ON THE LOCAL THEORY OF CONTINUOUS
INFINITE PSEUDO GROUPS II*

MASATAKE KURANISHI

Chapter III. Differential systems

In this chapter, we shall formulate, without proof, the theorys of exterior
differential systems and of their prolongations using the language in the theory
of jets developed by C. Ehresman, because such formulation seems to be most
convenient in order to apply the theory to the theory of continuous infinite
pseudo-groups, which we shall discuss in the next chapter. Since important
theorems in our theory hold only in the real analytic case, we shall exclusively
consider the real analytic case. So, we shall omit the adjective “‘analytic”,
unless explicitly stated otherwise. As for the fundamental notions in the theory
of jets and of differential systems, we refer to [5] and [6], respectively.
Detailed proof of the contents of this Chapter will be published in [7].

1. Differential systems and jets

Let M be a (real analytic) manifold. Denote by A*(M) the sheaf of germs
of real analytic homogeneous differential forms of degree 2 on M. A(M)
=SV A"(M) is a sheaf of rings. The exterior derivative d induces a mapping
A(M) - A"*Y(M). For a sheaf ® on M and for an open set U of M denote by
I'(U, ®) the set of cross-sections of @ over U. By a differential system on M
we mean a locally finitely generated subsheaf X of homogeneous ideals in A(M)
such that d(3)cJ3. By locally finitely generated, we mean the following: For
any point w in M we can choose an open neighborhood V of w and fi, ...,
fae€I'(V, 2) such that each 3y (y V) is generated as an ideal in (A(M)),
by the germs of fi, ..., f. at w. Let B be a homogeneous subsheaf of A(M).
Then the subsheaf ¥ of ideals generated by B and dB is closed under d.
Therefore, when ¥ is locally finitely generated, it is a differential system on M.
If this is so, ¥ is called the differential system generated by B. A (not
necessarily closed) submanifold V of M is called an integral of a differential
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system 2, when, for any open set U and for any ¢ & I(U, %), the restriction
of ¢ to UNN is zero, provided UN N is not empty. A point w of M is called

an integral point of 3, when ¢(w) =0 for and ¢ & I,

DeriniTion I 1. A triple (M, M', =) of manifolds M, M', and a mapping
n of M onto M' is called a fibered manifold when the rank of the differential
dr ts equal to the dimension of M' at each point in M.

By a local cross-section f of (M, M', ») we mean a mapping f of an open
set U of M' into M such that zo f is the identity mapping of U. By a differ-
ential system with independent variables, we mean a pair (2, (M, M', z)) of
a differential system X on M and a fibered manifold (M, M, =).

Derinition II1.2. By an integral f of (3, (M, M', =), we mean a local
cross-section f of (M, M', =) which is an integral of T (when f is considered
as a submanifold of M).

We can introduce the notion of differential systems with independent
variables which are in involution at integral points (ct. [6]).

Let (M, M', n) be a fibered manifold and w be a point of M. If (xi, ...,
xn) is a coordinate system in M’ defined on a neighborhood of =(w), there is
a coordinate system (%1, ..., %s, %1, ..., ¥m) in M defined on a neighborhood
of w such that % =xox. Such a coordinate system (x, y) is called a coordinate
system in the fibered manifold. In such case, we usually write x; instead of
xi. Let us assume that %(w) =y,(w) =0, and that {|x|<e |y|<e} is the

domain of the coordinate system. Let S be a system of characters (Def. I.2).

Derinition 1I1.3. A pair of germs of analytic mappings F, F! of & (S)
into 7, of S into U(S), respectively, is called a parametrization mapping
of integrals of (3, (M, M', =) at w in M with respect to the coordinate system
(%1, v ooy Xny Y1y e vy, Ym) in (M, M', n) when they satisfy the following
conditions :

(1) F'°F is the identity mapping of < (S).

(2) If F is defined at ¢ 2 (S), and if |[FA(8)1(0)|<e, them the cross-
section on a neighborhood of n(w) defined by y, =[F,(8)1(x) is an integral of
(2, (M, M, ).

(3) If ¥ is defined at 1€ 7 u, ¢), F is defined at F'(3), and if 3 = 7(x)
is an integral of (3, (M, M, =) on a neighborhood of n(w), then n=F(F'(n)).
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In this case, y, =0 is an integral of (J, (M, M’, z)), which is called the
center of the parameterization mapping. Let f be an integral of (X, (M, A,
7). It a parameterization mapping at w with center / exists with respect to
a coordinate system (x, »), then a parameterization mapping at w with center
f exists with respect to any coordinate system (x/, »') such that f is the cross-
section », =0. When this is so, the multiplicity and the degree of (S) is
uniquely determined by f and J.

Tueorem III. 1. Let (X, (M, M', =) be a differential system with independent
variables. Assume that (5, (M, M', n)) is in involution at an integral point w.
Then there is an integral of (2, (M, M', =)) defined on a neighborhood of w.
For any integral f defined on a suitable open neighborhood of w, there is a

Darametrization mapping at w of integrals of (5, (M, M', =)) with center f.

Let (M, M', n) be a fibered manifold. Denote by J(M, M', =) the set of
all J-jets which can be represented by local cross-sections of (M, M', n). As
usual, denote by j%(f) the l-jet at x represented by f. We set a(ji(f)) =z,
B(7L(f)) = f(%). ax 3 maps J(M, M', n) to M'xM. Clearly « =n°3. Let a
coordinate system (x, ) be defined on an open set V of M. Then J{(M, M,
7) has a coordinate system (X1, . . ., %n, Vi« c o s Yo oo o, VL 0L) (A=1,

coamy 1<d, oo, i <m; 1< <1; " symmetric in 4, . . ., 4,) defined

on 87'(V). Namely, if X & 37'(V) is represented by f at x then

%i(X) =xi, y(X) =2 (f(x)) =f(x),

At~ 2

Thus J'(M, M', =) is a manifold, and (J', M, B), (Jl, M', «) are fibered mani-
folds.

Denote by o} (' <) the canonical projection of J'(AZ, Af', =) onto ]Ir(M, MM,
7). In order to avoid inessential complications of notations, let us omit symbols
like ~p}, (pi-)* as far as confusion may not occur. Thus if g is a function on
J', g automatically denotes also the function g°p) on J' for any I=>1.

For a local cross-section f of (314, M', #) defined on an open set U of 3,
denote by j'(f) the local cross-section of (J', M', «) defined by the mapping
U3 x-juf)e]. For an open set V of J', denote by 1171, V) the space of

all Pfaffian forms » on V such that 7 (f)*0=0 for any local cross-section f
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such that j'(f) < V. If V'C V, the restriction mapping sends I7U)(/, V) into
™, v).  Denote by 11™(I; (M, M!, z)), or by I'"(I) when there is no
possibility of confusion, the sheaf of submodules in A'(J') defined by the system
(™, v).

Proposition IIL 1. If (x, y) is a coordinate system in (M, M', =) defined
on U, and if V< NU), then I'(V, ™)) is generated over T(V, 4°(J")) by

wr = dyy — yidx;
wg)\l...n, — d)’l}.“w _yi)“...x‘\,x dxi

(A=1,...,m; 1<4,...,14, i<n; 1<pv<I-1).
Denote by I7(1; (M, M', z)) the differential system on J'(M, M', =) gener-
ated by 7™ (M, M, n)).

ProposiTioN IIL.2.  Let F be a local cross-section of (J'(M, M', z), M', «).
Then there is a local cross-section f of (M, M', ) such that F=j'( f) locally if
and only if F is an integral of II(l; (M, M, n)).

2. Partial differential equations
Let (M, M', =) be a fibered manifold. Set J'=J (M, M', n).

DeriniTION 1II. 4. By a pariial differential equation of order k on (M, M,
%) we mean an open set U of J' and a locally finitely generated subsheaf of
ideals ® in A°(U).

Let X be a point of U. We say that X is an integral jet of the partial
differential equation @ when g(X) =0 for any g in I'(U', @) and for any open
neighborhood U’ of X in U. Denote by & °@ the set of integral jets of @.
Clearly & °0 is a (real) subvariety of U. A local crosssection f of (M, M', n)
is called an integral of ® when j/(f) < ¥ °0.

The differential system on U generated by @ and I(k; (M, M', =))|U is
called the differential system associated with the partial differential equation @,
and will be denoted by Z(#). An integral jet of @ is called ordinary when it
is an ordinary integral point of Z(®). © is said to be in involution at an in-
tegral jet X of ® when (2(®), (U, M', «)) is in involution at X.

ProrosiTioN III.3. Let f be a local cross-section of (M, M' =) such that
Mf)S U  Then f is an integral of ® if and only if j'(f) is an integral of
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(X2(@), (U, M', «)). Moreover, for any integral F of (Z(®), (U, M', a)), there
is a unique integral f of ® such that F=j*(f) locally.

Thus the problem of finding integrals of partial differential equations is
equivalent to the problem of finding integrals of the associated differential
systems with independent variables. When @ is in involution at an integral jet
X, Theorem 1 shows that there is an integral f of @ such that X=j.fx(f)
and we can parametrize integrals of @ which are sufficiently near f.

Let (%, ..., Xn, Y, . - ., ¥m) =(x, ¥) be a coordinate system in (M, M,
7). J' has the coordinate system (%, 9, . . . , Yt L 00) (»<1) associated
with (x, y). Let g be a function defined on an open set U in the domain of
the above coordinate system in J'. Then g °p;"' is a function on (o)) "N U) = U’
in J'**. By Proposition 1, we find easily that d(gop)™) = g'dx; (mod. I(I+1;
(M, M', =))), where g’ is a function on U'. We set Di(g) =gi. D’ is linear
over the field R of real numbers, and D’(gh) = (D/(g))+h+ g(Dj(h)). When

(x, ») is changed to (x/, »'), we have dx; = a'jdx%. Hence
D"(g) =ai D" g).

Let F be an ideal of /U, .°(J')). Denote by P(F) the ideal in (U, A°(J'""))
generated by Fﬂplfl and Di(g), where 7=1,..., n and g runs through F.
The above rule for change of coordinates shows that P(F) is independent of
the choice of coordinate system employed for the construction. Let U be an
open set of /¥ and @ be a subsheaf of ideals in .1°(U). For each open set
Vv (of)HD), denote by w(V) the ideal in I'(V, A°(J¥*")) generated by the
restriction of P(I'(pf™'(V), @)). If V' < V, the restriction mapping sends #(V)
into Z(V"). Hence the system {#(V)} defines a subsheaf of ideals in
A°((eE™)™(U)).  This subsheaf will be denoted by P(@). When @ is locally
finitely generated, so is P(®).

