
Compositio Math. 140 (2004) 69–83
DOI: 10.1112/S0010437X03000137

Milnor invariants and Massey products for

prime numbers

Masanori Morishita

Dedicated to Professor Yoshiomi Furuta

Abstract

Following the analogy between primes and knots, we introduce the refined Milnor
invariants for prime numbers and establish their connection with certain Massey
products in Galois cohomology. This generalizes the well-known relation between the
power residue symbol and cup product and gives a cohomological interpretation of
L. Rédei’s triple symbol.

Introduction

In our previous paper [Mor02a], we discussed foundational analogies between knots and primes,
based on an analogy between the structure of a link group and that of a certain maximal pro-l
Galois group, l being a prime number, over the rational number field Q with given ramification.
In particular, we introduced arithmetic analogues of Milnor’s link invariants for prime numbers
and showed that the classical symbols by Legendre and Rédei could be interpreted as our Milnor
invariants [Mor02a, § 3]. The purpose of the present paper is to continue this line of study and
investigate the connection between our Milnor invariants and certain Massey products in Galois
cohomology following link theory.

The Massey products were first introduced by Massey [Mas58] as higher order cohomology
operations generalizing the cup product to describe the higher linking properties, and their
fundamental properties were investigated by Kraines [Kra66] and May [May69] in general
contexts. Their connection with the Milnor invariants for links was conjectured by Stallings [Sta65]
and proven by Turaev [Tur79] and Porter [Por80]. Following the analogy between knots and primes
(cf. [Kap96, Maz65, Mor00, Mor01a, Mor01b, Mor01c, Mor02a, Mor02b, Mor03, Rez00, Sik01,
Wal76]), we investigate in this paper their analogies for prime numbers and establish an arith-
metic analog of Turaev–Porter’s theorem. This generalizes the well-known relation between the
power residue symbol and the cup product (cf. [Koc70, Ser68]), and also gives a cohomological
interpretation of the triple symbol of Rédei [Réd38, Fur80].

The contents are organized as follows. In § 1, we refine our Milnor µl-invariants for primes in
[Mor02a] by introducing a certain indeterminacy following the construction of Milnor’s µ-invariants
of a link [Mil57] and give some basic properties for the refined invariants. In § 2, we introduce the
Massey products in the context of the cohomology of profinite groups and recall basic properties
needed for our arithmetic applications, and then we establish the relation between the Milnor
invariants for primes and the Massey products in the Galois cohomology. Here, we apply Turaev’s
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argument for links [Tur79] to our arithmetic for primes introducing the notion of the normalized
Massey system in Galois cohomology, based on the analogy between a link group and our Galois
group.

Convention. For a profinite group G, the lower central series of G is defined by G(1) = G, G(q+1) =
[G(q), G] for q � 1 where [A,B] stands for the closed subgroup generated by [a, b] = a−1b−1ab,
a ∈ A, b ∈ B. For a profinite commutative ring R, we denote by R[[G]] the completed group ring
and by IR[[G]] the augmentation ideal, the kernel of the augmentation map εR[[G]] : R[[G]] −→ R.
For a profinite group G, the Zassenhaus filtration of G over the ring Z/mZ, m > 1, is defined by
G1,m = G,Gq,m = G ∩ (1 + Iq

Z/mZ[[G]]) for q � 1.

1. The refined Milnor invariants for prime numbers

In this section, we refine the Milnor µl-invariants for prime numbers in [Mor02a] by introducing a
certain indeterminacy along the line of the construction of the Milnor µ-invariants of a link [Mil57],
and give their basic properties. Throughout this paper, we denote by l a given prime number.

