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Rumen microbiome profiling uses 16S rRNA (18S rRNA, internal transcribed spacer) gene sequencing, a method that usually
sequences a small portion of a single gene and is often biased and varies between different laboratories. Functional information
can be inferred from this data, but only for those that are closely related to known annotated species, and even then may not truly
reflect the function performed within the environment being studied. Genome sequencing of isolates and metagenome-assembled
genomes has now reached a stage where representation of the majority of rumen bacterial genera are covered, but this still only
represents a portion of rumen microbial species. The creation of a microbial genome (bins) database with associated functional
annotations will provide a consistent reference to allow mapping of RNA-Seq reads for functional gene analysis from within the
rumen microbiome. The integration of multiple omic analytics is linking functional gene activity, metabolic pathways and rumen
metabolites with the responsible microbiota, supporting our biological understanding of the rumen system. The application of
these techniques has advanced our understanding of the major microbial populations and functional pathways that are used in
relation to lower methane emissions, higher feed efficiencies and responses to different feeding regimes. Continued and more
precise use of these tools will lead to a detailed and comprehensive understanding of compositional and functional capacity and
design of techniques for the directed intervention and manipulation of the rumen microbiota towards a desired state.
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Implications

Demand for global animal protein and pressures for cropping
land will combine to drive increased feed efficiency in rumi-
nants from low quality cellulosic feeds. However, livestock
production is responsible for a large proportion of global
agricultural greenhouse gas emissions. Observing and
understanding the highly complex relationships that influ-
ence the rumen microbiota are essential for designing
methods to successfully intervene and manipulate the system
towards a desired phenotype.

Introduction

The complex relationship between the host ruminant and its
inhabitant microbiota has been the focus of research for
decades, initially centred around identification of the types of
microbiota that reside within the rumen through to a greater
understanding of their functional contribution to the host’s
energy requirements. As new technology has become avail-
able, what originally involved the isolation and detailed
studies of single strains in the laboratory has now moved to

large scale sequencing of ‘total’ rumen microbiota nucleic
acids (metagenomics and metatranscriptomics), proteomics
and metabolomics. Notwithstanding the limitations of these
new techniques, which will be discussed in more detail
throughout this review, the adoption of these techniques has
been rapid and applied to most ruminant production sys-
tems. Initially to define the variance in rumen bacterial
populations with diet shifts, which can lead to digestive
disorders such as acidosis. Then in the last decade, the
emphasis has been focussed around the understanding of the
rumen microbiota’s contribution to agricultural greenhouse
gas emissions, predominantly methane. While now there is
increased interest on defining the rumen microbiota of an
efficient production animal (meat and dairy) and the influ-
ence of the host genetics on shaping the microbiota of the
rumen (Jami et al., 2014).

Characterising the rumen microbiota using taxonomic
marker genes

Considerations and limitations
Metataxonomics has been recommended as the term for
defining high throughput sequencing analysis of amplified† E-mail: stuart.denman@csiro.au
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taxonomic marker genes, whereas metagenomics refers to
the use of shotgun sequencing approaches to characterise
the potential function of the microbiota based on their gen-
omes (Marchesi and Ravel, 2015). Identifying the microbiota
that resides within the rumen and variations to the compo-
sition in response to perturbations is critical for the devel-
opment of our understanding of the complex dynamics that
exist within the rumen environment. Metataxonomics is
routinely employed in ruminant studies and is relatively
inexpensive as it easily allows for the pooling of many sam-
ples and reasonable sequence depth per analysis compared
with other metaomic techniques. General primer sets are
used to amplify sequences representing the archaeal and
bacterial members by targeting the 16S rRNA gene, whereas
the 18S rRNA gene is used for eukaryotic targets, essentially
protists. Due to the high degree of sequence similarity found
within the fungal 18S rRNA, the anaerobic fungal popula-
tions require targeting of the length polymorphic internal
transcribed spacer sequence that lies between the ribosomal
genes (Dore and Stahl, 1991; Kittelmann et al., 2012).
Although more recently, focus has shifted towards the D1/D2
region at the 5' end of the 28S rRNA gene (Edwards et al.,
2017). The choice of DNA extraction method, amplification
primer sets, sequencing platform and bioinformatics work-
flows will all influence the final analysis (Gantner et al.,
2011; Henderson et al., 2013; Klindworth et al., 2013). The
variance in these methods and how they are applied makes
reconciling results between research groups difficult,
although using consistent methods and control samples can
produce valid observations (Henderson et al., 2013).
Phylogenetic gene analysis is based on the sequence

similarity or, more correctly, evolutionary divergence of
sequences between defined taxonomic units. Initially, and at
least for the full length 16S rRNA gene, a value of 97%
sequence similarity was used to define a species level rank
(Stackebrandt and Goebel, 1994). However, this has now
been redefined to a recommended value of 98.5%
(Konstantinidis and Tiedje, 2007). This does not hold true for
the shorter sequences generated from the next generation
sequencing technologies and values of 99% to 100% are
more common for defining an operational taxonomic unit
(OTU) rather than to a 97% species rank (Callahan et al.,
2016). Using a value of 100% is also likely to generate
multiple OTUs from the same species due to species which
possess multiple copies of the 16S rRNA gene and that these
copies are known to not be identical (Větrovský and
Baldrian, 2013). The choice of variable region targeted along
with relaxing the identity threshold to 99% to allow for
possible polymorphism effects may mitigate these. The most
popular variable region currently being targeted is the V4
region, with primers that cover both bacterial and archaeal
populations, producing an amplicon size amenable to the
Illumina MiSeq sequencing platform (Kozich et al., 2013).
As OTUs are defined by sequence similarity, it is imperative

that errors arising from sample processing and sequencing
platforms are minimised and removed (Kunin et al., 2009).
Software methods to correct for sequencing platform errors