DerintTiON II1.5. By the I-th standard prolongation of a partial differential
equation O of order k, we mean the partial differential equation P( -+ - (P(D))

<+ +) = PY®) of order k+ 1, where we operate P l-times.
We immediately have the following proposition for any fixed > 0.

Prorosition 1II. 4. A local cross-section f of (M, M', =) is an integral of
O if and only if f is an integral of P'(0).
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Let @, ¥ be partial differential equations of order 2 on (M, M', ) defined
on open sets U, V in T respectively. We say that @ S ¥ on a neighborhood
of a point X in J% when X< UN V and when there is a neighborhood W of X
in UN V such that &y Cc ¥y for any Y W.

Tueorem I11.2. Let (M, M', n) be a fibered manifold. Assume that a
partial differential equation o' of order 1 on (M, M', =) is given for any 1=>1.
Let f° be a cross-section of (M, M', ) over an open neighborhood of a point x°
in M'. Assume the following: for any 1=,

(1) the restriction of f° on a sufficiently small neighborhood of x° is an
integral of @',

(2) 0" 2 P(0') on a neighborhood of X' = jilf°),

(3) X' is an ordinary integral jet of @',

(4) for a suitable open neighborhood U of X"(F°0"NU, a(U), ) is a
fibered manifold,

(5) (F°0" NV, Fo0' NV, oi*") is a fibered manifold for suitable open
neighborhood V, V' of X'*', X', respectively. ~Then there is an integer L( =1,)
satisfying the following: @' and P(0') are equal on a neighborhood of X'

and 0" is in involution at X' for any 1=>1,.

Let U be an open set in J' (M, M', =). Let A be a closed submanifold of U.
Denote by ®#(A) the subsheaf of ideals in 4°(U) consisting of germs of func-
tions which are zero on A. @(A) is called the partial differential equation on
(M, M', =) associated with A. The subvariety .&°@(A) of (p;"))™(U) will be
denoted by P(A). The following well-known theorem will be used later.

TueoreM 11I.3. Let A be a closed submanifold of an open set U in J'(M,
M, 7). Assume that (O(A), (M, M, n)) is in involution at any X in A. Then
P(A) is a closed submanifold of (pi*) ™' (U), 0(P(A)) = P(0(A)), and (§(P(A)),
(M, M', =) is in involution at any (1+1)-jet in P(A). Moreover (P(A), A,

oY) is a fibered manifold with connected fibers.

Chapter 1V. Continuous infinite pseudo-groups of E. Cartan

In this chapter, relations between the continuous infinite pseudo-groups of
E. Cartan and the infinite formal Lie (#)-groups will be studied. Unfortunately,

the relations seem to be not simple. However, when we limit our attention to
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the transitive case, we have a very simple relation. In §1, we introduce the
notion of continuous pseudo-groups of transformations in manifolds. We adopt
here a definition which is analytically topological. In so doing, we avoid the
direct use of differential systems in involution in the definition, and, in stead,
we construct a differential system in involution such that it characterizes the
given continuous pseudo-group of transformations and which we shall use in
order to develop the theory. We define next the notion of parameter infinite
Lie (F)-groups of continuous pseudo-groups of transformations, and parameteriz-
ing the transformations we prove their existence. In §2, depending on the
results in §1, we derive the structure equations of continuous pseudo-groups
of transformations. After we introduce the notion of isomorphic prolongations
of continuous pseudo-groups of transformations in §3, we define in §4 an equi-
valence relation on the collection of all continuous pseudo-groups of transforma-
tions. Continuous infinite pseudo-groups of E. Cartan are then defined as
equivalence classes of the relation. Our fundamental result, which will be proved
in §5, states that the transitive continuous pseudo-groups of transformations
are in the same class if and only if their parameter infinite Lie (F)-groups are
isomorphic.

Our description of the theory of continuous infinite pseudo-groups of E.
Cartan here is not intended to give a systematic account of the theory, in
stead, it is intended to give the definitions and properties which we need to
understand the results and proofs in §5. By this reason, several important
theorems of the theory which are not necessay for our purpose, are omitted.
In this chapter, the adjective “real analytic” will be omited as in the preceed-

ing chapter.

§1. Continuous pseudo-groups of transformations and their parameter
formal Lie (F)-groups

Let M be a manifold. By a homeomorphism element of M we mean a
homeomorphism f of a non-empty open set U(f) in M onto an open set V(f)
in M. U(f) and V(f) are called the domain and the range of f, respectively.
f7!is again a homeomorphism element. If g is another homemorphism element
of M and if Ul(g) N V(f) is not empty, we say that the composition of s and
g is defined, and the composition gef is a homeomorphism of /™ (U(g) N V(1))
onto g(U(g) N V(f)). When U(f)NU is not empty where U is an open set
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in M, we mean by f|U the homeomorphism element obtained from f by
restricting the domain to UNU(f). If U(g) contains Ul f) and if f =g|U(S),
we say that g is an extension of f. Let ¢ be a differential form defined on a
connected open set U in M. If V(f)NU is not empty, denote by f*¢ the
differential form on f~'(V(f) N U) induced by s from the restriction of ¢ to
V(A)NU. If ¢ and f*¢ coincide on f Y (V(f)NU)NU, we shall write for
simplicity ¢ =f*¢. Such ¢ is called an invariant differential form of f.

Denote by G'(M) the manifold of all invertible l-jets of M into M. For X
in G'(M) denote by a(X) and B(X) the source and the target of X, respectively.
(GNM), M, «) and (G'(M), M, B) are fibered manifolds. For any homeo-
morphism element f of M, /(1) ={7i(f); x€ U(f)} is a submanifold of G'(M).
Denote by p( /) the homeomorphism element of G'(M) such that its domain is
a ' (U(f)) and such that, for any X in the domain,

(1) [P (X)) = Xo ()7

where x=a(X). Clearly o (p'(f)) =3.

A collection & of homeomorphism elements of M is called a pseudo-group
of transformations in M, or a pseudo-group in M for simplicity, if it satisfies
the followind conditions: (1°) If f is in & then f ™' is in @&, (2°) if both f
and g are in @ and if fog can be defined then fog is in . & is called a
transitive pseudo-group if for any two points x and x' there is an element f
in @ such that f(x) =«'. For x in M, denote by &, the collection of all f in
® such that U(f) contains x and such that f(x) =x. For any two elements
f and g in &, the composition of f and g is always defined. Denote by
G“(M) the set of all invertible ljets X such that a(X) =p(X) =x. G M) is a
Lie group. We generally denote by I'(x) the /-jet of the identity mapping at
x. Thus I'(x) is the identity element of G:(M). Denote by & the set of all
X in GLX(M) such that there is an element f in ® such that X = j4(f). ©. is
a subgroup of G.(M). Let M, be a manifold. Denote by U an open set in M.
By a (analytic) family on U in &, with the parameter manifold M, we mean
that, for any point vy in M, an element /” in § is associated in such a way

that U(f”) 2 U and that the function /”(x) is real analytic for (y, x) in MI x U.

DeriniTioN 1V.1. A pseudo-group & in a manifold M is said to be continuous

if it satisfies the following four conditicns.
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(1°) There is an integer I, such that, for 1=1, ®" is closed and connected
for any x in M and the dimension of ®. is independent of x.

(2°) There is a fibered manifold (M, M', ) such that it satisfies the follow-
ing conditions:

(2°.1) for any f in @, wof =n, for any %, ¥ in M such that n(x) =n(y),
there is f in & such that f(x)=y;

(2°.2) for any vy in M, there is an open neighborhood U of y and there
is a family f* on U in §, with the parameter manifold U'={(x, x'); n(%)
=nlx")) S UX U, such that f*%(x) = x'.

(3°) A homeomorphism element f in M is in & if and only if, for any
connected component U of U(f), f|U is in &.

(4°) Let f be a homeomorphism element in M such that U(f) is connected.
If there is a point x in U(f) such that f(x) =x and j.(f) = G for any I, then

there is an element g in & which coincides with f on a neighborhood of .

Remark: When & is transitive, M' reduces to a point. (M, M', ) is

called the fibered manifold of invariants of &.

DerNiTion IV.2. Denote by AN®) the set of all X in G M) such that

X=7(F) for an element f in G.

ProposiTioN IV.1. If & is continuous, A®) = A' is a closed submanifold
of GAM). o' A" = AL For any f in &, p'(f) preserves Al

Proof. By definitions, it is clear that p'(f) preserves A’ for 7 in & and
that o/*'(A""") = A",  To show that A’ is a submanifold, we first construct
coordinate systems with center I'(%,). Take small neighborhoods # of I'(x,) and
U of x, such that, for any x in U and for any X in GY(M) N, there is a
unique one parameter subgroup X' in G4(42) such that X'= X. We can assume
that U satisfies the condition (2°.2). Take a submanifold W of U such that =
induces a bijective mapping of W to an open set in M'. We can choose U and
W such that z(W) ==(U) and W>x,. Choose Yy, ..., Yqin &, N# such
that (f1, . .., ta)—> Yito «+ + o Y5 is a coordinate system with center I'(%) in

L for |,|<1. Take fr in ®y, such that Y= ji(f™%cf,). Replacing U and
W by smaller neighborhoods if necessary, we can assume that f, is defined on
U and /" is defined on £,(U). For w in W, set Yi(w) = j2(f ™ %oy,).
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Clearly Y,(w) € ®!, and Y,(x,) = Y,. If we choose w and U sufficiently small,
then Y- (w)€®, N2 and Y,(w) ®). Since dimension of % is independent
of % Yiw)e «+ - oYa(w)™ is a coordinate system in &, for [i,|<e Denote
by w(x) the point in W such that ~(w(x)) =a(x). w(x) is real analytic in x.

For (%, x') in U' and (4, . .., ta), set

Mx, 2, b, o .., ta)
= Jhoo (FU ) o Vi(w(x)) o« -+ o Valw(x))E o7l (F00 570

Clearly, 4 maps U’ x {|t,| <e¢} real analytically onto an open set in A’ For
any X, in A’ take 7 in ® such that X, = 7%( )" where x, = 8(X,). Then p'(f)
maps I'(x,) to Xo. Thus p'(f)os maps U’ x {|t,|<e} real analytically onto an
open neighborhood of X in A’, because p’( #) induces a homeomorphism element
of A'. It is clear that these coordinate systems are related to each other real
analytically. Thus A’ is a real analytic submanifold of G'(M). It remains to
show that A’ is closed. Take a sequence X, in A’ converging to X. Since
m(a(X,)) = n(B(X,)), it follows that =(a (X)) =z(B(X)). Therefore there is f
in @ such that f(a(X))=p8(X). Considering sh,(f ")oX instead of X, we
cau assume without loss of generality that X is in G%(M). By a similar con-
struction as that of the coordinate mapping 1, we show easily that there is a
homeomorphism of U’ x GYX(M) onto (a x 8)~(U") (< G'(M)) which sends U’ x
onto A'N (a x B) (U xU), where U is a sufficiently small neighborhood of x
and U'={(y, ¥); n(») ==a(y")} S Ux U. On the other hand &% is closed in
G M). Therefore A'N (axB)NUxU) is closed in (axB) (UxU), and so
X is in A'. Thus A’ is closed and this finishes the proof.