1.1 The pro-l Galois group with restricted ramification
Let S be a given finite set of n distinct prime numbers p1, . . . , pn such that pi ≡ 1 mod l, 1 � i � n.
We write pi − 1 = leiqi, (l, qi) = 1, 1 � i � n, and set eS = min{ei | 1 � i � n}. In the
following, we fix a power m = le of l with 1 � e � eS . Let GS(l) be the maximal pro-l quotient
of the étale fundamental group of the complement of S in Spec(Z) which is the Galois group of
the maximal pro-l extension QS(l) of Q unramified outside S ∪ {∞}, where ∞ is the infinite prime
of Q. The structure of the pro-l group GS(l) is given as follows [Mor02a, § 1.2]; [Koc70]. Choose a
prime pi of QS(l) lying over pi for 1 � i � n. Let τi be a generator of the inertia group Ii of pi, called
a monodromy over pi, and let σi be an extension of the Frobenius automorphism of the subfield
corresponding to Ii, called a Frobenius automorphism over pi. We may see that σi is an extension
of the Artin symbol (ηi,QS(l)ab/Q) and τi is an extension of (λi,QS(l)ab/Q) where QS(l)ab is the
maximal abelian subextension of QS(l)/Q, ηi (respectively λi) is the idele whose pi-component is pi

(respectively a primitive root gi mod pi), and other components are all 1. Then one has the following
information on the presentation of the pro-l group GS(l). Let F be the free pro-l group on the words
x1, . . . , xn representing τ1, . . . , τn, respectively, and yi ∈ F the pro-l word in x1, . . . , xn representing
σi (1 � i � n). The Galois group GS(l) has the following minimal presentation [Koc70, § 11]

1 −→ N −→ F
π−→ GS(l) −→ 1 (1.1.1)

where N is the closed subgroup of F generated normally by xpi−1
i [x−1

i , y−1
i ], 1 � i � n. Here we see

the following group-theoretic analogy1 between a prime p and a knot K:

monodromy over p←→ meridian around K
Frobenius auto. over p←→ longitude around K.

(1.1.2)

Moreover, we observe the analogy between a p-adic field Qp and the boundary of the tubular
neighborhood VK of K:

Spec(Qp)←→ ∂VK

Gal(Qp(l)/Qp) = 〈x, y | xp−1[x−1, y−1] = 1〉 ←→ π1(∂VK) = 〈x, y | [x, y] = 1〉, (1.1.3)

where Qp(l) is the maximal pro-l extension of Qp.

1Strictly speaking, a prime ideal (p) generated by p is an analog of a knot K and a prime number p itself is an analog
of a ‘Seifert surface’ spanning (p) (cf. [Kap96, Mor02b, Rez00, Sik01]).
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We define an integer li,j by the relation p−1
i ≡ gli,j

j mod pj for 1 � i 
= j � n and we then have

σi ≡
∏
j �=i

τ
li,j
j mod GS(l)(2).

In view of the analogy (1.1.2), we call li,j mod m the linking number mod m of pi and pj and denote
it by lkm(pi, pj) (cf. Example 1.3.1 below).

1.2 The Milnor µm-invariant
Let F be the free pro-l group on the words x1, . . . , xn representing τ1, . . . , τn in the Galois group
GS(l), respectively, and let Z/mZ[[X1, . . . ,Xn]]nc be the formal power series ring over Z/mZ in n
non-commuting variables X1, . . . ,Xn. Recall that m = le is a fixed power of l dividing all pi − 1,
1 � e � eS . The Magnus embedding Mm : F −→ (Z/mZ[[X1, . . . ,Xn]]nc)× over Z/mZ is given by

Mm(xi) = 1 +Xi, Mm(x−1
i ) = 1−Xi +X2

i − · · ·
for 1 � i � n and each element f of F has the Magnus expansion over Z/mZ,

Mm(f) = 1 +
∑

I

εI(f)mXI ,

where I ranges over all multi-indices I = (i1 · · · ir) and XI = Xi1 · · ·Xir for |I| := r � 1. In terms of
the pro-l Fox free differential calculus [Iha86], the Magnus coefficient εI(f)m is given by

εI(f)m = εZl[[F ]]

(
∂rf

∂xi1 · · · ∂xir

)
mod m.