are available and widely employed to improve the quality of
sequence data. (Kunin et al., 2009; Quince et al., 2009; Bragg
et al., 2012, Callahan et al., 2016). The inclusion of appro-
priate negative controls and standards across multiple
experiments should be included to account for contaminants
and variance in sample processing.
The most widely used analysis for rumen environments

involves the 16S rRNA gene, for which curated databases
such as Greengenes, RDP and SILVA exist (Cole et al., 2003;
DeSantis et al., 2006; Pruesse et al., 2007). The databases
are constantly improving by including measures that account
and remove inaccuracies in the data sets, especially around
chimeric sequences and taxonomic nomenclature. (Yilmaz
et al., 2014; Balvočiūtė and Huson, 2017; Edgar, 2018).
However, a large proportion of the databases are derived
from environmental sequences and are generally not full
length. Taxonomy for these sequences is therefore predicted
using various methods such as Bayesian or sequence align-
ments to curated trees (Wang et al., 2007; McDonald et al.,
2012). Many of the characterised isolates are the sole
representative for an identified genus, thus making genus
the lowest level of rank available for many classifiers.
Due to the intense interest in methanogenic archaeal

populations in relation to their contribution to greenhouse
gas emissions from livestock, a highly resolved taxonomic
database focussed on gut isolates has been generated
(RIM-DB) (Seedorf et al., 2014).
Taxonomic inconsistencies and variance in accuracy of

rank classification between reference sets poses a challenge
for comparing results found within the literature. Although a
common agreed workflow would minimise these issues, it is
unlikely that this will eventuate. Agreed minimum descrip-
tions of sample collection and data analysis have been
requested MIMARKS (Yilmaz et al., 2011).
The nature of these sequencing methods produces com-

positional data that restrict analysis to relative abundance
methods and excludes standard Pearson and Spearman
correlation analysis (Pearson, 1897; Lovell et al., 2015; Gloor
et al., 2017). Alternative methods such as Aitchison and
PhILR for Beta diversity analysis and ϕ to describe the
strength of proportionality between two variables for
describing correlations are available (Aitchison et al., 2000;
Lovell et al., 2015; Silverman et al., 2017). Furthermore,
issues around variance in 16S rRNA gene copy numbers
between species have not been adequately addressed and
cannot be accurately determined for OTUs that are not
represented by characterised species (Louca et al., 2018).
Further confounding the analysis is sequencing depth
between samples, abundance issues arise around the varia-
tion in the number of sequences obtained from a given
sample. Rarefying the data to a defined level across all
samples preferentially excludes lower abundant OTUs lead-
ing to a loss of precision, whereas those that use the entire
data set must account for the magnitude of sequence depth
between samples and usually employ a transformation or
scaling method (Anders and Huber, 2010; Robinson et al.,
2010; McMurdie and Holmes, 2014; Weiss et al., 2017).
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Methods for the identification of OTUs that are sig-
nificantly associated with a given treatment or phenotype
should not use models that apply a Poisson distribution, due
to the sparsity of the data matrices. Researchers have sug-
gested the use of a negative binomial distribution and log
transformation of the data as an alternative to address the
over dispersion problem arising in 16S rRNA gene data
(Anders and Huber, 2010). However, this tends to increase
the false discovery rate due to the data being proportional
(Lovell et al., 2015; Gloor et al., 2017).
A recent review suggests alternatives to the standard

approaches that have previously been undertaken for each of
the major data transformation and analysis steps when
dealing with proportional data (Gloor et al., 2017). These
include initial normalisation of the count data using a log
ratio transformation (centred or isometric) rather than rar-
efaction. Substitution of beta diversity analysis using Aitch-
ison calculations of distances for Bray Curtis and PhILR for
unifrac that beta diversity variance is visualised based on
compositional principal component biplots rather than prin-
cipal co-ordinate. Finally, correlation of proportional data
should be performed with an appropriate measure such as ϕ
rather than Pearson or Spearman and identifying differential
abundant OTUs with ALDEx2 or ANCOM. Methods that
account for the compositional aspect of the data have been
developed and incorporated into the popular QIIME software
package (Caporaso et al., 2010), MixMC and ALDEx2
packages (Fernandes et al., 2014; Mandal et al., 2015; Lê
Cao et al., 2016).
Taxonomic identification of OTUs does not define a func-

tional phenotype, as different strains can vary dramatically in
their function, that is non-pathogenic v. pathogenic. Certain
families are more clearly defined and separated, mainly due
to the higher level of interest in those groups and therefore
more representative sequences are available compared with
the less studied families. Analysing data at the family level
therefore will generally group many species carrying varied
functional capacity together and shed little light on any
functional capacity changes to the ecosystem. This also
suggests that methods of functional inference such as
PICRUSt and Piphillin (Langille et al., 2013; Iwai et al., 2016)
although useful, will only be accurate when confidence
intervals for a match are high and closest to a reference
genome. Efforts to improve this for a rumen microbiome
focus have been undertaken through the development of a
rumen reference data set, CowPi (Wilkinson et al., 2018).

Applications of microbiota taxonomic profiling
Microbial profiling studies using high throughput sequencing
have been performed on the major ruminants investigating
changes due to diet, subacute acidosis, methane emissions,
feed efficiency, variation along the digestive tract, maternal
influence and seasonal changes (Fouts et al., 2012; Lee et al.,
2012; Li et al., 2012; Jami et al., 2014; Denman et al., 2015;
Mao et al., 2015; Myer et al., 2015; Huws et al., 2016;
Martinez-Fernandez et al., 2016; Abecia et al., 2017;
Danielsson et al., 2017; Noel et al., 2017; Tapio et al., 2017b;