Denote by p and p. the projections of Mx M to the first and the second
factors, respectively. (MxM, M, p\) is a fibered manifold. For any homeo-
morphism element f of M, U(f) 2 x-(x, f(x)) & Mx Mis a local cross-section
/' of (MxM, M, p;). By mapping ji(f) to j4(/"), we have a canonical injection
of G'(M) into J'(Mx M, M, p.) (cf. §1, Chapt. IIl). We will identify G'(M)
with an open subset of J(Mx M, M, o.) by the above injection. Set #/(®)
=0(A(®)), the partial differential equation on (M x M, M, p;) associated with
the closed submanifold AN(®) of the open set G'M) in J(MxM, M, p;) (cf.
the end of Chapt. III).

ProrosiTion IV.2. A"M(®) < P(A(®)), or equivalently,
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oS D P (§).

Froof. Take X, in A'. Let w be a function defined on an open neighborhood
U of :Yo such that w=0 on A'NU. Take f in & such that X, =7y (f). Then
w(k(f)) =0. We have d(wopi™") = (D/(10))dx;(mod (I +1;5 (Mx M, M, p))).
Since 77(I+1) and d(wp#”) vanish on the submanifold jl"‘(f), we have
[D/)IGY () =0, Hence Dw=0 on (o)) NA". Thus o("'(§))
2P(0'(®)).

DeriniTioN IV.3. Let & be a pseudo-group in M. Denote by & the collec-
tion of all homeomorphism clement f in M such that for any x in U(f) there
is an element g in & such that f and g coincide on a neighborhood of x. It
is clear that &~ is again a pseudo-group in M. & is called the completion of
®. When & =67, we say that & is complete.

It is easy to verify that &~ is continuous if and only if & is continuous.

Tueorem IV.1. Let & be a continuous pseudo-group in M. Take x in M.
Then there is an open neighborhood U of x such that for an integer I =1,(x)
the followings are satisfied:

(1°) For ahy fixed =1, a homeomorphism elemen f of M su-h that
US)CUids in @ if and only if j(f) is in A(S®),

(2°) A"(®) Na (1) = P(A(G) Na X (U) for any 1=1,,

(3°) (0(®), (MxM, M, 0)) is in involution at any X in A'(®)Na ' (U)

Jor anv 1=1,.

Proof. Denote by i the identity mapping of M. Setting f° = the graph
of 7, x° =%, ' =0 () in Theorem IIL.2., we find that #'(®) is in involution
at I'(x") and @""'(®) = P(0'(®)) on a neighborhood of I'*'(#') for x’ sufficiently
near x and for sufficiently large /. Take a neighborhood U of x and I, such
that the above holds for ¥’ €U and for /=1/,. Take X in A’ such that B(X)
=%’ is in U. Choose f in & such that X=74%(f)"". Then p'(f) induces an
isomorphism of #'(®) at X to #"(®) at 7'(x"). Therefore @' () is in involution
at X, and A'"(®) and P(A'(®)) coincide on a neighborhood of X. On the
other hand, the mapping ¥ - Y ' induces a homeomorphism of A'(®) onto itself.
Therefore (2°) and (3°) hold for U and [

By the definition of AY(®), it is clear that /() is in AY®) for f in .
Assume conversely that j'(f) is in A'(®) for an integer [>17 and that Ucr)
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is in U. Then by (29), 7°(¥) is in A"(®) for any I’>1. We will show that
there is g in & such that f and g coincide on a neighborhood of any fixed x
in U. Take k in & such that #(f(x,)) =% (cf. the condition (2.1) in Def.
IV.1.). Since A“(®) is preserved under p"(1™"), //(foh) is also in A"(®).
Since foh(x') =x', where %' = f(x), and A"(®) N G% (M) =%, the condition
(4%) in Def. IV. 1. implies that there is g’ in & such that foh =g’ on a neigh-

borhood of . Thus g'°2™'in @ and f coincide on a neighborhood of x,.
Therefore (10) holds. '

Conversely we have the following:

TuroreM IV.2. Let & be a pseudo-group in a manifold M. Assume that
there is a closed submanifold A of G'(M) for an integer | satisfying the fol-
lowing conditions:

(1°) ANGYUM) is a (non-empty) subgroup of G-(M) for any x in M;

(2°) (@A), (MxM, M, 0)) is in involution at I'(x) for amy x in M,
where o, is the projection to the first factor;

(3°) there is a closed submanifold N of Mx M such that (A, N, axf) is
a fibered manifold and each of its fiber is connected;

(4°) (N, M, p,) is a fibered manifold and each of its fiber is connected;

(5°) a homemorphism element f of M is in ® if and only if j'(f) isin A.
Then & is a continuous pseudo-group in M and A = A(@®).

We first prove the following lemma:

Lemma VI 1. Let & be a pseudo-group in a manifold M. Assume the fol-
lowing for an integer [;

(1°) A= AY®) is a closed submanifold of G'(M);

(2°) ANGYUM) is a (non-empty) connected subgroup of G-(M) for any x
in M;

(3°) (0(AQ), (MxM, M, 0,)) is in involution at any X in A;

(4°) @ homeomorphism element f of M is in & if and only if j(f) is in A.
Then the same conditions are satisfied for any I'>1. Moreover A" (®) = P"(A).

Proof. Clearly it is sufficient to prove the case ’=17+1. By Theorem
1.3, P(A) is a closed submanifold of G'*'(M). By the same ‘theorem
(@(P(A)), (MxDM, M, p,)) is in involution at any Zin P(A). Therefore there
is an integral F of (@(P(A)), (MXxM, M, p,)) such that Z =743 (F). Hence
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by (4°) and Prop. III. 4 there is 7 in & such that Z=7.3,(f). Since A""(®)
< P(A) by Prop. IV.2, it follows that P(A) = A"'(). In particular, A'"(®)
is a closed submanifold of G'*’(M). The last conclusion in Theorem IIL 3
implies that A" (&) N GL*( M) is connected. Since P(A) = A""Y(®), (0( A &)),
(Mx M, M, p))) is in involution at any Z in A"**(®) by Theorem IIL.3. The

condition (4°) for [+ 1 is also satisfied by Prop. III.4.. This finishes the proof
of the lemma.

Proof of Theorem 2. Denote by N' the set of all (x, ) in Mx M such
that f(x) =y for an element f in & Set N.={yeM; (x, y)e N}, N:
={yeM; (x, y) EN'}. By (5°) NYc N, and by (4°) N, is a connected
manifold. (2°) and (5°) imply that there is a neighborhood U, of x in N, such
that for any w in U; there is f¥ in @ such that f¥(x) =w. Take y in N% and
/in @ such that f(x) =y. Then fyof(x)=w, and so U, & Ny< N,. Since
dim N, =dim Ny, U, is a neighborhood of » in N. Therefore N} is open in
Ny. If y is not in N%, the same argument shows that N. N U, is empty. Hence
N is closed in N.. Since Ny is connected by (4°) and N: is not empty, we
have N} = N,. Therefore, N= N

Set A'= A(®). We will show that A’=A. By (5°) A’C A. Since I'(»)
€ A by (1°), the identity mapping of M is in ®. Hence I'(x) € A’. (2°)
implies that, for any X in A sufficiently near I'(x), there is an integral F of
the partial differential eqution (@(A), (M x M, M, p)) such that F(a(X)) = X.
Therefore, by (5°), there is ¥ € ® such that X =74 (f). Hence A=A'on a
neighborhood of I'(x). Since AN G4 M) is a connected subgroup by (1°) and
(3°), and coincide with a subgroup A’'N GL%(M) on a neighborhood of I'(x), it
follows that A NGY M) = A'NGYM) for any x in M. Now, take any X in A.
Since (a(X), (X)) =(x, y) is in N= N, there is ¥ in & such that f(x) =3y.
Then »'(f™") induces a homemorphism of A’ NGLM) onto A’ N GY(M), where
Ghy(M) = (ax ) Hx, ). Since A'NGHM) =ANGYHM) and ANGP(M) are
manifolds of the same dimensions by (3°), it follows that A'NGyw(M) is an
open submanifold of A NG%.(M). Since p'(f7!) induces a homeomorphism of
Gi(M) onto Ghy(M), and A'NGH(M) is closed in GH(M), its image A’ N Gy (M)
is closed in G (M) and so is closed in A NGhw(M). Since ANGL(M) is con-
nected by (37, it follows that A N Giy(AM) = A’ N Giy(M). In particular X is in
A', Therefore A=A®),
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Since A = A'(®), for any X in A there is / in © such that p'(f((I'(x))
X, where x = 3(X). Because p'(f) is a homeomorphism element of A = A(®),
P #) induces an isomorphism of ®(A) at X onto ®(A) at I'(x). Therefore,
(O(AS, (MxM, M, p.)) is in involution at any X in A. Thus the condition in
Lemma IV.1 is satisfied for ®. Therefore ® is a connected subgroup for any
I'>1  Since A"""(®) = P"(A), the last conclusion of Theorem III.3 implies
that dim ®% is independent of x. Thus the condition (1°) in Def. IV. 1 is satisfied
for &.

In order to show that the condition (2°) in Def. IV.1 is satisfied for &, we
construct a fibered manifold (M, M', =) of invariants of &. We say that x is
equivalent to y when (x, y) is in N. Clearly this is an equivalence relation.
Denote by [x] the class of x. Let M’ be the set of classes under this equi-
valence relation. Since N= N/, [x]1=1[»] if and only if (%, ») is in N. Hence
N, is the set of points y such that [x]=[y]. By (4°), N, is a closed sub-
manifold of M. Take a (not necessarily closed) submanifold W in M passing
through x such that the tangent vector spaces to W and to N, at x intersect
only at the origin and such that they generate the tangent vector space to M.
Take a coordinate system (w:, ..., wn) in W with center x. We define a
coordinate system in M’ by [(wy, ..., wn)]. Since N, is connected by (4°),
these coordinates systems at [x] are related real analytically when we change
the representative x and the coordinate system (w). Then it will be clear that
these coordinate systems are related real analytically when we change [x].
Thus M’ is a manifold. Set z(x) =[x]. Then it is clear that (M, M', ») is a
fibered manifold and the condition (2°.1) in Def. IV.1 is satisfied for &. The
condition (2°.2) follows from our assumption (2°). The verification of the
condition (3°) in Def. IV.1 is trivial. Assume now that f satisfies the assump-
tion in (4°) in Def. IV. 1. Since A'")®) = P*(A'(®)) for any k=0, and A""*(®)
is a real analytic submanifold, it follows that j/(f) is in A’. Therefore f is in

® by our assumption (5°). Thus we proved that @ is continuous.