We then set, for a multi-index I = (i1 · · · ir),
µm(I) = εI′(yir)m

where I ′ = (i1 · · · ir−1) and yj is the element of F representing σj in GS(l). By convention, we set
µm(I) = 0 for |I| = 1.

For a multi-index I, 1 � |I| � leS , we define ∆(I) to be the ideal of Z/mZ generated by the
binomial coefficients

(
leS
t

)
and µm(J), where 1 � t � |I| and J ranges over all cyclic permutations

of proper subsequences of I. We then define the Milnor µm-invariant by

µm(I) = µm(I) mod ∆(I).

Our fundamental assertion, which refines Theorem 3.1.5 of [Mor02a], is the following.

Theorem 1.2.1. Let I be a multi-index with 2 � |I| � leS . Then, µm(I) is an invariant of the
Galois group GS(l).

Proof. Let I = (i1 · · · ir), 2 � r � leS , and I ′ = (i1 · · · ir−1). As in Theorem 3.1.5 of [Mor02a], it
suffices to show that µm(I) is not changed under the following operations:

1) yir is replaced by a conjugate;
2) some xj is replaced by a conjugate;

3) yir is multiplied by a product of conjugates of xpj−1
j [x−1

j , y−1
j ]’s.

1) By comparing the coefficients of monomials on the both sides of the equation

Mm(xjyirx
−1
j ) = (1 +Xj)Mm(yi)(1 −Xj +X2

j − · · · ),
we have the congruence for any j

εI′(xjyirx
−1
j )m ≡ εI′(yir)m

modulo the ideal for certain proper subsequences J of I ′. This proves item 1.
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2) Suppose that xj is replaced by xj = xhxjx
−1
h with Mm(xj) = 1 +Xj. Then we have

Xj = (1−Xh +X2
h − · · · )Xj(1 +Xh) = Xj + (terms involving XhXj or XjXh).

Thus, each time the factor Xj occurs in the expansion Mm(yir) = 1 +
∑

J µm(Jir)XJ , it is to be
replaced by the above expansion and we finally reach the expansion of Mm(yir) in X1, . . . ,Xn,
which we denote by Mm(yir). Then we see easily that the coefficient of X i1 · · ·Xir−1 in Mm(yir) is
of the form

µm(I) +
∑
J

µm(Jir) (J runs over certain proper subsequences of I ′)

and it is congruent to µm(I) mod ∆(I). This proves item 2.
3) Firstly, we prove the following lemma which will also be used later on.

Lemma 1.2.2. Let J = (j1 · · · js) be a subsequence of I. Then we have, for 1 � j � n,

εJ(xpj−1[x−1
j , y−1

j ])m ≡



µm(j2 · · · jsj1), j = j1,

−µm(J), j = js,

0, otherwise,

mod ∆(J),

and so for any proper subsequence J of I we have εJ(xpj−1[x−1
j , y−1

j ]) ≡ 0 mod ∆(I).

Proof of Lemma 1.2.2. First, note that Mm(xpj−1
j ) = (1 +Xj)l

ej qj ≡ 1 + (terms of degree greater
than s) mod ∆(J) by the definition of ∆(J). Next, we see that

εJ(xjyj)m = µm(Jj) if j 
= i1, εJ(xi1yi1)m = µm(Ji1) + µm(i2 · · · isi1),
εJ(yjxj)m = µm(Jj) if j 
= is, εJ(yisxis)m = µm(Jis) + µm(J).

Since Mm([x−1
j , y−1

j ]) = 1 + (Mm(xjyj)−Mm(yjxj))Mm(x−1
j )Mm(y−1

j ), we have

εJ([x−1
j , y−1

j ]) ≡ εJ(xjyj)m − εJ(yjxj)m ≡



µm(j2 · · · jsj1), j = j1,

−µm(J), j = js,

0, otherwise.

mod ∆(J),

Thus we get the first assertion. The second assertion follows from the definition of ∆(I) (it is here
that cyclic permutations of the definition of ∆(I) are used).