Wetzels et al., 2017; Petri et al., 2018). But the most com-
prehensive study performed on ruminates to identify the core
microbiota and define what variance in the rumen micro-
biome was attributed to ruminant species, diet and geo-
graphical location was undertaken by the rumen microbial
census collaboration (Henderson et al., 2015). A unifying co-
ordinated approach limited the large amount of incon-
sistency in sample preparation, gene amplification and ana-
lysis platforms used between different research groups. Diet
was found to exhibit the largest influence on the rumen
bacterial community, attributed to the changes in the phy-
sical and chemical characteristics of the feed allowing for
specialised niches. The unclassified Bacteroidales and
Ruminococcaceae were observed to be consistently relatively
more abundant in animals fed forage, whereas Prevotella
and unclassified Succinivibrionaceae were relatively more
abundant in animals fed diets containing concentrate.
Methanogenic archaeal species were found to be ubiqui-

tously distributed and not affected by host, diet or location
with Methanobrevibacter gottschalkii and Methano-
brevibacter ruminantium dominating nearly all samples and
accounting for 74% of the archaeal data (Henderson et al.,
2015). This reflects the limited substrates used by metha-
nogenic archaea, predominately CO2 and H2 or methylated
substrates, such as methanol, methylamines and methyl
sulphides, and that they exist within the rumen as specialised
secondary feeders obtaining substrates for growth from the
common fermentative end products of numerous bacterial
species.
Several studies including those that have looked at the

microbiota populations for natural low methane animals and
those that have reduced the methanogen populations
through the addition of specific inhibitors have seen common
population shifts. Species closely related to the lactic acid
producing Sharpea azabuensis has been consistently
observed to be increased in low methane sheep rumen and
likely indicate rapid heterofermentative pathways due to
higher rumen turnover rates (Kittelmann et al., 2014; Kamke
et al., 2016); whereas H2 producing Ruminococcaceae,
Lachnospiraceae and Verrucomicrobia are more prevalent in
high methane yielding animals. In cattle and goats, high
methane animals were also associated with increases in
Verrucomicrobia and Synergistetes bacteria and decreases in
the relative abundance of methanogenic archaea (Denman
et al., 2015; Wallace et al., 2015; Martinez-Fernandez et al.,
2016). Cattle on high starch diets have also attributed
changes in the Succinovibrioacce relative abundance with
methane yields, but this was not evident in cattle on poor
quality roughage diets (Martinez-Fernandez et al., 2016;
Danielsson et al., 2017).
Prevotella spp. are the most frequently observed OTUs in

amplicon data sets and are often both negatively and posi-
tively associated with the phenotype being investigated. Yet
as most analysis is based on de novo clustering, the ability to
compare these uncultured diverse OTUs between studies is
limited. In a recent review on the ruminal microbiome asso-
ciated with methane emissions, the authors identified many
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Prevotella OTUs from 1000 cattle that clustered together
phylogenetically and which fell into groups that were either
positively or negatively correlated with methane emissions,
suggesting a similar function for closely related species
(Tapio et al., 2017a). Further investigation of the functional
capacity of these differing but closely related species is
needed to provide evidence for their contribution.
Initial reports on a small number of cattle found a positive

correlation with methane yield and the bacteria:methanogen
ratio (methanogen abundance) (Wallace et al., 2015; Roehe
et al., 2016). However, larger groups of animals and other
studies have not found this correlation (Danielsson et al.,
2012; Wallace et al., 2015; Tapio et al., 2017a). Although the
relative abundance of the methanogenic population may not
consistently be associated with methane yield and is not
informative of the level of functional activity, there is a
consistent change in the dominant species with a relative
increase in M. ruminantium and decrease in M. Gottschalkii
in low methane animals (Wallace et al., 2015; Danielsson
et al., 2017; Martinez-Fernandez et al., 2017).
Microbial profiling for feed efficiency traits in dairy cattle

has revealed a reduction in the microbial richness and a
strong correlation between the ratio of the phyla Firmicutes
to Bacteroidetes and milk-fat yield, but no strong correlation
with residual feed intake (RFI) (Jami et al., 2014). However in
another study, a similar change in the Firmicutes:Bacter-
oidetes ratio was evident, but no reduction in the total
microbial richness was observed (Myer et al., 2015). How-
ever, this may just reflect the different regions of the 16S
rRNA gene that were used between the studies, confounding
the comparison. Caution should be taken when using Phylum
level values and ratios as a phenotype predictor due to the
varied functional diversity possessed by the many bacterial
species within a phyla. The use of larger numbers of animals
and more refined analysis defining distinct microbial com-
position as an enterotype based on similar microbial clus-
tering should be more accurate (Costea et al., 2018).
Microbial profiling studies using RNA as a template have

been used to infer active populations at time of sampling. In
a temporal study to monitor fibre colonisation, Huws et al.
(2016) showed a biphasic colonisation of fibre with primary
colonisers established within 1to 2 h and secondary colo-
nisers not evident until 4 to 8 h after feeding. A constant
signal from Butyrivibrio, Fibrobacter, Olsenella and Pre-
votella would indicate their role as core bacteria involved in
fibre degradation regardless of the sampling time. The var-
iance in microbes observed due to time after feeding high-
lights the importance of considering these changes when
interpreting the results from a single collection.
Limited studies have focussed on the protozoal and fungal

populations of the rumen using amplicon-based methods
(Fouts et al., 2012; Kittelmann et al., 2013; Mao et al., 2016;
Cunha et al., 2017; Tapio et al., 2017b). Both Kittelmann
et al. and Cunha et al. saw no difference in the fungal
populations in relation to methane emissions, whereas Tapio
et al. indicated that two fungal species were negatively
correlated with methane yields (Kittelmann et al., 2014;