Derinttion IV. 4. A pair (G, b) of a continuous pseudo-group & on a

manifold M and of a point b in M is called a local continuous pseudo-group in
M at ).

In order to introduce the notion of parameter infinite Lie (F)-groups of

local continuous pseudo-groups, we make the following preliminaries. Let G
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be a formal Lie (F)-group over the field R of real numbers (cf. Chapt. II).
We say that G is an infinite Lie (F)-group, when the parameter space of G
is H*(S) for a system of characters S and when G is the formalization of
germs of analytic mappings of 7 *(S) +.2(S) into .2"(S) (cf. the end of
§4 Chapt. I). Ry an infinite Lie (F)-group G, we often mean also the germ
of analytic mappings of #™(S)+.7"(S) into .#”"(S) determined by the
formal mapping G, and so often use the bold letter G instead of G. The degree
and the multiplicity of H"(S) are called the degree and the multiplicity of G,
respectively. The germ of analytic mappings of 7 %" + .2 3" into 7 ® de-
termined by 4, in (C) §5 Chapt. I is an infinite Lie (F)-group, which is
called the general infinite Lie (F)-group in n-dimensional space. We denote it
by GIL(n).

DeriniTiON IV.5. An infinite Lie (F)-group G is called a parameter infinite
Lie (F)-group, or a parameter group, in short, of a local continuous pseudo-
group (&, 1) in M if there is a coordinate neighborhood U={(%, ..., %:);
lxil <e} with center b in M with the following conditions:

(1°) There is a germ of analvtic mappings F of the parameter space
(S) of G into 7 WY such that ¥ is a representation of G into GIL(n);
there is a germ F' of analytic mappings of 57 %" into 7"(S) such that F'oF
is the identity mapping.

(2°)  There are strictily positive real numbers 1, and @, and an integer k
such that ¥ is defined on 7" (u, u*a) for anv u<w and such that F satisfies
the following conditions: If & is in o™ (S; u, u*a) for a real number u< u,
there is a homeomorphism element f in & such that U(f) contains p and such
that [ coincides with /¥ on a neighborhood of b, where we identified U with
a domain in R" by the coordinate system (x) and f©°' is the homeomorphism
element in U defined in (C) §5, Chapt. I

(3°)  There are strictiy positive real numbers ui and a', and an integer k'
with the following conditions: If 7 s in 7 5% (u, u a') Jor a real number
w<ul and if £ coincides with a homeomorphism element f in & on a neig-
hborhood of v then (F(F'()) = 7.

DeriniTiON IV. 6. The collection of the coordinate system (x) on U, ¥, and
¥ as in Def. IV.5 will be called .a realization of G as (&, v).
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From the definition it follows immediately the following:

ProrositioN IV.3. A collection {U, ¥, ¥'} is a realization of (&, 1) if and

only if it is a realization of (&~ p).

Tueorem IV.3. Let (8, p) be a continuous local pseudo-group in M. Then
there is a parameter infinite Lie (F)-group of (S, p).

Proof. Take an integer ! so large that the contention in Thereom IV.1
holds. Take a coordinate system (%1, ..., %,) in M with center p. Take a
coordinate system of the form xicpi, ..., %x°p1, X1°02—%1°01 .., Xn®p2
—%nop1, Ui, ..., Ve in J'(MxM, M, p)) with center I'(p), where p; and p, are
the canonical projections to the first and the second factors of M x M. Remark
that we identified G'(M) with an open subset of J(M x M, M, p.). We choose
the coordinate system such that /(i) is represented by #jop — xj°o0 =01 =0s
= -+ - =0, where 7 is the identity mapping of M. Since (0'(®), (Mx M, M,
p1)) is involution at I'(p) by Theorem IV.1, there is a parameterization mapp-
ing of integrals of (Z(0'(®)), G'(M), «) at I'(p) with respect to the coordinate
system, i.e. there is a system of characters S and a pair of germs of real
analytic mappings F~, F™' of . %(S) into &% and of 7% into #*(S)
which satisfy the condition in Def. III. 3, where 71 + » is the dimension of G (M).

7 in & %% can be considered as a local cross-section x- (x, x+7(x)) of

(Mx M, M, p). Also ¢ in %% can be considered as a local cross-section

of (G'(M), M, «) in terms of the coordinate system (x°p;, X°p — x°p1, 01, - - . ).
Using this identification, 7/() in 7% is defined for 7 in 7%, and a x B(¢)
in 73" for ¢ in 7%, We have [a x (0)];j(x) =¢;(x) for j=1,...,n Set

F(&) =ax RF (&) for £ in .« *(S), and F'(9) =F7'(j'(y)) for % in & }F
provided they have meanings. F and F’ are germs of analvtic mappings of
27 F(S) into 7F and of .5" into .(S), repsectively. Define a germ of

analytic mappings of .2"(S) 4+ £ *(S) into £ *(S) by the formula:
G=FoM-(F+F)

where M is the multiplication in GIL(n). It is clear that G is an infinite Lie
(F)-group and F is a representation of G into GIL(n). By the condition of
parameterization mapping, it follows immediately that the cooridnate system

(%), F, and F' form a realization of G as (%, p). This finishes the proof of
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Theorem IV.3.

By a vector field element f in a manifold M, we mean a vector field defined
on a non-empty open set U(f) in M. Let & be a function defined on a neig-
hborhood of x. Denote by £.+£ the derivative of & to the direction of the
vector f, attached at x by f. Denote by s+ ¢ the function f.+§ where x is the
variable. Let s’ be a family of homeomorphism elements of M on an open set
U with the parameter space —e¢<t<e Assume that sf° is the identity mapp-
ing of U when t=0. Then we can define a vector field element £ on U such
that for any x in U and for any function £ on a neighborhood of % fz*§
= (‘%)S( 71(x))i-0. £ is called the vector field element defined by the family
/%, and will be denoted by (8f°/2t)i-s. For any vector field element f and for
any x in U(f), it is known that there is an open neighborhood U of x and
there is a family f° of homeomorphism elements of M on U such that the
restriction of £ to U is equal to (af‘/at),:o. Let g be a vector field ‘element
in M. If U(f) N U(g) is not empty, we say that the commutator of f and g
is defined, and the commutator [f, g] is the vector field on U(f) N U(g) such
that

[fr g]x'Ezfx(g'E) _gx(f'f)

for any function ¢ defined on a neighborhood of x.

Let f be a vector field element in M. We define a vector field element
P(£) in J'(M) such that its domain is a '(U(£)) as follows: For any pint x
in U(f) take a one-parameter family of homeomorphism elements f* such that
(2f*/ot)i-o is equal to £ on a neighborhood of x, then p'(f) is equal to
(3(2'(f'))/3t)¢=0 on a neighborhood of a«™*(x). If the commutator of f and g
is defined, so is the commutator of p'(f) and p'(g) and

PHLE, g]) =[p'(F), pH(g)].

A collection ¢ of vector field elements in A is called a Lie pseudo-algebra
in M if it satisfies the following conditions: If f and g is in & and if U(f)
NU(g) is not empty then [f, g] and Af4 g are in @, where 2, u are real
numbers. Let @ be a pseudo-group in M. A vector field element f in M is
said to belong to & when for any point x in U(f) there is a neighborhood U
of x and there is a one-parameter family s on U in & such that f and

(3f*/ot)s=y coincide on a neighborhood of x. The set ¢ of vector field ele-
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ments in A which belong to & is a Lie pseudo-algebra in AL, ¢ will be called
the Lie pseudo-algebra associated with .

A pair of a Lie pseudo-algebra in M and a point in M is called a local Lie
pseudo-algebra in M. As in the case of pseudo-group we introduce the notion
of parameter algebras of local Lie pseudo-algebras. Let L be a formal Lie (F)-
algebra over the field R of real numbers. We say that L is an infinite Lie
(F)-algebra, when the parameter space of L is H"(S) for a system of characters
S and when L is the formalization of a germ of analytic mappings of _7*(S)
+ "(S). By an infinite Lie (F)-algebra, we often mean also the germ of
analytic mappings determined by the formal mapping L, and so often use the
bold letter L instead of L. The formal Lie (F)-algebra associated with GIL(;:"
is an infinite Lie (F)-algebra, which will be denoted also by GIL(»n). An in
finite Lie (F)-algebra L is called a parameter Lie algebra of a local Lie pseudo-
algebra (g, p) in a manifold M, if there is a coordinate system U= {(xy, ...,
%s); %] <<} in M with center p satisfying the following conditions :

(1°) There is a germ of analytic mappings F of the parameter space
. *(S) of L into /7% scuh that F is a homorphism of L into GIL(#n); there
is a germ of analytic mappings ¥/ of .27 into .22"(S) such that F/oF is the
identity mapping of £ *(S).

(2°) There are strictly positive real numbers %, and @, and an integer k&
such that F is defined on 2"(S; u, u*a) for any u<u and such that F
satisfies the following conditions: If £ is in .##"(S; w, #*a) for a real number
u< u; then the vector field F;(£)(3/2x;) is in Q"

(3°) There are strictly positive real numbers #; and @’ and an integer &'
with the following conditions: If 4 is in % X%(u, u”a') for a real number
u < u; and if the vector field #;(2/2x;) is in € then F(F'(4)) =%. The collec-
tion of U, F, and of F' such as above will be called a realization of L. as (¢, p).