Now, let us show our assertion 3 in the theorem. By the formula of Fox’s free derivative
[Fox53, equation 3.2], we have

εI′(xpj−1[x−1
j , y−1

j ]yir) = εI′(yir)m +
∑

εJ([x−1
j , y−1

j ])mµm(Kir) + εI′(xpj−1[x−1
j , y−1

j ])m

where the sum is over partitions I ′ = (J,K) with J and K non-empty. Hence, by Lemma 1.2.2, we
obtain

εI′(x
pj−1
j [x−1

j , y−1
j ]yir)m ≡ εI′(yir)m mod ∆(I).

Similarly, we have εI′(yirx
pj−1
j [x−1

j , y−1
j ])m ≡ εI′(yir)m mod ∆(I) and the assertion 3 is proved.

Remark 1.2.3. As the proof of Theorem 1.2.1 shows, the Milnor invariant is well defined with the
smaller indeterminacy ∆∗(I), the ideal of Z/mZ generated by

(
leS
t

)
, 1 � t � |I| − 1, and µm(J),

J running over all cyclic permutations of proper subsequences of I. For example, ∆∗(ij) = 0 while
∆(ij) may not be zero. However, the cyclic symmetry of the Milnor invariants holds only modulo
∆(I) (cf. Theorem 1.2.5(1) below), and further it is better work with ∆(I) in connection of the
Massey products in the following section (cf. Definition 2.3.1 and Theorem 2.3.2). This is the reason
that we introduced the milder indeterminacy ∆(I).
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The following proposition shows that µm(i1 · · · ir) depends only on the subset {pi1 , . . . , pir} of S.
It justifies the notation used for the Milnor µm-invariant.

Proposition 1.2.4. Let S′ be a subset of S. We may assume that S′ = {p1, . . . , pk}, 2 � k < n.
Let I = (i1 · · · ir) be a multi-index of integers with 1 � i1, . . . , ir � k. The two invariants µm(I)
and µ′m(I) are defined by means of the Galois groups GS(l) and GS′(l), respectively. Then we have
µm(I) = µ′m(I).

Proof. This is proved in the straightforward manner from the definition.

As for the properties of µm(i1 · · · ir) under the permutation of i1 · · · ir, we have the follow-
ing theorem which can be seen as a generalization of the reciprocity law of Gauss and Rédei
(cf. Examples 1.3.1 and 1.3.2 below).

Theorem 1.2.5. Let r be an integer with 2 � r � leS .

1) We have the cyclic symmetry

µm(i1 · · · ir) = µm(i2 · · · iri1) = · · · = µm(iri1 · · · ir−1).

2) Let I = (i1 · · · is) and J = (j1 · · · jt) be multi-indices with s+ t = r− 1, s, t � 1. Let Sh denote
the set of all proper shuffles of I and J . Then we have the shuffle relation∑

H∈Sh

µm(Hk) ≡ 0 mod g.c.d{∆(Hk) | H ∈ Sh}.

Proof. 1) Let D be the two-sided ideal of Z/mZ[[X1, . . . ,Xn]]nc consisting of elements
∑

|I|�1 cIXI

such that cI ≡ 0 mod ∆(I) for |I| � r. Write Mm(yi) = 1 + ωi, ωi =
∑

I µm(Ii)XI . Then we have,
for 1 � i � n,

Mm([x−1
i , y−1

i ]) = 1 + (Mm(xiyi)−Mm(yixi))Mm(x−1
i )Mm(y−1

i )

= 1 + (Xiωi − ωiXi)(1−Xi +X2
i − · · · )(1 − ωi + ω2

i − · · · )
= 1 + (Xiωi − ωiXi)

+ (terms involving XjXiωi,XjωiXi,XiωiXj , ωiXiXj)
≡ 1 + (Xiωi − ωiXi) mod D,

since Ii is a cyclic permutation of a proper subsequence of jiI, jIi, iIj, and Iij. In addition,
Mm(xpi−1

i ) ≡ 1 mod D by the definition of ∆(I) (cf. Remark 1.2.3). Hence we have

Mm(xpi−1
i [x−1

i , y−1
i ]) ≡ 1 + (Xiωi − ωiXi) mod D

and so Xiωi − ωiXi ∈ D for 1 � i � n. Then, by looking at the coefficients of XiJ , |J | � r − 1, in
the sum

∑n
j=1(Xjωj − ωjXj) ∈ D, we obtain

µm(Ji) ≡ µm(iJ) mod ∆(iJ)

which implies the cyclic symmetries.
2) It follows from a general theorem on the Magnus coefficients in [CFL58, Theorem 3.9].