Cunha et al., 2017; Tapio et al., 2017a). The taxonomic
databases are more poorly characterised for rumen fungi and
protozoa, although a specific gut anaerobic fungal database
has been created and the 18S rRNA SILVA database is used
for protozoa taxonomy (Kittelmann et al., 2012; Yilmaz et al.,
2014). A shift towards targeting the D1/D2 region of the 28S
rRNA gene for anaerobic fungi should improve classification
as an extensively curated taxonomic database exists for the
28S rRNA gene (Edwards et al., 2017).
Other phylogenetic markers targeting functional genes

have been used to define specific microbial populations of
the rumen, including the formyltetrahydrofolate synthase,
methyl coenzyme reductase (mcrA) and urease (ureC) genes
(Gagen et al., 2010; Henderson et al., 2010; Mitsumori et al.,
2014; Jin et al., 2017) . Only the ureC gene has been used in
conjunction with high throughput sequencing to study the
ureolytic populations of the rumen and rumen mucosal
associated populations (Jin et al., 2017). Due to the limited
availability of taxonomic data within the reference data set,
more than 50% of the data could not be taxonomically
identified. However, distinct populations were found on the
rumen wall compared with the fibre and liquid associated
fractions.
Profiling the rumen microbiota using a taxonomic marker

gene is inexpensive, rapid and provides a broad low resolu-
tion catalogue of the identified microbiota. Development of
robust analysis methods can now accurately correlate shifts
in the community and define co-occurrence networks for
OTUs, providing greater insight into the complex interactions
of the rumen. Initially characterising samples using these
methods can aid in deciding which samples are appropriate
for more expensive techniques such as metagenomics for
describing the functional capacity.

Defining the functional potential of the rumen
microbiota through metagenomics analysis

Considerations and limitations
Defining the functional capacity within the rumen microbiota
is achieved through sequencing of the combined genomes in
a shotgun approach, with the aim of cataloguing the genes
and the species to which they belong. Analysis can profile the
taxonomy, catalogue the functional genes, attempt to
assemble whole genomes and monitor changes in functional
gene counts. Metagenomics allows for the study of the
uncultivable members and has become an important tool for
understanding the full genomic potential that resides within
the rumen microbiome, while minimising biases observed
with amplicon-based methodologies. Limitations still apply
to metagenomics analysis, again such as sample collection
and DNA extraction techniques which can bias the propor-
tion and types of species detected. Assembly of sequences
into contiguous genomic sequences (contigs) for metage-
nomics studies are similar to those techniques developed for
individual genomes. Although there is a need to overcome
issues around varying levels of genomic DNA for different
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species (which is exploited by ‘binning’ techniques, see
below) and that closely related species or strains may
become inadvertently co-assembled. Most metagenomic
assemblers employ varying kmer sizes and coverage depth
values to improve de novo assembly (IDBA-UD, Meta-IDBA,
metaSPAdes and MEGAHIT) (Peng et al., 2011; Bankevich
et al., 2012; Peng et al., 2012; Li et al., 2015). Assembled
contigs can then be placed into common bins based on
nucleotide frequency (most commonly tetramer) and cover-
age depth within the sample using approaches like Phylo-
PythiaS, GroopM and MetaBat (Patil et al., 2011; Imelfort
et al., 2014; Kang et al., 2015). Sequencing multiple similar
environmental samples as opposed to just
deeper sequencing of a single sample improves binning
based on the assumption that species have the same relative
abundance among samples (Albertsen et al., 2013). Com-
pleteness and contamination of metagenomic assembled
genomes (MAGs) can be assessed based on the presence of
multiple lineage-specific single copy marker genes using
CheckM or similar approaches with PhyloSift (Darling et al.,
2014; Parks et al., 2015). These methodologies also allow for
assigning of taxonomy to these MAGs based on these single
copy markers being concatenated and placed in con-
catenated gene trees. Genome-based taxonomy trees are
rapidly proving to be more accurate at phylogenetic place-
ment than the single marker gene methods and have recently
resulted in 73% of taxa being corrected with one or more
changes to their existing taxonomy (Parks et al., 2018).

Applications of metagenomics
Like most other studies of the rumen microbiome, these tools
have been employed to gain a better understanding about
fibre degradation, methane emissions and ruminant effi-
ciency. Although only performed on three animals and not to
the depth of today’s metagenomics studies, the first pub-
lished data defining the fibre adherent population in cattle
highlighted the differences obtained from full length PCR-
amplified phylogenetic assessment and that from metage-
nomics data at both the 16S rRNA gene and genomic
sequence level (Brulc et al., 2009). Although biases were
attributed to the PCR method, all methods exhibited the
same power to discriminate between animals and the rumen
fluid v. fibre adherent populations (Brulc et al., 2009).
Assignment of phylogeny for genomic sequences was limited
by the relevant data matches in the SEED data set at the time
of analysis (Overbeek et al., 2005). However, analysis of the
functional capacity concluded that primary colonisers target
the easily accessible side chains of complex plant poly-
saccharides, reflecting that samples were collected 1 h after
feeding and that bacteria focussing on the main cellulosic
and xylan backbones likely colonise later (Brulc et al., 2009;
Huws et al., 2016).
A deeper metagenomic study into the fibre adherent

microbiome of switch grass also demonstrated the ability of
the rumen microbiota to rapidly colonise and degrade bio-
mass (Hess et al., 2011). Increased sequence data identified
2.5 million open-reading frames (ORFs) of which ~1% were

classified as candidate carbohydrate active genes. The
majority of these were novel and not closely aligned with
those in the NCBI non-redundant database, highlighting the
extensive repertoire of enzymes employed by the rumen
microbiota to deconstruct plant material.
Due to the greater sequence data and availability of genome

binning methods, the authors were able to group assembled
sequence reads based on tetra nucleotide frequencies and read
coverage, producing 446 distinct groups (bins). Due to their
relatively higher abundance within the fibre adherent popula-
tion, 15 near complete draft genomes from previously un-
isolated species were generated (Hess et al., 2011). This
allowed for the accurate assignment of functional capacity and
potential role to these specific bacteria rather than just gene
catalogue counts from the microbiome.
Other ruminants, including Yak and Reindeer have also

been investigated, primarily focussing on carbohydrate
active enzymes (Dai et al., 2012; Pope et al., 2012). A deep
analysis of the Moose metagenome including genomic bin-
ning allowed for genomic reconstruction of representatives
from the uncultured Bacteroidetes family BS11 and char-
acterisation from genome reconstruction suggested a role in
hemicellulosic fermentation (Solden et al., 2017).
Limited sequence depth from a metagenomics study of the