The following theorem is easy to prove:

TueoreMm IV.4. Let (®, p) be a local continuous pseudo-group in a manifold
M. Take a paramecter group G of (&, b). Let a collection {U, F, F'} be a
realization of G as (&, v). Denote by Q the Lie pseudo-algebra in M associated
with &. Let L be infinite Lie (F)-algebra associated with G. Then L is a
parameter algebra of (L, ) and the collection {U, (dF),, (d¥").} is a realization
of L as (, »).
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§ 2. Structure equations

Let D be a domain {(%5, . .., %:); |x;]<e}. Then G'(D) is a domain in
a space (X, ..., Xn» Y -++, ¥n, D), where p=(..., pf“""", o0) ekl
pj:""j" is symmetric with respect to permutations of indices j, ..., jv), by

setting x = a(X), y = p(X), and
by = filoxj, - - oxj,

where X =74(f) and f(x") = (fi(x"), . . ., /x(x")). Let ej(x) and e’,.-“"j”(x) be
the linear functionals dx; and dpf""j" on the tangent vector space to G(D) at
I'(x), respectively. Take X=74(f)in G'(D). Then by the definition [p'(/)1(X)
=I'(y), where y = 81.X). Hence »'( ) induces a linear mapping p(f)* of the
conjugate space of the tangent vector space to G'(D) at I'(y) to the conjugate
space of the tangent vector space to G'(D) at X. Set (¢j)x=2p'(f1(ej(y)),
(gﬁ?'"“)x =p’(f)*(e§""i“(y)). It is clear that (¢;)x and kgf’:“"j“)x do not depend
upon the choice of f such that X =Ju(f), provided »<I-1. It is also clear
that there are (real analytic) differential forms '¢; and l<pf.:"“j“(1;sl—1) on
G'(D) such that linear functionals of the tangent vector space at X assigned
by ‘¢; and l¢Zviv gre equal to (¢;)x and (¢}7¥)y, respectively. By the defini-

lgivivy = VlvJv for =1, Therefore we will drop

tion o} * (‘¢;) ="¢; and o} *(
index I and write ¢;, ¢i*"7v (instead of ‘¢;, l<,ﬂj:""i“) as far as no confusion
can occur. Also we will consider ¢; as the case » =0 of %:"“j‘*.

Let (@, p) be a local continuous pseudo-group in a manifold M. Let (M,
M', =) be the fibered manifold of invariants of . Take a coordinate system
U={(xs, ..., xs); |lxj|<e} in M with center p such that (x;, ..., %) can
be considered as a coordinate system in A’ with center =(p) for an integer
h(0<h<n). Set ANG|U)=A"G)NG(U). For fin @, p'(f) preserves

A'(®). We will denote by the same letter p'( f) its restriction to ANG|U).

ProrosiTion 1V.4. Let h be a function defined on an open set V in A'(®).
If hop f) = for any f in ®, there is a function ' defined on B(V) such that
h="nh'eB. If moreover V is in Al(ﬁilU), then h is a function of x,°«, . . . , X3°«,

Xp+e1°f, o o o, Xnof.

Proof. For X in A'(®), take f in ® such that X = 74(f). Then ' (HUX)
=I"(B(X)). Therefore p'(®) is a pseudo-group of fiber preserving transforma-
tions of (A'(®), M, B), which induces the identity mapping on M and which
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is transitive on the fibers. Hence there is a function 7' on B(V) such that
h=n-B. The last assertion clearly holds because x;°8=%°a,..., xs°8
=xpoa on A4G| D).

We identify the open set U={(x); |x;1<e} with a domain Din R”. Thus
the differential forms qﬁ“"j v defined in the beginning of this section is defferential
forms on G'(U) © G'(M). Denote by 'w}" 7" the restriction of @7 on AHGI ).

ProrositioN IV.5. Let'w be a Pfaffian form on an open set Vin A(G|U).
Assume that pl(f) xlg='w for any f in ©. Then locally we have 'w
= (afl.“j‘,oﬂ)'w;"”“+/3*¢r (p<1-1), where a}njl..‘,’, and ¢ are functions and a

differential form defined on B(V), respectively.

Proof. Take qi, ..., gn, among pﬁ""j‘ such that dq, form a base of 1-forms
on each fiber (AN(®|1), A"NG|U), ol-1). We can write

()i = @ (W dx; + @ jo(3)dpl 7" + ¥ (9dyj + S (Mdg, (1<o<i-1).
Therefore by the definition of ’wf""j ¥ we have
('0)x = @ (B(X))w; + @i 7o (B(X)) w7 + 7 (R(X))dy; + &,

where ¢ is a differential form such that (£)uy, =c"(y)dg,. On the other hand,
for any X and X’ in A®) with pi_;(X) = p}_,(X"), there is f in & such that
[ /)I(X) = X' and such that gj_,[p'(F)I(X") = pi_,(X") for any X" in AYS)
with (ax BN X") =(axB)(X). Therefore (£)uy =0. Since § is invariant
under p'(®), £ is zero. This finishes the proof.

Denote by pi and p, the projection of G'(D)xG'(D) to the first and the .
second factors, respectively. Let 5, be the differential system on G'( D) x G'(D)

generated by
(2) Spt Biope—Biop, eF @i pfeiviv (0<p<I-1),

and their exterior derivatives. Now take a cross-section R of the fibered
manifold (GY(D), D, ). Denote by «x the mapping of G'( D) into G'(D) x G'(D)
defined by

(3) er(X) = (R(a(X)), Rla(X))eo X7H).

g is an injection of the manifold G'(D) and the image of kx is the submanifold
{(R(x), Y); xeD, YeG'(D), §(Y)=§(R(x))}. For any homeomorphism
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element % of D, j'(1) is a local cross-section of (G'(D), D, a). Since kz(j'(h))
is a submanifold of GYD)xG'D) expressed parametrically by (R(x),
R(x)e ()™ = (R(x), [p"(h)1(R(x))) and since p'(h) * @i 7v = @77+ it follows
that 7/ (k) is an integral of x#(3p). On the other hand, G'(D) is canonically
identified with with an open submanifold of J/(J°(D), D, a) (cf. Chapt. IIL. 1).
Then by the definition of I7(l; (J°(D), D, a)) it follows that «;(3Zp) is con-
tained in I7(1; (J°(D), D, «)) (cf. the paragraph preceeding Prop. IIl.1). By

counting the number of linearly independent elements, we find that
(4) xr (Zp) =1IU; (J°(D), D, a)).

Prorosition IV.6. There is an integer I, such that for any 1=1 the fol-
lowing holds: Let F be a homeomorphism element of A(®|U) and let X° be in
U(F). Then the following two conditions are equivalent:

(1°) there is a homeomorphism element f in & defined on a neighborhood
of x° =a(X°) such that F and p'(f) coincide on a neighborhood of X° in AU®),

(2°) F*!wj:l"~j‘a=lw;:l"'jv 0O<p<i—-1), BoF =R
on a neighborhood of X°.

Proof. By the definition of 'w}"7¥, it is clear that (1°) implies (2°). As-
sume conversely that (2°) holds. Take g in @ such that X° = 7\ 1¢,(g)™". Con-
sidering Fop'(g) instead of F, we can assume without loss of generality that
X =TIx°). ¢, ..., ¢, are linear combinations of dx, ..., dx, with a non-
singular coefficient matrix, and so are 'w;, . . ., 'v,. Hence there is a neig-
hborhood % of I'(x°) such that for any X in #

(5) F(X) =nla(X))

where 1 is a mapping into U defined on a neighborhood of x°.

2p defined by the formula (2) can be considered as a differential system
on G'\U)xG'(U). Denote by g the restriction of I to A(G|U) x ALS|U).
Denote by N the submanifold of A(®|U) x A'(§|U) expressed parametrically
by (X, F{X)), (Xe#'). Since F satisfies (2°), N is an integral of Jg. Let
R be a local cross-section of (A®|U), U, «). Then R is at the same time a
local cross-section of (G'(U), U, a). Denote by the same letter the restriction
of kz (defined by the formula (2)) to A'(8|). Then the local cross-section
which send x to (R(x) "o F(R(x)))™" of (A (®|U), U, «) is mapped by rx into

https://doi.org/10.1017/5S0027763000002403 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000002403

76 MASATAKE KURANISHI

N. Therefore the local cross-section defined above is an integral of &z (Zg).
On the other hand, x%(Zg) is the restriction of I7(1; (J°(U), U, «)) to A{(G|U)
(cf (4)). Hence by Prop. II.2, there is a homeomorphism element f of U
defined on a neighborhood of x° such that

(6) R(x) ™o F(R(%)) = j2(f) ™"

Therefore F(R(x)) = R(x)j%(f)™*. By appling « on the both sides of this
equality, we find by (5) that f(x) =h(x). Thus F is equal to $'(k) on any
local cross-section of (A®|U), U, «). Hence F=2'(k). Now take I so large
that the condition (1°) of Thereom IV.1 holds for I Then since 74(k)
=F(I'x))'e A4@®), k is in . Thus we finish the proof.

Let gbj:""j” (1<»<1) be the invariant Pfaffian form on G4(U) such that
(@7 9%) gy = (dp3" 7 )uwy.  Then

Greeg 1 .54 Byeekx i kyeooks
d¢1;1 ]\.:_ -2‘01'1 jv“...ickl 1¢;'1...i5 /\(/)kl

where ¢’s are constants and independent of x, anti-symmetric with respect to
the exchange of (i; 4, ..., 4,) and (k; ki, ..., k). Moreover they are in-

dependent of /, provided /=4, o, 7.
LemMa IV.2. We have on GNU) the following equalities :
dg; =95 N ¢k
dof = Lot b A gk g gl A g,
(1<p, 0, t<I—2)

Proof. By the construction, the restriction of 99;:"”“ to @ is equal to </:j:""j v,
On the other hand, when we employ the coordinate system (x, y, p), ¢}/
can be expressed as a differential form of (x, p). Therefore we have

1 jo

Gieed 1 . gy k I kyoook Freedyid koiyed
dp;" v = 5 cf M hiioky ks PPN @R 4 agt v N

Since ¢’s are invariant under p'( f) for any homeomoephism element f of U,
we can choose the above expression so that a’s are constants. Hence it is
sufficient to find a’s at I’(x). This can be done by direct calculation.

We remark that, under the coordinate system (x, y, p), ¢§""j” are linear
combinations of dx;, ..., dxn, ..., dp’;ﬁ“"k‘, ... with <p and are linearly
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independent on G'(U). Therefore we can choose, for each I, 'on_y+1, - - - » '©ny,
among ’wf""j"‘ on AYG|U) such that 'y, . . ., 'ws_, at I'(p) are linearly in-
dependent. Take a mapping t of a neighborhood 7' of I'(p) in A/(G|U) into
AN @®|U) such that pi''or is the identity mapping. Set'’wh = t™'wn_,+,. Take
#' in '#" such that 'y, . . ., losy ‘0 . oo oy, (m=m— o), dyi, ...,

dyj, form a base of Pfaffian forms on # !, Then we have for »<I-1
Ay = gl kg, (B=1,..., %)

on #', where a7/ is an invarinat function of »'(®). Considering the above

equality for » =I+1 on#''*’, we find that

* fyeved, 1T Freeedlingoygtrg 4
le;,x leajx “'a)k+a,-‘ TN -y 7

Hence by Lemma IV.2

1 ; ik ¥ ..
d'ow;= ?cfk'mj/\'wkﬁ-af“wj/\’nﬁ (ci"+¢?=0,4, 4, k=1, ..., m-y)

where ¢?* and a}* are invariant functions of »'(®).