A group-theoretic and arithmetic meaning of the refined Milnor invariants is given as follows
(cf. [Mor02a, Theorem 3.1.7]).

Theorem 1.2.6. Let r be an integer with 2 � r � leS . We assume that µm(I) = 0 for |I| � r − 1.
Then the homomorphism π : F → GS(l) in (1.1.1) induces the isomorphisms for q � r,

F/Fq,m � GS(l)/GS(l)q,m.

73

https://doi.org/10.1112/S0010437X03000137 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000137


M. Morishita

Assume further that ∆(J) = 0 for |J | � r. Then we have

µm(Ij) = 0 for |I| � r − 1⇔ pjis completely decomposed in Q(r,m)/Q,

where Q(q,m) is the field corresponding to the qth term GS(l)q,m of the Zassenhaus filtration of
GS(l) over Z/mZ for q � 1.

Proof. Note that, for f ∈ F , f ∈ Fq,m if and only if εI(f)m = 0 for |I| < q, q � 2. So, by
our assumption, yi ∈ Fr−1,m and [x−1

i , y−1
i ] ∈ Fr,m. In addition, xpi−1

i ∈ Fr,m. Hence, π induces
the isomorphisms F/Fq,m � GS(l)/GS(l)q,m for q � r. Since ∆(J) = 0 for |J | � r, we have
µm(Ij) = µm(Ij) = εI(yi)m for |I| � r − 1. Hence we have

µm(Ij) = 0 for |I| � r − 1⇐⇒ yj ∈ Fr,m

⇐⇒ σj ∈ GS(l)r,m
⇐⇒ pj is completely decomposed in Q(r,m)/Q.

Let Nk(R) denote the group of k × k upper triangular unipotent matrices over a ring R. For a
multi-index I = (i1 · · · ir), 2 � r < leS such that ∆(I) 
= Z/mZ, we define the map

ρI : F −→ Nr((Z/mZ)/∆(I))

by

ρI(f) =




1 ε

(
∂f

∂xi1

)
m

ε

(
∂2f

∂xi1∂xi2

)
m

. . . ε

(
∂r−1f

∂xi1 · · · ∂xir−1

)
m

1 ε

(
∂f

∂xi2

)
m

. . . ε

(
∂r−2f

∂xi2 · · · ∂xir−1

)
m

. . . . . .
...

0 .. . ε

(
∂f

∂xir−1

)
m

1




mod ∆(I),

where we set ε(α)m = εZl[[F ]](α) mod m for simplicity. The formula of Fox’s free derivative [Fox53,
equation 3.2] tells us that ρI gives a continuous homomorphism. We denote simply by N(q) the
qth term of the Zassenhaus filtration of Nr((Z/mZ)/∆(I)) over (Z/mZ)/∆(I). The following
theorem may be regarded as an analog of Murasugi’s theorem [Mur85] which asserts that the
Milnor invariants of a link are covering linkage invariants in certain nilpotent coverings.

Theorem 1.2.7.

1) With the notation as above, the nilpotent representation ρI factors through the Galois group
GS(l), which is also denoted by ρI ,

ρI : GS(l) −→ Nr((Z/mZ)/∆(I)).

If the indices i1, . . . , ir−1 are distinct from each other, then ρI is surjective.

2) Assume that i1, . . . , ir−1 are distinct. Let Kq denote the subfield of QS(l)/Q corresponding to
the subgroup ρ−1

I (N(q)) of GS(l). Then we have the following.

