \lambda(J)$, since $|d \tau / d x|=3$ on each of the subintervals I_{1}, I_{2}, I_{3}. If $\frac{1}{3}$ or $\frac{2}{3} \in \tau(J)$, we proceed as above to obtain the

[^0]result. If not, then we get $\lambda\left(\tau^{2}(J)\right)=9 \lambda(J)$. More generally,
$$
\lambda\left(\tau^{k}(J)\right)=3^{k} \lambda(J),
$$
where $J, \tau(J), \ldots, \tau^{k}(J)$ are all in one of I_{1}, I_{2}, I_{3}. The expansion, however, forces $\tau^{l}(J)$ to contain $\frac{1}{3}$ or $\frac{2}{3}$ for some l. Then we proceed as above.
Q.E.D.

Remark. The τ defined above is an example of a piecewise linear map Markov map. In [1] it is shown that a class of non-linear Markov maps are interval full.

Now, the standard ternary representation of the elements of the Cantor set \mathscr{C} leads directly to the conclusion : $\tau(\mathscr{C}) \subseteq \mathscr{C}$. Recall \mathscr{C} has Lebesgue measure 0 . Let \mathscr{A} be any Cantor set in I that has positive Lebesgue measure.

Lemma 2. There exists a homeomorphism ϕ of I onto itself such that $\phi(\mathscr{C})=\mathscr{A}$.
Proof. [2, p. 101].
Proposition. Let $\sigma=\phi^{\circ} \tau^{\circ} \phi^{-1}$, where τ is defined by (2) and ϕ is the homeomorphism of Lemma 2. Then $\sigma: I \rightarrow I$ is interval full but not full.

Proof. Let J be an interval. Then $\phi^{-1}(J)$ is an interval, and it follows that there exists an integer n such that $\tau^{n}\left(\phi^{-1}(J)\right)=I$, since τ is interval full. Noting that $\sigma^{n}=\phi \circ \tau^{n} \circ \phi^{-1}$, we have

$$
\begin{aligned}
\sigma^{n}(J) & =\phi\left(\tau^{n}\left(\phi^{-1}(J)\right)\right) \\
& =\phi(I)=I,
\end{aligned}
$$

since ϕ is a homeomorphism. Thus σ is interval full. It is, however, not full, since for any integer n

$$
\begin{aligned}
\sigma^{n}(\mathscr{A}) & =\phi\left(\tau^{n}\left(\phi^{-1}(\mathscr{A})\right)\right) \\
& =\phi\left(\tau^{n}(\mathscr{C})\right) \subseteq \phi(\mathscr{C}),
\end{aligned}
$$

since $\tau(\mathscr{C}) \subset \mathscr{C}$. But $\phi(\mathscr{C})=\mathscr{A}$. Thus,

$$
\sigma^{n}(\mathscr{A}) \subseteq \mathscr{A} .
$$

Since \mathscr{A} has Lebesgue measure strictly less than 1 , the conclusion follows.
Q.E.D.

References

[^1]
[^0]: Received by the editors August 25, 1980 and, in revised form, October 31, 1980.
 AMS(MOS) subject classification (1980) Primary 26A18 Secondary 28D05

 * The research of this author was supported by NSERC Grant \# A-9072.

[^1]: 1. N. Friedman and A. Boyarsky, Irreducibility and primitivity using Markov maps, Linear Algebra and Appl., 37 (1981) 103-117.
 2. B. R. Gelbaum and J. N. Olmsted, Counterexamples in Analysis, Holden-Day, San Francisco, 1964.

 Department of Mathematics
 Sir George Williams Campus
 Concordia University
 Montreal, Canada