ProrosiTioN IV.7. The differential system 3 on (A'(G|U) x AAG|U),
ANS|U), o)) generated by o} ‘wf-""j“ - o7 ’a>§“"j“(0§ v<I-1), Bicpr— fj°p:, and
their exterior derivatives is in involution at every integral points for any suffi-

ciently large l.

Proof. (i) Denote by @ the manifold of 7-dimensional contact elements
E" to A'x A', where A'= A@®|U), such that dp E” is still -dimensional. Let
F Q" be the set of integral elements in Q.

(i.1) The case r<#»n. Let E" be in Q. Assume that there is a local
cross-section R of (A!, U, a) such that E” is tangent to the submanifold Ng
={(R(x), Y); B(Y)=8(R(x))} in A'x A". Then drz' E" is an integral ele-
ment of (%) (cf(3)). By (4) and Theorem IV.1, x%(J3) is in involution for
sufficiently large /. Assume further that dkz'E" is an ordinary integral element
of k£(X). Then there is an integral f, ie., f in ®, of ££(%) such that drz'E"
is tangent to the integral manifold j/(f). Then E” is tangent to the graph of
p'(f), which is an integral of 5. Thus the rank of polar equation of E’ is
equal to the reduced polar eqution of E”. Denote by (X°, Y°) the foot point
of E". Then the tangent vector space to A'x A’ at (X° Y°) is spuned by
that of Nr at (X°, Y°) and tangent vectors of the form (L, L) where L is an
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tangent vector to A. By Lemma IV.2, X is generated as an ideal by elements
of the forms: p; 6 —p7 6 (where 6 being 1-forms or functions) and linear com-
bination of g 'w}"" /¥ A{pi 8 — p; ) (where 8 being 1-forms). Then it is easy
to check that the rank of reduced polar equation of E” is equal to its restriction
to the tangent vector space to Nz, because any tangent vector of the form
(L, L) is a solution of the reduced polar equation of E”. Hence #(E") =t;,
where ¢, is the rank of the polar equation of the generic integral element of
dimension 7 of the exterior differential system associated with (0"(®), (Mx M,
M, p,)) (cf. Theorem IV.1).

(i.2) The case r=mn. Let E be in Q. Assume that E” contains E”
which satisfies the regularity conditions in (i.1). Then by the similar argument
as in (i.1) it is easy to check that #(E") = ¢t;.

(ii) Let E be an N-dimensional integral element, N =dim A/, in @*. We
have to show that there is E” € E with E” € @ such that ¢ is a constant func-
tion on a neighborhood of £’ in .Q". We can always find E” € E with E' € Q"
which satisfies the regularity conditions in (i). Since any integral element
sufficiently near to E also satisfies the same regularity conditions, it is clear
that the function ¢ is the constant ¢, ' = Min (7, n), on a neighborhood of E’
in #Q". Thus we proved that J is in involution at any integral points.

Let = be a local cross-section of (M, M', =) defined on a neighborhood of
z(p), say z(U). Denote by A(®, 7) the set of X in AY(G|U) such that B(X)
=r(ra(X)). For any fin @ such that U(f) N V(f)< U, p'(f) preserves the
submanifold A'(®, ). Denote by p'(®, r) the set of homeomorphism elements
F in AY@®, ) with the following conditions: For any X in U(F) there is f in
® such that F and p'(f) coincide on a neighborhood of X in U(F). Clearly
$'(®, ) is a pseudo-group in AY(®, r). Denote by af}:"“j“ the restriction of
’a)f""j‘* to AY(®, ). We denote by the same letter « the restriction to AX®, )
of a: G(U)->U. (AXG, 1), U, «) is a fibered manifold. By exactly the same
method we used for ' (&|U) we prove the following :

Prorosition 1V.8. Let (&, p) be a local continuous pseudo group in M.
Denote by (M, M', =) the fibered manifold of invariants of &. Let U be a
sufficiently small coordinate neighborhiood of p. Let v be a local crosssection of
(M, M', =) defined on =(U). Then we have the following:

(1°) pI(S, 1) is a continuous pseudo-group in AUG, t) and (AN, o), =(U),
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moa) is the fibered manifold of invariants of p'(S, ©).

(2°) Any Pfaffian form o defined on an open set in AN, 1) invariant
under any F in p'(®, t) can be expressed as a linear combination of w}""j" in
a neighborhood of each point, with coefficients in the ring of invariant functions.

(3°) A homeomorphism element F of A'G, t) belongs to p'(®, ©) if and
only if nra°F=F and F* o} 7" = ol M0<v<1-1).

(4°) The differential system on (A/(®, <) x AUG, 1), AUG, ©), 01) generated
by of Wit = i @l IH0<p<1-1) and moarpi—moaopy is in involution at
every integral point, where p\, ps is the projection to the first and second factors,

respectivly.

Moreover, we have the following:

TueoreM IV.5. Under the notations in Prop. IV.8, denote by n; the dimei-
sion of AN®, t). Then we can find an open neighborhood z' of 'y in

Al(@, t) and Pfaffian forms wn_,-1, . . ., Onpy, n'f, e, n'in, (my=n — ni-1) on

b4 satisfying the following conditions for sufficiently large I:

! ! !
(1°) iy ..., Onyy 71, -« Tmy form a base of Pfaffian forms on &° and
1 il kj
dw; = 2 c,j-kwj/\wk%— af)a)j/\mﬁ (cf} +¢i’ =0)
al* = (i< mi-s, or j>n)

] P . . . I
where c?k and a}’ are invariant functions of p(®, 7).

(2°) A homeomorphism element F of is in PG, ) if and only if
roacF=F, F'o,=w, ({=1,..., %-1)

where (M, M', =) is the fibered manifold of invariants of .
(3°) Take a coordinate system (wi, ..., wy) of M' on moalZ'). The

exterior differential system on (' #'', %', o)) generated by
pfu)i—Pé:’u,'i, Wyr° 0L — Wr° P2 (i:l, LR} Ny-1; 7’31, AR h)

is in involution at each integral points of “x ! where o1, 0: 1s the projer-

tion to the first, second factors, respectively.

Assume that & is transitive on M. Then the base space of the fibered
manifold of invariants of & is a single point. So p in M defines a cross-section
7p of the fibered manifold. We set
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(7 AN, ) = AUG, p), PG, 1) =46, p).

In the remainder of this section, we study relations between c{k, a;fA in
Theorem IV.5. and the bracket operation in the parameter Lie (F)-algebra of
(@, p), in the case @ is transitive. These relations will be used in §5.

Let @ be the Lie pseudo-algebra associated with 8. For f in § and for X
in A(®, ) N U (£)), it is clear that (p'(£))y is tangent to A'(®, r). Now,
fix wi, m, #' such as in Theorem IV.5. Take a system of functions Unp_g+1y

) Umeyy V.., Um on #' such that u, ..., Uy Vb + v o s Uy IS a

coordinate system on %' and such that
((ﬂi)zl(p) = (o/ou;), (TL'{\ )ll(D) = (a/ale)
For f, g in Q such that U(f) N U(g) contains p, set

(B (E) | AXG, ©))uigp, = £i(3/om) + £,(3/a0)),

(7) ! 1 & !
(p'(8) | AX(S, ©))ip) =7i(0/ou:) + 1(3/0v)).

Since w; is invariant under p*(@®, 7), <wi, p'(£)> is a constant for f in & Hence
the standard relation between the exterior derivative of Pfaffian forms and the

bracket of vector fields imply immediately the following: If we set

(8) (P'([f, D) | AYB, )i = Cil@/ow) + & (2/00}),
then
9) C;=c{k8jvk+a'f* Eimn — Exi).

Lemma IV.3. Let £ and g be vector field elements in a domain U in R
Assume that U(f) NU(G) contains the origin, 0, of R”. Set ff""j“ = 0" fi/ox;,
- oxj, and g =0"g/ox;, - - - ox,, and PNIE, g]) = hi(3/ox;) +hjI
(a/apj:““j“), where (%, ¥, p) is the coordinate system in G'U) associated with
(%) in U. Then

(' (0)no) = £(0)(8/2x;) — £17* (0) (2/2p3 ),
h;‘JV(Il(O)) — Célmi\"[g,...k“.::,.nigle'“k:(o)g::ln.i”(o)
— £ 7R(0)2e(0) + g7+ 0) £4(0),

where c’s are given in Lemma IV. 2.

Proof. Take a one-parameter family f* of homeomorphism elements in U,
with f°=the identity mapping, such that f is equal to (df’/dt);-o on a neig-
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hborhood of 0. Then p'(f) is equal to (dp'(f')/dt)i- on a neighborhood of
I'(0). Hence (p/(£))1 is equal to the tangent of the curve p'(s") (I'(0))
=77  at +=0. Then the first part follows immediately. The second part
is equal to the formula (9) in the case & consists of all homeomorphism ele-

ments of U.

Levma IV. 4. Let (S, p) be a local continuous pseudo-group of M. Assume
that © is transitive. Let G be a parameter infinite Lie (F)-group of (G, p).
Denote by L the infinite Lie (F)-algebra associated with G. Then there is an
admissible filtration C', (¢f Def. 1.4), of the parameter space H of L with the
following properties:

(1°) For any ¢ in CV, and for anv 7 in H, [& 7] is in C'™" for each
integer 1.

(2°)  The dimension of H/C'Y is n;, where u, is the dimension of AY®, p)

={xe A®); B(X)=r}.

(3°) We can find a sequence &', £, . . . of elements in H such that
(3.1) &, ..., 2" form a base modulo C*™V;
(8.2) we can find 7, . .., 9" in CVV so that &, ..., 8" gl ..., Wt

form a base of H modulo C" and

[, el =c*2 (mod C'™"),
(¢, pl=als  (mod C'™),
Cot, m'1=0 (mod C'™"),

ik ; ) .
where ¢ and al are given in Theorem IV. 5.

Proof. Take a realization {U, F, F'} of G as (&, p), where we choose the
same coordinate system as in Theorem IV.5. Then (U, (dF), (dF')} is a
realization of L as (Q, p). Denote by C* the set of all £ in H such that each
component of (dF), (£) is in Hp*Y (cf. Example 2, 1 Chap 1). (Remark that,
(dF), being linear, is everywhere defined). Then by Prop. 1.3 C" is an admis-
sible filtration of H. By the definition of the parameter infinite Lie (F)-algebra,
Lemma IV.3 implies that & is in C'” if and only if (p'(£)| A4, p))uyp =0 for
a vector field element f corresponding to £, where f=1£;(0/0x;) and f; is the
J-th component of (dF),(&). Since & is transitive, for any tangent vector Z
at Il(p) to AY@®, p) there is a vector field element f in £ such that
Z = (P[(f))ll(p). This proves (2). (1°) follows from (7) and (9). Take £ and
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7 in H such that 2’ and 7, correspond to vector field elements f and g with
the condition (p'(£)]|AG, Py = (9/ou;) and (plgh ] AN, Py = (3/207),
respectively, where #; and v, are coordinate functions employed in the formula
(7). Then (3°) follows from (7) and (9).