(a) The field Kr is a finite Galois extension over Q unramified outside pi1, . . . , pir−1 with Galois
group Gal(Kr/Q) � Nr((Z/mZ)/∆(I)).

(b) The prime number pir is completely decomposed in Kr−1/Q and the decomposition law of
a prime divisor p of pir in Kr−1 in the extension Kr/Kr−1 is given by the refined Milnor
invariant as follows. Let ρI,r−1 : Gal(Kr/Kr−1)

∼−→ N(r−1)/N(r) � (Z/mZ)/∆(I) be the
isomorphism induced by ρI and let ((Kr/Kr−1)/p) = σir |Kr be the Artin symbol of p in
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Kr/Kr−1. Then, we have

ρI,r−1

((
Kr/Kr−1

p

))
= µm(I).

Proof. 1) By Lemma 1.2.2, we have ρI(x
pj−1
j [x−1

j , y−1
j ]) ≡ 0 mod ∆(I) and so ρI yields the

representation of GS(l). For the second assertion, it suffices to note that the ρI(xik)’s (1 � k � r−1)
generate the whole Nr((Z/mZ)/∆(I)).

2a) This follows from item 1 and ρI(τj) = 1r for j 
= i1, . . . , ir−1.
2b) Since µm(Jir) ≡ 0 mod ∆(I) for any proper subsequence J of (i1 · · · ir−1), ρI(σir) ∈ N(r−1).

This implies that pir is completely decomposed in Kr−1/Q. Furthermore, we have

ρI,r−1

((
Kr/Kr−1

p

))
= ρI,r−1(σir |Kr)

= ε

(
∂r−1yir

∂xi1 · · · ∂xir−1

)
m

mod ∆(I)

= µm(I).

1.3 Examples
We give some examples of Milnor µm-invariants of low degree and their arithmetic interpretation.

Example 1.3.1 (Linking number). By definition, we have µm(12) = lkm(p2, p1). The similar
computation as in Theorem 3.1.3 of [Mor02a] yields

ζµm(12)
m = ζ lkm(p2,p1)

m =
(
p2

p1

)
m

where ζm is a suitable primitive mth root of 1 in Qp1 and (p2/p1)m is the mth power residue symbol
in the p1-adic field Qp1. Consider the case m = 2 and p1, p2 ≡ 1 mod 4 so that ζm = −1 ∈ Q and
∆(12) = 0. Then we see that the cyclic symmetry µ2(12) = µ2(21) of Theorem 1.2.5(1) is nothing
but the Gauss reciprocity for the Legendre symbol:(

p2

p1

)
2

=
(
p1

p2

)
2

.

For p1, p2 ≡ 3 mod 4, we do not have the symmetry for the linking number mod 2, i.e. µ2(12) 
=
µ2(21), although the symmetry of µ2(ij) holds trivially by ∆(12) = ∆(21) = Z/2Z. As an example,
let p1 = 5, p2 = 29. Then we have lk2(5, 29) = lk2(29, 5) = 0 so that the primes 5 and 29 are not
linked modulo 2, but we also see that lk4(5, 29) = lk4(29, 5) ≡ 2 mod 4. Thus 5 and 29 may look as
if they are linked to each other in Z/4Z as shown in Figure 1.

Example 1.3.2 (Triple symbol). The triple Milnor invariant µm(123) in (Z/mZ)/∆(123) is an
invariant for the Galois group Gal(K3/Q) where Kq are the Galois extensions over Q unrami-
fied outside p1, p2 defined in Theorem 1.2.7. Assume that lkm(pi, pj) = µm(ji) = 0 for 1 � i 
= j � 3
and that pi ≡ 1 mod l2 (1 � i � 3) for l = 2, 3 so that we have ∆(123) = 0. Moreover, we have
Gal(K3/Q) = N3(Z/mZ) and K2 is the bicyclic field k1k2 where ki is the cyclic extension over Q

of degree m unramified outside pi, i = 1, 2. Since the inertia group over pi generated by ρ(123)(τi)
has order m for i = 1, 2, K3 is an unramified extension over K2. By Theorem 1.2.7(2), for a prime
divisor p of p3 in K2, we have

Gal(K3/K2)
∼−→ Z/mZ;

(
K3/K2

p

)
�→ µm(123).

