FULLNESS OF MAPS

BY ABRAHAM BOYARSKY* AND WILLIAM BYERS

ABSTRACT. An example is given of a surjective map $\tau:[0, 1] \rightarrow [0, 1]$ which takes every interval of [0, 1] onto [0, 1] eventually, but does not do so for certain other sets of positive measure.

1. Introduction. Let I = [0, 1], $\mathfrak{B} = \{A : A \subset I, A \text{ Lebesgue measurable}\}$ and let λ denote the Lebesgue measure on (I, \mathfrak{B}) .

DEFINITION. Let $\tau: I \to I$ be measurable and surjective. We say τ is full if for all $A \in \mathcal{B}$, $\lambda(A) > 0$, and $\tau(A)$, $\tau^2(A)$,..., measurable,

(1)
$$\lim_{n \to \infty} \lambda(\tau^n(A)) = 1$$

holds. If (1) is true for any interval $A \subset I$, we say τ is interval full.

In this note we prove the existence of a surjective map that is interval full but not full. The key to the construction lies in the observation that while topological conjugation preserves topological properties it does not preserve measure-theoretic properties.

2. Main Results. Define the continuous surjective map $\tau: I \rightarrow I$ as follows:

(2) $\tau(x) = \begin{cases} 3x, & x \in I_1 = [0, \frac{1}{3}] \\ 2 - 3x, & x \in I_2 = [\frac{1}{3}, \frac{2}{3}] \\ 3x - 2, & x \in I_3 = [\frac{2}{3}, 1] \end{cases}$

LEMMA 1. τ is interval full.

Proof. Let $J = [\alpha, \mathcal{B}]$ be any subinterval of *I*. If $\frac{2}{3} \in J$, then since $\tau(\frac{2}{3}) = 0$ and $\tau(0) = 0, \tau^n(J)$ is an interval about 0 for all $n = 1, 2, \ldots$. If $\tau^k(j) \subseteq [0, \frac{1}{3}]$, $k = 1, \ldots, n-1$, then the length of $\tau^n(J)$ is 3^{n-1} times the length of $\tau(J)$ since $\tau \mid [0, \frac{1}{3}]$ is given by $\tau(x) = 3x$. Thus for some *n* we must have $\frac{1}{3} \in \tau^n(J)$. Then $\tau^{n+1}(J)$ is an interval containing 0 and $\tau(\frac{1}{3}) = 1$ and $\tau^{n+1}(J) = [0, 1]$. On the other hand, if $\frac{1}{3} \in J$ then $\tau^n(J)$ is an interval about 1 since $\tau(\frac{1}{3}) = 1$ and $\tau^{n+1}(J) = [0, 1]$.

If now $J \subset I_i$, i = 1, 2, or 3, then $\lambda(\tau(J)) = 3\lambda(J)$, since $|d\tau/dx| = 3$ on each of the subintervals I_1 , I_2 , I_3 . If $\frac{1}{3}$ or $\frac{2}{3} \in \tau(J)$, we proceed as above to obtain the

Received by the editors August 25, 1980 and, in revised form, October 31, 1980.

AMS(MOS) subject classification (1980) Primary 26A18 Secondary 28D05

^{*} The research of this author was supported by NSERC Grant #A-9072.

result. If not, then we get $\lambda(\tau^2(J)) = 9\lambda(J)$. More generally,

$$\lambda(\tau^k(J)) = 3^k \lambda(J),$$

where $J, \tau(J), \ldots, \tau^k(J)$ are all in one of I_1, I_2, I_3 . The expansion, however, forces $\tau^l(J)$ to contain $\frac{1}{3}$ or $\frac{2}{3}$ for some *l*. Then we proceed as above.

Q.E.D.

Remark. The τ defined above is an example of a piecewise linear map Markov map. In [1] it is shown that a class of non-linear Markov maps are interval full.

Now, the standard ternary representation of the elements of the Cantor set \mathscr{C} leads directly to the conclusion : $\tau(\mathscr{C}) \subseteq \mathscr{C}$. Recall \mathscr{C} has Lebesgue measure 0. Let \mathscr{A} be any Cantor set in I that has positive Lebesgue measure.

LEMMA 2. There exists a homeomorphism ϕ of I onto itself such that $\phi(\mathscr{C}) = \mathscr{A}$.

Proof. [2, p. 101].

PROPOSITION. Let $\sigma = \phi \circ \tau \circ \phi^{-1}$, where τ is defined by (2) and ϕ is the homeomorphism of Lemma 2. Then $\sigma: I \to I$ is interval full but not full.

Proof. Let *J* be an interval. Then $\phi^{-1}(J)$ is an interval, and it follows that there exists an integer *n* such that $\tau^n(\phi^{-1}(J)) = I$, since τ is interval full. Noting that $\sigma^n = \phi \circ \tau^n \circ \phi^{-1}$, we have

$$\sigma^{n}(J) = \phi(\tau^{n}(\phi^{-1}(J)))$$
$$= \phi(I) = I,$$

since ϕ is a homeomorphism. Thus σ is interval full. It is, however, not full, since for any integer *n*

$$\sigma^{n}(\mathcal{A}) = \phi(\tau^{n}(\phi^{-1}(\mathcal{A})))$$
$$= \phi(\tau^{n}(\mathcal{C})) \subseteq \phi(\mathcal{C}),$$

since $\tau(\mathscr{C}) \subset \mathscr{C}$. But $\phi(\mathscr{C}) = \mathscr{A}$. Thus,

$$\sigma^n(\mathscr{A}) \subseteq \mathscr{A}.$$

Since \mathcal{A} has Lebesgue measure strictly less than 1, the conclusion follows.

Q.E.D.

REFERENCES

1. N. Friedman and A. Boyarsky, Irreducibility and primitivity using Markov maps, Linear Algebra and Appl., **37** (1981) 103-117.

2. B. R. Gelbaum and J. N. Olmsted, *Counterexamples in Analysis*, Holden-Day, San Francisco, 1964.

DEPARTMENT OF MATHEMATICS SIR GEORGE WILLIAMS CAMPUS CONCORDIA UNIVERSITY MONTREAL, CANADA

376