dairy rumenmicrobiome resulted in the assembly of only small
contigs and only 20%of these could be functionally annotated
(Pitta et al., 2016). However, shifts in the microbiota based on
agewhere detected, alongwith a high proportion of functional
genes assigned to starch degradationwhich comprised 20% to
30% of the offered diet (Pitta et al., 2016).
Initial studies investigating ruminants in relation to a low

methane phenotype, either naturally or through chemical
modification did not attempt to generate MAGs, but rather
focussed on the phylogenetic and functional changes in the
rumen microbiota. Decreases in the relative abundance of
methanogenic species and methane generating pathways
were evident in goats treated with bromochloromethane
(BCM), reflecting the mode of action of BCM on these target
species (Denman et al., 2015). Higher H2 levels in the rumen
resulted in fermentative shifts to propionate, which was
attributed in the metagenomic data to increases in Prevotella
and Selenomonas spp. and supported by increased func-
tional gene counts for the production of propionate through
the randomising (succinate) pathway.
In a cattle trial that selected four pairs of cattle as natural

low and high methane emitters, there was a 2.5-fold differ-
ence in the archaeal population using qPCR and 16S rRNA
relative gene abundance data (Wallace et al., 2015; Roehe
et al., 2016). KEGG analysis of archaeal genes associated
directly or indirectly with methane production were also
higher in the high methane-emitting animals, confirming the
increased archaeal presence. A larger group of cattle from
varying breeds and diets using a similar analysis also found
the same hydrogenotrophic methane synthesis pathway
correlated with higher methane emissions and a weak cor-
relation to archaeal abundance (Auffret et al., 2017). How-
ever quantitative data for 1000 dairy cows showed only a
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weak correlation for the archaea:bacteria ratio with methane
emissions (Tapio et al., 2017a), suggesting that the pre-
dictive power of this approach may be too low to identify
high methane-producing phenotypes.
Similarly, low methane emitting sheep did not show a

decrease in the relative abundance of methanogen species or
methanogenic pathway genes using metagenomic data,
rather only at the gene transcript level was a difference
observed (Shi et al., 2014). The bacterial component of the
low methane yield sheep rumen metagenome and tran-
scriptome suggested a switch to hexose fermentation
through to lactate and butyrate resulting in lower H2 yields
available to drive methanogenesis. This was evident with
increased observations of the lactate producing Sharpea spp.
and subsequent conversion of this substrate by Megasphaera
spp. to butyrate along with their respective pathways
(Kamke et al., 2016).
Metagenomics has also been used to identify functional

shifts associated with ruminant efficiency or more commonly
low RFI animals (Roehe et al., 2016; Shabat et al., 2016).
Efficient dairy cattle defined by RFI exhibited a lower richness
of abundant microbial species for both 16S rRNA and at the
microbial functional gene level (Shabat et al., 2016). Both
phylogenetically and functionally efficient animals were
dominated by increases in Megasphaera elsdeniii and
Coprococcus catus, hydrogen consuming lactate utilisers
resulting in production of butyrate and propionate for the
host. Coprococcus spp. have also previously been associated
with the NADPH-dependent reduction of phloroglucinol and
the redirection of H2 in the rumen to acetate in a methane
inhibited rumen (Martinez-Fernandez et al., 2017). In dairy
cattle, efficient animals were also linked with decreases in
Methanobrevobacter spp. and methanogenic pathway genes
(Shabat et al., 2016). Thus, the microbiology associated with
H2 production and utilisation within the rumen seems to be
tightly linked with methane and efficiency traits.
In cattle that were initially selected for their methane

emission ranking, a correlation with RFI was also detected in
which the authors demonstrated the abundance of 49 genes,
explaining 86% of the variation observed in feed efficiency
(Roehe et al., 2016). Of particular note were genes identified
as ‘fucose sensing’ involved in cross talk between the host
and the microbiota, possibly in response to the mucin con-
tent from bovine saliva.
Recently, results from the Hungate 1000 genome project

were published, revealing genomic coverage of ~75% of the
known genera from the rumen (Seshadri et al., 2018). But in
spite of that the Hungate collection covers only a fraction of
the diversity found within the rumen (Li et al., 2018; Stewart
et al., 2018). Close to 2.2% of the ORFs in the combined
genomes were classified as carbohydrate-active enzymes
and binding proteins reflecting the functional role of bacteria
in degrading cellulose, hemicellulose and pectin. Further-
more, polysaccharide utilisation loci involved in the degra-
dation of animal glycans were enriched in the Bacteroidetes
genomes and may indicate the ability of these species to
harvest energy from N-linked salivary glycoproteins (Seshadri

et al., 2018). Metabolic fermentation pathway reconstruction
for the sequenced species has now lead to the most complete
reconstruction of the rumen microbiome metabolic scheme
incorporating both species and functional capacity. However,
the level of contribution that these species make to the
complex interactions that take place within the rumen is still
not fully understood. Although, recently the rumen micro-
biome gene catalogue clearly observed diet modulation in
gene abundance counts even though 90% of coding genes
were shared (Li et al., 2018).
Likewise, several studies focussing on the generation of