§ 3. Prolongations

Let (M., M, p) be a fibered manifold. Let &; and & be continuous pseudo-
groups in M and M, respeétively. These notations will be kept throughout
this section. Take homeomorphism elements g and f of M, and M, respectively.
We say that g is a prolongation of / with respect to the fibered manifold (A,
M, o) when pU(g) = U(f) and pog= fop. Take an open set U in M. Let
be a family on U in @, with a parameter manifold M'. A family g* on an
open set V in ®;, with the parameter manifold M, is called a covering family
of /¥ with respect to (M,, M, o), when o(V) = U and g” is a prolongation of
/7 for any point y in M.

DeriniTioN IV.7. &, is called an isomorphic prolongation of & with respect
to (M, M, p), if for any element g of &, and for any x in Ulg) there is a
neighborhood V of x such that g|V is a prolongation of an element of & and
if there is an integer 1, satisfying the following conditions:

(1°)  For any point x in M, we can choose a neighborhood 7% of Ill(p(xH
in G'(M) and a neighborhood U, of % in My in such a way that there is a
covering family & of /1 on U,N o NU) in & for any one-parameter family f°
on an open set U in & such that j*(fHc#.

(29) If fis in @, j3(f) =I"(y) for a point y in U(f), and if g is a
prolongation of f in ®;, then glx) =x for any x in U(g) such that p(x) = y.

In the remainder of this section, ®; is always assumed to be an isomorphic
prolongation of ®. It is clear that p'(®, r) is an isomorphic prolongation of
the restriction of & to ¢™(U'), where U is an open set in M' and r is a cross-
section of (M, M', n) over U', (M, M', =) being the fibered manifold of in-

variants of .

ProrosiTion IV.9. Lel f be an element of &. Let g, and g. be elements in
&, If both g and g, are prolongations of f, then there is an element in ©&;
such that g is an extension of both g and g.
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Proof. Tt is sufficient to show that g coincides with g on U(g) N U(g).
Assume that it is not empty. Then giog;' is a prolongation of an identity
mappiﬁg fof™'.  Therefore, by (2°) in Def. IV.7 it follows that g and &
coincides on U(gy) N U(g,).

Let U be an open submanifold of M. Denote by &|U the collection of all
homeomorphism elements in &~ such that their domains and images are in U.
Clearly, | U is a continuous pseudo-group in /. Let (NN, M, p') be a fibered
manifold. Denote by N@® A"®) the submanifold of Nx A''®) consisting of all
points (v, X) such that p'(v) = 8(X). Denote by «’ the mapping of N® Al®)
onto M defined by the formula: a'(v, X)=a(X). (N®ANG), M, a') is a
fibered manifold. For any f in &, denote by pi(f) the homeomorphism element
of N® A(®), of domain (a') N U(f)), defined by the formula: [p5(f)1(v, X)
=(y, p'(f)(X)). By Prop. IV.6 and 7, Theorem IV.2, it is clear that the col-
lection of all py(f), when f runs through in &, forms a continuous pseudo-
group in N A'(®), which we shall denote by 'p'(N; &). Denote by B{(N; &)
the submanifold of N AH®) consisting of all points (v, I'(p'tv))) with v in V.

Taeorem IV.6. Let & be an isomorphic prolongaiion of & with respect to
(M, M, p). Then, for any sufficiently large integer 1, there is an open con-
nected meighborhood #* of B'(My; &) in M@ A'(®) and there is a mapping
Ioof Z* onto M, with the following conditions: (1°) (&*, M, h) is a fibered
manifold; (2°) "' (My; &) | #* is an isomorphic prolongation of ®r, with respect
to (Z*, M, h).

Proof. Take v, in M,. Take open neighborhoods # of I'(p(v,)) in G'(M),
U, of v, in M, satisfying the condition (1°) in Def. IV.7. Set '@ = (M,
D ANGH N (U< 7). Clearly, '# 1 is a neighborhood of (v, I'(p(vy)). Take
(v, X) in /7, and choose / in & such that X=j.,(f)"". By (1°) in Def. IV.7,
there is ¢ in &, which is a prolongation of / and such that U(g) 2wv. Set
h(v, X) =g(v). By the same argument as in the proof of Prop. IV.9 we see
that n(v, X) is independent of the choice of f and g. Moreover the second
part of (1°) in Def. IV.7 shows that % is a real analytic mapping of '#,, into
M. Moreover (v, I’(p(v)) =y. Therefore, if we choose a suitable open
neighborhood #5, of (v, I(p(w,)) in '& s, (#%, U, k) is a fibered manifold.

Let g be an element of ®:. g is a prolongation of an element f=®. Then
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the definition of % implies that Z([p5(£)1(v, X)) =g(h(v, X)). Then it is easy
to check that 'p'(M,; ®)|#; is an isomorphic prolongation of &.|Ui. The
above definition of 7 is intrinsic, and so they must coincide on %, N#..
Therefore choosing a suitable open neigborhood of B (M;; ®), we obtain #*
and % as in the theorem. g.e.d.

Take f in & such that 7'(f) is sufficiently near {I'(w); we U(f)}. 1If g

is a prolongation of / in &;, we see by the definition
(10) &) =hw, fow ().
Therefore we have the following two propositions.

ProrositionN IV.10. For any integer I, there is an integer b, with the follow-
ing conditions: (1) For any neighborhood # . of I"(v) in G'(M,) there is a
neighborhood 7 of I"(p(v)) in G*(M) such that @ Natoal W) Sy, for
any prolongation g of | where f is an arbitary element in @~ with HHcw;
(2) If [ is in &7, ji( /) =I"(w) for a point w in U\S), and if g is a prolonga-
tion of [ in &, then j5(g) =I"(v) for any v in U(g) such that o(v) = w.

Prorosition VI.11. Condition (1°) in Def. IV.7 holds for any family in

®, not necessarily only for one-parameter family in ®.
By Prop. IV. 10, we see easily the following:

Prorosition IV.12. Let (M, M, o) be a fibered manifold. Assume that
a continuous pseudo-group &, of M, is an isomrophic prolongation of & with
respect to (M, M, ). Then &, is an isomorphic prolongation of & with
respect to (Ms, M, p°o1).

§ 4. Infinite continuous pseudo-gropus
Let (&, ») and (&, 1) be local continuous pseudo-groups in M; and M,
respectively.

DeriniTION IV. 8. (@2, ;) is said to be an isomorphic prolongation of (G,
M) if there are open neighborhoods U. end U, of p1 and b in M, and M.,
respectively, and if there is a mapping p1 of Us onto U, with the following condi-
tions: (1) (U:, U, p1) is a fibered manifold (2) &:|U, is an isomorphic pro-
longation of &, |U, with respect to (Us, Ui, p1).

ProvosiTioN IV.13. If (8, p3) is an isomorphic prolongation of (&, ps)
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and if (&, ) is an isomorphic prolongation of (&, ), then (O, p3) is an
isomorphic prolongation of (&, ).

Proof. This is an easy corollary of Prop. IV. 12,

ProrosiTioN 1V.14. If both (S, b)) and (&, 1) are isomorphic prolonga-
tions of (®, p), there is a local continuous pseudo-group (&%, v*) which is an
isomorphic prolongation of both (&, 1) and (8, p2).

Proof. 1t is easy to construct such (&*, p*) because of Theorem IV.6.

DeriniTiON IV.9. (8, 1) is said to be equivalent to (&, D) if there is a
local continuous pseudo-group (®, p) such that (S, b) is an isomorphic pro-
longation of both (&, b)) and (G, ).

By Prop. IV.13 and 14, we see easily that this definition of an equivalence

actually gives an equivalence relation.

DerinitioN IV.10. An equivalence class of the equivalence relation in Def. IV.
9 is called an infinite continuous pseudo-group. If (&, b) is in an equivalence
class &, (®, ) is said to be a representative of <.

Let © be a transitive continuous pseudo-group in a manifold M. Let b
and p; be points in M. Then (@, p) and (S, p,) are equivalent. Therefore
the infinite continuous pseudo-group which has a representative (®, p,) is said

to be the infinite continuous pseudo-group determined by &.

DeriniTiON IV.11. A continuous pseudo-group & of a domain D= {(xy, . . .,
xn)} is said to be a Cartan’s continuous pseudo-group of D, if there is an in-
teger h>=0 and if there is a base wi, ..., wn, 7, ..., Tt N=n+m) of
Pfaffian forms on D, with the following conditions:

(1°) wi=dx, ..., wn = dxy,
(2°) dw;i = -ercfkwj/\wk+ alwi N, Cjik+!??j =0,
G, j k=1...,m; A=1..., m),
where ¢}* and a? are functions of xi, . . ., %u;

(3°) Let o and p; be the projection of Dx D onto the first and second

facters, respectively. Then the exterior defferential system generated by
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Xr° 02— Xr° Py (r=1,...,h),

* 3 .
02 Wi — p1 Wi (i=1,..., n)

on (DX D, D, p)) is in involution ai any point in the diagonal;

(4°) A homeomorphism element f of D is in & if and only if %1, ..., %n
and wi, . . ., W are invariant under f.

The system consists of functions %1, . . ., x5 and of Pfaffian forms oy, . . .,
wn, w, ..., mm will be called a Cartan’s system. The equations in (2°) will

be called the structure equations of @. Let us agree that, when we say that
& is a Cartan’s continuous pseudo-group in D, a choice of Cartan’s system
which defines & is made and associated with &.

TueoreMm IV.7. Let &9 be an infinite continuous pseudo-group. Then &

has a representative (®, p) such that & is a Cartan’s continuous pseudo-group.

Proof. Let (&', 1) be a representative of &. Let r be a cross-section of
the fibered manifold (M’, M", =) of invariants of &' over on open neighborhood
U of n(y'). Since »(®, r) is an isomorphic prolongation of ®'|U, where

U=rn"'(U"), the theorem is an immediate colloary of Theorem IV.5.

§ 5. Infinite continuous pseudo-groups and infinite Lie (F)-groups

Let G, and G. be infinite Lie (F)-groups (cf. sentences preceeding Def. IV.5).
Denote by H; and H. the parameter spaces of G, and G., respectively. We
say that G, and G; are convergently isomorphic if there are convergent formal
analytic mappings F and F' of H; into H, and of H: into H:, respectively, such
that F and F' establish as isomorphism of G; and G..

