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On the Oscillation Functions derived from a Discontinuous
Function.

By L. R. FORD.

(Bead 11th June 1915. Received 8th August 1915.)

1. In this paper are introduced what we shall term "successive
oscillation functions." These functions are derived from functions
of a real variable. The word " function" as here used has its
widest meaning. We say y is a function of x in an interval of the
the X-axis, if given any value of x, in the interval one or more values
of y are thereby determined. The values of the function may be
determined by any arbitrary law whatsoever. We shall deal with
discontinuous functions; the theorems will be true for continuous
functions, but will be trivial, except in the case of functions which
are discontinuous and whose points of discontinuity are infinite in
number. We shall assume in what follows that the values of the
function lie between finite limits.

2. The Oscillation Function.—Let us consider the behaviour of
a function y =f(x) in the neighbourhood of a point x = a. Let an
interval about a, extending from a - h to a + h be considered. Let
Mh be the upper limit of the function in the interval, and let
mh be the lower limit (i.e. the greatest and least values of the
function in the interval, if it has greatest and least values). Now,
let h approach zero. Mh will not increase; and since Mk stf(a)
always, we conclude that Mh approaches a limit. This limit is
called the maximum of the function at the point a, and is repre-
sented by M(f, a). Similarly, mh does not decrease and mh S / ( o ) ;
hence mk approaches a limit. This limit is called the minimum of
the function at the point a, and is written m (/J o).
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The oscillation of the function at the point a, represented by
w (/, a), is defined as follows:—

*>(f,a) = M(fa)-m(fa)*

At each point a maximum, a minimum, and an oscillation are
defined ; hence they yield three functions of x: M(f x), m(f x),
and a (/, x). Since at each point M (f x)^m (f x), we see that
u> (/, x) is never negative. At a point a at which f(x) is con-
tinuous M(f, a)=f(a) = m(f, a), and hence <o (/, a) - 0. Con-
versely, if (o (f a) = 0, the function is continuous at a.

It can be shown that the oscillation function has the following
properties:—

(1) M{»,x) s « ( / * ) .
(2) There are points in every interval, however small, at which

at (f, x) is continuous, f
The second property is a consequence of the first.

3. Successive oscillation functions.—Representing by toj (f, x)
the ordinary oscillation function derived from f(x), we shall
represent by a>2 (/, x) the oscillation of o>, (f x), by a>3 (f, x) the
oscillation of o>2 (f x), and so on. That is,

<«2 ( / . » ) = <•> (<"!, a;)

"3 ( / . X) = U) (<i»j, X)

We shall now establish the following general theorem con-
cerning these functions :—

THEOREM 1.—If f(x) is any function whatever lying between
finite limits, then <»n(f, x) = <a2(f x), n = 3, 4, ... .

Since f(x) is bounded, all the oscillation functions are finite.
The function w, (f x) has points of continuity in every interval, by
(2); at these points w (oi,, x), or a>, (f x), is zero. Now consider
Uzif x)- <°»(/i*) = M{b>.ax) - m(<0.2, x). From property (1)

* Baire, Lecons sur les functions discontinues, Sec. 45, p. 70. Hobson
[Theory of Functions of a Real Variable] uses the term oscillation somewhat
differently. In forming M (/, a) and m(/, a) the values of the function at
the points of the interval exclusive of the point a are considered. He uses the
term saltus for oscillation as hete defined.

t Biire, loc. cit., Sec. 46, p. 73; Sec. 48, p. 77.
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J/((i)2, x) = w.2(/i
 x) ; and since u>2(./! x) = 0 at points in every

interval and is nowhere negative, it follows that m (<o2, £•) = 0.
Hence a>3 (/, a) = <o.2 (_/] a:). Similarly all succeeding oscillation
functions are equal to w, (f, x) and the theorem is established.*

As an example of this theorem consider a function f{x) denned
as follows:—

f(x) = \jn, when x is the rational fraction m/n (in its lowest
terms).

f{x) = 0, when x is the root of a rational fraction, J (m/n).
f(x) = — 1, when x is any other number.

We see that the points of each of the three sets are dense along
the x-axis. We find without difficulty the first oscillation
function :—

(•>! (/, x) = 1 + 1/n, when x is the rational fraction m/n.
» , ( / x) = 1, when x is irrational.

And the oscillation of this function is :—

Utifi x) = Vn> when x is the rational fraction m/n.
<o.2 (/, x) = 0, when x is irrational.

And the oscillation of this function, and hence also any succeeding
oscillation, is the function u>2 {J\ x).

4. Pointwise 'discontinuous functions.—A function which has
points of continuity in every interval is called poinlwise dis-
continuous, f The pointwise discontinuous functions are the
simplest of the discontinuous functions. We see from property (2)
above that the oscillation functions are pointwise discontinuous.
It will be observed that the continuous functions are special cases
of pointwise discontinuous functions.

* Neither this theorem nor the following one is true for the oscillation as
defined by Hobson.

t Here again there is a differenoe of definition. Harnack [Math. Ann. 19
(1882), p. 242, and 24 (1884), p. 21S] adds the restriction that the poiots of
discontinuity shall be of content 0. While Harnaek'a definition is useful in
the theory of integration, it narrow s the application of these functions in
other fields. In the work of Baire, done since the publication of Harnack's
papers, on the approach to discontinuous functions by continuous functions,
the definition is as we have given it.
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THEOREM 2.—The necessary and sufficient condition that a
Junction f{x) be pointtvise discontinuous is that o>2 (/, x) = fc>, (/, a;).

The condition is necessary. For, itj"(x) is pointwise discon-
tinuous, to, (J, x) - 0 at points in every interval. Then

«„ (/, x) = M (ft),, x) - m («„ x) = <«), ( / x) - 0 = a., (/, .r).

Conversely, let o>, (J] x) = cu, (yj x). We found in proving the
preceding theorem that t>2 (/, x) = 0 at points in every interval,
whatever the function f{x). Owing to the equality assumed,
ft>, {J, x) = 0 at points in every interval. At these points f(x) is
continuous ; hence f(x) is a pointwise discontinuous function.

5. The sum of a series.—Let f(x) be defined as the sum of a
convergent series,

Certain facts concerning series can be neatly expressed by
means of oscillation functions. I t is known that if the terms of
the series are continuous the sum is continuous, provided the
convergence is uniform, otherwise the sum is pointwise discon-
tinuous ; also that the sum is pointwise discontinuous if the terms
are pointwise discontinuous and the convergence is uniform.
These facts are expressed in the following table :—

(«, (t/j, x) = 0

(D2 (MJ, a;) = <o, (uit x)
t - 1 , 2 , 3 . . .

Mere convergence.

w2 ( / *) = o>, (/, a;)
ft>3 ( / *) = ft>2 ( / X)
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