MAGs from ruminants have discovered similar over repre-
sentation of carbohydrate active enzymes for 99, 324 and
913 MAGs from moose and cattle (Svartstrom et al., 2017; Li
et al., 2018; Stewart et al., 2018).
With the results from the Hungate 1000 genome sequen-

cing initiative and the various rumen focussed MAGs and
rumen microbiota gene catalogue available, there is the
future possibility of reducing the requirement to perform
metagenomic assemblies and rather rapidly generate relative
abundance counts and functional capacity linked to tax-
onomy through direct mapping to rumen relevant annotated
genomic data sets (Hess et al., 2011; Parks et al., 2017;
Svartstrom et al., 2017; Li et al., 2018; Seshadri et al., 2018;
Stewart et al., 2018).
As of yet very little genomic data representing protists and

the anaerobic fungi are available, substantially limiting our
ability to study these groups. However, improvements in long
read sequencing platforms have overcome some of the dif-
ficulties in assembling the highly repetitive, AT base rich
genomes of the anaerobic fungi (Solomon et al., 2016;
Haitjema et al., 2017). Comparative genomics and pro-
teomics have catalogued an extensive array of plant depo-
lymerisation and structural genes that form the anaerobic
fungal cellulosome complex. Scaffoldin proteins, containing
dokerin-binding cohesion sequences were highly conserved
across the Neocallimastigomycota, allowing potentially for
interspecies fungal enzyme complexes to form (Haitjema
et al., 2017). This large diversity of degradative and substrate
binding capacity incorporated into the fungal cellulosome
structure provides a co-ordinated and synergistic mechanism
for complete conversion of cellulosic material to fermentable
sugars. Transcriptomics provided further insights into aspects
of the co-ordination, identifying repressive regulation of
cellulosic gene sets in response to glucose as an end product
metabolite. Furthermore, the tailoring of hydrolytic gene
transcripts was linked to the complexity of the substrate
through an increase in the number and functional diversity of
degradative genes transcribed (Solomon et al., 2016).

Observing functional gene activity within the rumen
using metatranscriptomics

Considerations and limitations
Metagenomic analysis performed on genomic DNA cannot
distinguish whether the material is from viable cells or if the
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predicted genes are functionally expressed at the time of
collection. However, limitations for using rRNA as an indi-
cator of the species activity within a community exist and
should be considered. Concentrations of rRNA are not con-
sistently correlated with growth and can differ greatly
between closely related taxa, whereas dormant cells can still
contain high levels of rRNA (Blazewicz et al., 2013). Unlike
eukaryotic mRNA, the majority of prokaryotic transcripts are
not poly adenylated at the 3' end, making the commonly
used mRNA polyA enrichment methods impractical (Sarkar,
1997). Most current microbial targeted methods employ
techniques to deplete the rRNA sequences in order to
increase the number of non-rRNA reads in the data sets.
Computational methods to identify and remove the ribo-

somal sequences are common and easily employed. Likewise
host transcripts should be removed if a reference data set is
available in order to enrich the microbiome transcripts.
Although, host transcript data should not be discarded as it
may show some indication of the cross talk between the host
and its microbiome. Due to the lack of relevant rumen
microbial genomic data sets to map transcripts too, most
analyses involve a de novo assembly and annotation step.

Application of metatranscriptomics
Considering that most RNASeq analysis workflows were
established for eukaryotic mRNA, it was not surprising that
the first large-scale rumen metatranscriptomic analysis
focussed on the rumen eukaryotic species. Even though
samples were collected before feeding, the eukaryotic fibre
adherent population of the muskoxen rumen exhibited a high
level of expression for genes involved in the degradation of
crystalline plant cell wall polysaccharides, with large num-
bers of exo-acting glucanases and swollenin genes (Qi et al.,
2011). Functional assignment of the transcripts showed that
3.4% of the data were more closely related to bacterial
sequences, illustrating the poor coverage of rumen eukar-
yotic sequences in the reference database and the occurrence
of horizontal gene transfer that occurs within the rumen
microbiome.
Using methods to deplete the ribosomal RNA sequences

from the total RNA, Dai and colleagues were able to collect in
excess of 1 million non-rRNA reads of which ~1% were
identified as carbohydrate active enzymes or binding mod-
ules (Dai et al., 2015). A similar level of carbohydrate active
genes were observed in the mRNA enriched metatran-
scriptomic data of dairy cows in Japan (Shinkai et al., 2016).
These studies confirmed that the major bacterial activity of
fibre degradation was being performed by members of the
genera Fibrobacter, Prevotella and Ruminococcus. Recently,
a study on dairy cows in France used 18 newly designed
ribosomal depletion capture probes covering a large number
of the rumen archaeal, bacterial, fungal and protozoal gen-
era to enrich for non-rRNA reads (Comtet-Marre et al., 2017).
Likewise, the data confirmed the majority of bacterial activity
resides with these fibrolytic species, but also highlighted the
large contribution from fungal and protozoal species. The
lack of relevant genomes for mapping and annotation of

RNA-Seq data is still considered the major limitation of these
methods.
Metatranscriptomic analysis of low and high RFI beef

cattle used total RNA sequencing rather than enriching for
non-rRNA sequences (Li and Guan, 2017). There was no
variance between the microbiomes based on the rRNA data
at the taxonomic family level. Approximately 90% of all the
read data were identified as rRNA, resulting on an average
~4.5 million non-ribosomal reads for transcriptomic analysis.
Based on reads assigned to KEGG pathways, 30 pathways
were relatively more abundant in H-RFI animals (inefficient),
including pathways associated with amino acid metabolism,
reinforcing the findings from H-RFI dairy cows using meta-
genomics (Shabat et al., 2016).
Early studies of rumen methanogens using rRNA and mcrA

libraries identified a group of archaea closely related to
Thermoplasmatales (rumen cluster C) (Denman et al., 2007;
Janssen and Kirs, 2008). Although it was hypothesised that
they were likely to be methanogenic archaea, due the ubi-
quitous nature of this group within the rumen and supported
by the presence of the mcrA gene. It was not until Poulsen
and colleagues used metatranscriptomics that a definitive
link could be ascertained between methanogenic capacity
and the RCC group (Poulsen et al., 2013). Based on these
transcripts, it was concluded that this group of methanogens
used methylamines for the production of methane rather
than the usual hydrogenotropihic pathway used by Metha-
nobrevibacter spp. The RCC and related methylotrophic
methanogens were renamed and belong to the new order
Methanomassiliicoccales (Iino et al., 2013).
High methane-emitting sheep did not show any variance

in the abundance of methanogenic species or pathways from
metagenomic analysis, but did show a strong correlation
between hydrogenotrophic methanogenesis transcripts and
methane yields (Shi et al., 2014). It was concluded that this
was likely a response to the supply of hydrogen in the rumen
from the fermentative processes of other rumen microbes.
Further to this study, the bacterial species were the focus of a
second paper in which it was suggested that due most likely
to a smaller rumen size and faster transit times, conditions
were more favourable for rapid bacterial fermentation of
hexose through to lactate and butyrate resulting in lower H2
yields for methanogenesis (Kamke et al., 2016). Butyrate
production was assigned to Sharpea spp. and Megasphaera
spp. and involves a two-step process, calculated to produce
24% less methane, due to less net hydrogen generation,
compared with the common one-step fermentative pathway
performed by Ruminococcaceae (Kamke et al., 2016).