Prorosrtion IV.15. Let (Gr, p,) be a local continuous pseudo-group of a
manifold M,, (r=1, 2). Denote by G, a parameter infinite Lie (F)-group of

(Sr, v). I (&, 1) and (@, ») are equivatent, then Gy and G, are convergently
isomorphic.

Proof. It is sufficient to prove the case when & is an isomorphic pro-
longation of ;. We can assume then, without loss of generality, that-(1) M;
is a domain {(xy, . .., x2); |xj]<e}, (2) My =DM, x W, where W is a domain
in m-dimesional space. (3) p, and b, are origins of M, and M,, respectively,

and that (4) @, is an isomorphic prolongation of &, with respect to (M;x W,
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M, p) where p is the canonical prolojection. We can assume also that there
are realization (cf. Def. IV.6) (M,, F,, F}) of Gr as (G, »,). Let F" be the
convergent formal analytic mapping of H7iix into H7 defined by the formula:
Fri&) = (e, .o %1, 0, .., 0), oo, 8u(Xyy v v oy %my ..., 0)) & H (8= (6

.y Enem) € Hatm). Then it is clear by the definitions that there is a unique
convergent formal analytic mapping F of H, into H; such that FieF=F'oF,
and such that F is a homomorphism of G. into G;. The existence of the
convergent inverse of F follows from the existence of the mapping % as in
Theorem 1V.6 (cf. (10)).

DeriniTiOoN 1V.12. Let &, be a Cartan’s continuous transitive pseudo-group

in a domain D,, (r =1, 2). Denote by ¢, ..., Gu, ¢1, . . ., ¢m and by wy,
., Wn. T . . ., nm Cartan’s systems associated with &, and &, respectively.
Let
dw; = % ¢ wj N\ wp + al* wj N\

be the structure equations of &,, where c* and a’.:* are constants. We say that

. #s subordinate to &, if there are linear combinations

-Qi = t;-lSDq,
H)‘: t{‘lqu‘f‘ u:(/)o

where Vs and w's are constants, with the following conditons:

(1) 24 ..., Qu II, ..., Ilm are linearly independent at each point of Dy ;

(2) degi= éc’}’wz,-/\squuaé*gj/\m.

A choice of the linear combinations, Qi and II., which satisfy (1) and (2) will
be called a subordination of &; to &. Let p be a mapping of an open set U,
of D; onto an opeu set Us of Ds. p is called an integral of the subordination

if it satiSfv the following conditions :

(1°) p'wi=0 (z=1,...,n),
(2°) (U, Us, p) is a fibered manifold.

Tueorem IV.8. Let (&, 9,) be a local Cartan’s continuous transitive pseudo-
group of a domain D,(r=1, 2). Assume that &, is subordinate to &,. Then

for any subordination of & to &, we have the following:
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(1°) There is its integral o such that p is defined at p, and such that
o(p1) = Pe.

(2°) If o' is another such integral, there is an element f in (&,)y, such that
o' is equal to fop on a neighborhood of 9.

(3°) Any homeomorphism element of &.|U, is a prolongation of an element
in G| Uy with respect to (Ui, Uh, o).

Proof. Let o} and p; be the projection of D,x D. onto the first and the
second factors, respectively. On (D;x D:, Dy, pi), consider the differential
system ' generated by

1% 1%
o2 wi— 01 Li

We denote by J the differential system on (D;x Ds, D;, p;) defined in (3°) in
Def. IV.11 for 8. Then a mapping p of an open neighborhood U, of p; onto
an open neighborhood U: of p. is an integral of the subordination if and only
if (U, Us, p) is a fibered manifold and its graph is an integral of 3.

Take a submanifold D; of D), passing through p;, such that the restric-
tions of 2;, I\ to D; are linearly independent. Comparing with the polar
equations of X, we find the following: The system 3’ as well as the restriction
2" of 3 to (Dyx Ds, Di, p;) are in involution at (p,, 1), and any integral
manifold of 3" passing through (p;, p:) can be locally extended uniquely to an
integral manifold of 3'. Take an integral p of 3’ such that o(p;) =p. Then
the condition ¢*w; = £, implies that the restriction of p to D} induces a homeo-
morphism of a neighborhood Ui of p; in D; onto a neighborhood U, of p.. In
particular, (U;, Us, p) is a fibered manifold. Therefore p is an integral of the
subordination. Thus (1°) is proved.

Let o' be another integral of the subordination. Denote by 7 and 3’ the
restricions of ¢ and o' to a small neighborhood of p; in D;. Then they have
inverses and w;= (3")*2; = (5"")* 2. Take a homeomorphism element f of
D: such that f°p =7’ on a neighborhood of p; in D;. Then it follows easily
that f*wi=wi. Hence fis in . Therefore fop is again an integral of the
subordination and coincides with o’ on D;. Hence, by the remark made earlier,
fe°po=yp" on a neighborhood of p;. Thus (2°) is proved. Because of the ex-
pression of 2;, pog is again an integral of the subordination for any element
g in ®,. Then (3") follows from (2°). This finishes the proof of Theorem IV. 8,
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Let ©, be a Cartan’s transitive continuous pseudo-group, (r =1, 2,3). Denote
by ¢4, ..., %, ¢1,. .., ¢m and oy, ..., wn, 7, ..., Ty Caran’s systems
associated with ®, and @,, respectively. Assume that @&, is subordinate to &,
and that @, is subordinate to @,. Assume also that #/¢, and {9, + ulds, 'tw;
and 'tiw;+'uln, form subordinations of @, to @,, of @ to ®, resepctively.
Then it is easy to see that 't ¢, and (' t! +'ult)) ¢, + 'udul$s form a subor-
dination of ®&; to &,. This subordination is called the composition of the
subordinations. If p and p’ are integrals of the subordinations of &, to &, and

of @, to @&, then p'op is an integral of their composition.

Lemma IV.5. Let (&, p,) be a Cartan’s local transitive continuous pseudo-
group in D., (r=1, 2, 3). Assume that G, is subordinate to &1, and that &,
is subordinate to &.. Take subordinations s, and s: of &, to &, and of ®; to
., respectively. Take a mapping = of D, to D, such that (D, Ds;, =) is a
fibered manifold and such that =(p;) =ps. Assume that & is an isomorphic
prolongation of &z with respect to (D, Ds, n) and that = is an integral of the
composition of the subordinations s, and s.. Then (&, 1) is an isomorphic
prolongation of (Ss, b,) with respect to any integral of the subordination s,

which maps p: to ;.

Proof. Let p, and o, be integrals of s; and s, such that o) =) and
p(r2) = ps, respectively. Since p:°p, is an integral of the composition of s; and
sz, by (2°) in Theorem IV.8, we can assume that = = g;0p; on a neighborhood
of p.. By (38°) of Theorem IV.8, any element of @, is an prolongation of an
element of @;. It is easy to verify the conditions (1°) and (2°) in Def. IV.7
for @ and @; with respsct to p, by lifting first to ®, and then going down to
G..

ProrosiTiON IV.16. Let (&, ») and (&', p') be local transitive continuous
bpseudo-groups of D and D', respectively. Denote by G and G' parameter in-
finite Lie (F)-groups of (&, p) and (&', V'), respectively. If G and G' are
(formally) isomorphic, then (&, p) and (&', V') are equivalent.

Proof. Let F be a homeomorphism of G onto G'. Denote by L and L' the
associated infinite Lie (F)-algebras of G and of G’, respectively. Take admis-
sible filtrations A’ and H"" of the parameter space A and H' of L and L/,

respectively, which satisfy the conditions in Lemma IV.4. We can choose a
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positive integer k such that Fy(H") < B'""" and such that Fi;'(H'")c H'™®,
where F,= (dF), is the homeomorphism of L onto L' induced by F. Set for
sufficiently large fixed /

(81, v = @EE, p), '),
(G, 1) = (PG, D), IFWD)), (B, 1) = (H(®, p), I'(0)),

(cf. (7)). If we show that (&, p,), (=1, 2, 3), defined above satisfy the
conditions stated in Lemma IV.5, then it follows that (p'™*(®, p), I'**(p)) is
an isomorphic prolongation of (p'(®, ), I'(p")), that is (@, p) is equivalent
to (&', p'). In order to show that they actually satisfy the required conditions,
let DY and D" be sufficiently small neighborhoods of I“(p) and I“(p'), re-
spectively. We define 7 as the canonical projection of D/!"*® onto D''V. Let
W1, . - ., Wny T1, - . -, Tn, Where # = mp-1 and m = my+, be the base of Pfaffian

forms on D'"® which satisfies the conditions in Theorem IV.5 for p'™*(@, p).

Denote by €1, . - ., ny ¢1, o o+ s ¢m, where o' =mnjsp-; and m' = mlp the
base of Pfaffian forms on D'***¥ which satisfies the conditions for p'**(&', p').
Let

dwi = 1 e . 1A

wi= 5" op N wir + @ " wir A,
1 P it I’a

dgj= 5 "¢ ¢i N Pin +145° 05 N s

be the structure equations. Choose &', ..., &% %', ..., " in H which satisfy

the conditions in Lemma 1V.4 for the choice w;, m». We have the similar
elements ¢, ..., ¢", 4, ..., /" in H for ¢;, ¢s. Then by Lemma IV. 4,

Le", e"1=ci"e,  [&" 9" 1=d"¢,
av

['ﬂ)\, ﬂ)\’] =0 (mOd H(l+k—l))
12) g, =1, [, wl=ralcd
Lo 2”1=0 (mod, H!H*2%1),

Since z° is in H'''F Y Fr(,%) is in HY**7Y. Therefore we have
Foi(d) =ti8 + uly),
Fil(w) = W (mod. H'"*).

F7' is a homomorphism of L' into L and the image of L''"” Ly F;'is in LY
for any 7. Therefore it follows by (11) and (12) that 2, = #}¢; and IT, = u&gﬁ;
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+ u5¢, form a subordination s; of &, to &;. Since £ is the inverse of (F™Y,,
we can construct, by the same method, a subordination s; of & to ®&., which
satisfies the required conditions. This finishes the proof.

By Prop. IV.15 and 16, we have the following two theorems:

TuroreM IV.9. Let (&, p) and (&', v') be local transitive continuous pseudo-
groups. Denote by G and G' parameter infinite Lie (F)-groups of (®, p) and
(@, p"), respectively. Then G and G' are isomorphic if and only if (8, p) and

(®', p) are equivalent.

TuroreM VI.10. Let G and G' be infinite Lie (F)-groups. Assume that
there are local trasitive continuous pseudo-groups (8, p) and (&', p') such that
G and G' are parameter groups of (&, p) and (&', p'), respectively. Then G

and G' are convergently isomorphic if and only if G and G' are isomorphic.
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