Metaproteomics for the characterisation of the rumen
microbioata proteome

Considerations and limitations
Advances in the throughput and accuracy of mass spectro-
metry tools coupled with peptide separation methods can
now lead to the detection of over 100 000 tandem mass
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spectra per acquisition (Timmins-Schiffman et al., 2017). But
like all other omic approaches, the limitation for identifica-
tion and taxonomic assignment is due to the poor coverage
of sample relevant data in the reference sets. Workflows that
combine relevant metagenomic and isolate sequence data
will improve peptide identification (Petriz and Franco, 2017).
Processing methods that reduce contaminating proteins from
the diet or host are also essential to maximise the focus on
the microbiome peptides. Likewise, rumen and faecal sam-
ples can contain polyphenolic compounds, such as tannins
and humic acids that can co-precipitate and interfere with
analysis through modifications that make it difficult to
identify the peptides and supress ionisation (Makkar et al.,
1995; Qian and Hettich, 2017; Snelling and Wallace, 2017).

Applications of metaproteomics
Limited metaproteomic studies have been published for the
rumen, an early attempt from sheep rumen microorganisms
focussed on identifying cellulose-binding proteins through an
enrichment step (Toyoda et al., 2009). By using 1D-PAGE
coupled to MS/MS, they were able to identify a small number
of proteins and link them to microbial species using the
limited databases available at the time. Endoglucanases of
the cellulolytic bacterium Fibrobacter succinogenes and an
exoglucanase from the fungi Piromyces equi were among the
proteins identified.
Increased resolution and substantially more peptides were

identified when 2D-PAGE separation was used before LC-
MS/MS detection (Snelling and Wallace, 2017). Issues asso-
ciated with humic content of grass fed animals and between-
sample replication limits the possibility to use 2D-PAGE as a
sole tool to predict the function of rumen proteins. Humic
compounds co-precipitate with proteins and alter gel mobi-
lity, resulting in unresolved smears rather than distinct pro-
tein bands. However, metaproteomics of the separated
proteins identified protozoal structural proteins, prokaryotic
central metabolic enzymes and archaeal methanogenesis
proteins (Snelling and Wallace, 2017).
Using a metaproteomic shotgun approach to discover

peptides from plant adherent and rumen liquid fraction
microbiota, it was possible to identify in excess of 2000
bacterial, 150 archaeal and 800 eukaryotic proteins in the
fibre adherent fraction and similar ratios but lower numbers
in the liquid fraction (Deusch and Seifert, 2015). Bacterial
and archaeal taxonomy was as expected with Pre-
votellaceae, Fibrobacteraceae, Ruminococcaceae, Clos-
tridiaceae, Methanobacteriaceae and Methanomicrobiaceae
dominating. Eukaryotic taxonomic assignment was hindered
by the sparsity of rumen protozoal and fungal data sets and
most proteins could only be identified to the Phyla level and
were classified as originating from plant and host proteins.
A more detailed metaproteomic study including sample

fractionation for fibre associated and liquid microbiota,
along with diet shifts from forage and grain based diets
produced over 8000 bacterial and 350 archaeal proteins
(Deusch et al., 2017). Concurrent with the 16S rRNA
amplicon-based analysis of the same samples, diet was

confirmed as the largest driver of microbiota change. Succi-
nivibrionaceae OTUs and proteins attributed to this group,
particularly carbohydrate esterases were both more abun-
dant in the corn-supplemented diet and confirmed its
increase on starch-based diets as observed previously (Petri
et al., 2013; Wallace et al., 2015; Martinez-Fernandez et al.,
2016). The major fibre degrading bacteria Fibrobacter spp.,
Ruminococcus spp. and Lachnospiraceae were more pre-
valent in the solid fraction. Furthermore, a high proportion of
proteins linked to butyrate formation were assigned to
Lachnospiraceae bacteria in the fibre-rich diets. The meta-
bolically diverse Prevotellaceae were abundant in all samples
and linked with acetate and propionate pathway proteins
(Deusch et al., 2017). Archaeal populations did not differ
significantly between diets or collected fractions due to low
abundance. However, proteomic analysis identified proteins
from the Crenarchaeota and Thaumarchaeota Phyla that the
amplicon sequencing did not, possibly because of primer
biases for the OTU sequencing. The methyl-coenzyme M
reductase involved in the final step of methanogenesis was
detected at its lowest in the corn-based diet, corresponding
with the general observation of others that methanogenesis
is lower in cattle fed high concentrate diets (Rooke et al.,
2014; Martinez-Fernandez et al., 2016).

Microbial metabolite detection within the rumen using
metabolomics

The majority of rumen nutrition studies have usually per-
formed some limited metabolomics analysis, at least pre-
senting data on short chain fatty acids (SCFA) products and
some with methane and hydrogen levels. Mass spectrometry
and nuclear magnetic resonance spectroscopy are the most
popular high throughput methods being applied to rumen
samples.
Analogous to most other rumen analysis, the metabolome

of animals on different diets could easily be distinguished.
Most metabolomics studies in ruminants have investigated
the increased proportion of concentrate/grain in a diet
compared with roughage. Saleem et al. (2013) summarised
the results of studies performed on increasing levels of con-
centrate using various methods to detect 246 rumen meta-
bolites, covering phospholipids, inorganic ions, gases, amino
acids SCFA and carbohydrates (Ametaj et al., 2010; Saleem
et al., 2012). Increased grain in the diet lead to rises in
methylamines and a decrease in 3-phenylpropionate
(hydrocinnamate), likely linked to the decreased plant phe-
nolic component of the diet. Similar findings were also
reported from other studies when altering the diet (Zhao
et al., 2014; Mao et al., 2016; Zhang et al., 2017a and
2017b; O’Callaghan et al., 2018).
Profiling of feed efficient rumens could also be dis-

tinguished by metabolomics, ruminal biohydrogenation
pathways, in particular down regulation of linoleic and alpha
linoleic acid metabolism were associated with average daily
gain (Artegoitia et al., 2017). However, feed efficiency in
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dairy cows was linked to increased production of SCFA, with
increased propionate:acetate ratios and decreased methane
and increased putrescine (Shabat et al., 2016).
Unlike other omic technologies, metabolomics cannot

directly link metabolites to a microbial species. Associations
with changes in microbial relative abundance through
microbial profiling, metatranscriptomic or metaproteomic is
required. Correlations between changes in urine and plasma
metabolites have been linked to relative abundance shifts for
protozoa and Methanomassiliicoccus spp., particularly tri-
methylamine N-oxide (Morgavi et al., 2015; Saro et al.,
2018). This suggests that this compound may be used as a
biomarker for monitoring methylamine utilising methano-
gens through urine metabolites.
Combining many of the omic platforms will often lead

to more powerful observations; for determining the func-
tion of un-cultivated bacteria or confirming functional roles
within different systems. The characterisation of multiple
genomes from the un-cultivated Bacteroidetes BS11 family
using metagenomic data and confirmation of function with
metaproteomic and metabolomic data categorised them as
hemicellulosic degraders producing SCFA as end products
(Solden et al., 2017). Likewise, microbial profiling part-
nered with metaproteomics and metabolomics reveals the
Prevotellaceae as a metabolically versatile group dom-
inating on both concentrate and fibre rich diets (Deusch
et al., 2017). Corn-based diets promoted the activities of
the Succinivibrionaceae family, leading to production of
succinate for use by other species resulting in propionate
as an end product. Fibre rich diets promoted Pre-
votellaceae, Ruminococcus spp. and Lachnospiraceae to
drive butyrate and propionate formation leading to chan-
ges in the propionate:acetate ratio. Dairy cattle showed
increased energy harvest in feed efficient animals that was
linked to a restriction in microbiome diversity and richness.
Efficient animals were highlighted with increases in
hydrogen and lactate utilising Megasphaera elsdeniii and
Coprococcus catus, resulting in production of butyrate and
propionate (Shabat et al., 2016).

Future directions

Accurate annotation of the functional gene products allows
for the construction of genome-scale metabolic models
(GEM) for individual isolates, which can then be applied to
understand complex interactions within the system (van der
Ark et al., 2017). Most microbes have the capacity to utilise a
wide array of nutrients using varied metabolic pathways.
Tools such as Minimal Environmental TOol (MENTO), RAVEN
and ModelSEED can be used to predict the minimal nutrient
requirements of as yet un-cultivated organisms based on its
GEM (Henry et al., 2010; Agren et al., 2013; Zarecki et al.,
2014). Beyond models that predict an individual’s phenotype
are ones that allow for modelling co-cultures and multi-
species interactions to predict ways to drive a desired rumen

phenotype. Hypothesis testing based on culturing studies can
be performed on isolates and multiple species competing and
interacting to build network models to better inform the GEM
in an iterative manner. Predictive competitive and coopera-
tive metabolic models already suggest that competition is
generally dominated by versatile fast growing species
(Freilich et al., 2011). Likely explaining the high abundance
of Prevotella spp. consistently observed in the rumen.
Regardless of these techniques, accuracy and further
advancement of these models will still require isolation and
culturing of these new microorganisms to validate and
strengthen predictions. New high throughput culturing
methods and media are proving successful (Kenters et al.,
2011; Lagier et al., 2016).
Monitoring changes to rumen function for research pur-

poses is achievable, but scaling to the level that will drive
changes in production systems will need the development of
simple robust quantitative markers. A large number of
microbial metabolites and microbial-host co-metabolites are
present in plasma and other body fluids. There is potential for
the discovery of biomarkers linked to microbiota function
that could be applied in farms using less invasive and simpler
techniques. Saliva and buccal swab samples have already
been shown to reflect the rumen microbiome, whereas
changes in plasma fatty acid profiles were suggested as
biomarkers for weight gain and levels of trimethylamine
N-oxide as a marker for methylamine utilising methanogens
(Kittelmann et al., 2015; Morgavi et al., 2015; Tapio et al.,
2016; Artegoitia et al., 2017).
The omics technologies have given us an understanding of

which species are present and their potential function. Now,
why and how they are present will start to be addressed.
Ultimately, these understandings should lead to the ability to
design targeted interventions that direct rumen composition
and activity towards improved production, health and ben-
efits to the environment.

Conclusions

Considering the limitations and erroneous methods initially
used, primarily due to the infancy of these technologies, the
low numbers of animals investigated and lack of robust
statistical tools for compositional data, omics based tech-
nologies have produced results that relate to and support our
biological understanding of the rumen system. Continued
and more precise use of these tools will lead to a detailed
and comprehensive understanding of compositional and
functional capacity. Relative abundance shifts in microbial
populations are now being related to gene transcripts and
proteins that explain changes in detected metabolites.
However, our ability to rationally design and drive rumen
microbial composition and function in this highly complex
and dynamically changing environment is limited. Integrat-
ing omics data will allow for the construction of rumen-
specific microbial metabolic models.
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