Thus, as we showed in § 3.2 of [Mor02a], our Milnor invariant µm(123) gives a natural interpretation
of the Rédei triple symbol [p1, p2, p3], which is defined in the case m = 2 such thatK2 = Q(

√
p1,
√
p2)
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Figure 1.

and K3 is the Galois extension of Q with dihedral Galois group N3(F2) of degree eight ([Réd38],
see also [Fur80]). The cyclic symmetry and shuffle relation of Theorem 1.2.5 and Theorem 3.2.5 of
[Mor02a] yield the following corollary immediately.

Corollary 1.3.3 [Réd38, Satz 2 and Satz 4]. The Rédei triple symbol [p1, p2, p3] is invariant under
any permutation of p1, p2, p3.

2. The Massey products in Galois cohomology and their connection with the Milnor
invariants

In this section, following [Dwy75, Kra66, May69], we introduce the Massey products and recall
some basic properties in the context of the profinite group cohomology, and then establish our main
Theorem 2.3.2 giving the connection between the refined Milnor invariants in § 1 and certain Massey
products in the cohomology of the Galois group GS(l).

2.1 The definition and some properties
Let G be a profinite group and let R be a commutative ring with identity on which G acts trivially.
Let C∗(G,R) be the complex of inhomogeneous cochains of G with coefficient in R, equipped with
the coboundary operator d of degree one, and let the cohomology H∗(G,R) be defined to be the
homology of the complex C∗(G,R). The graded module A(G,R) =

⊕
p�0C

p(G,R) has the structure
of R-algebra by the cup product defined as

(a ∪ b)(g1, . . . , gp+q) = a(g1, . . . , gp)b(gp+1, . . . , gp+q)

for a ∈ Cp(G,R), b ∈ Cq(G,R), and gi ∈ G. Thus we have a differential graded R-algebra (DGA)
(A(G,R), d) satisfying

d(a ∪ b) = da ∪ b+ (−1)pa ∪ db, a ∈ Cp(G,R), b ∈ Cq(G,R).

Therefore, we can consider the Massey product structure on the DGA A(G,R) according to the
general procedure (cf. [May69]). However, we shall deal with only low (one- or two-) dimensional
cohomology groups in the following discussion, and so we introduce here the Massey products only
on H1(G,R). Note that our sign convention is different from that of [Kra66, May69]but the same
as that of [Dwy75].

Definition 2.1.1. Let r � 2 and let α1, . . . , αr ∈ H1(G,R). The rth Massey product of α1, . . . , αr

is said to be defined if there is an array

A = {aij ∈ C1(G,R) | 1 � i < j � r + 1, (i, j) 
= (1, r + 1)}
such that:
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1) ai,i+1 is a representative of αi, 1 � i � r;

2) daij =
∑j−1

k=i+1 aik ∪ akj, j 
= i+ 1.

Such an array A is called a defining system for the product and the value of the product relative to
A is defined to be the cohomology class of the 2-cocycle

3)
∑r

k=2 a1k ∪ ak,r+1

and it is denoted by 〈α1, . . . , αr〉A. The Massey product 〈α1, . . . , αr〉 is usually denoted for the subset
of H2(G,R) of all 〈α1, . . . , αr〉A for some defining system A. The indeterminacy of 〈α1, . . . , αn〉 is
defined to be the subset {a − b | a, b ∈ 〈α1, . . . , αr〉}. We also note that the defining system A is
identified with the (r + 1) × (r + 1) upper triangular unipotent matrix, denoted also by A, over
C1(G,R) with the (i, j) entry being aij for 1 � i < j � r + 1, where (i, j) 
= (1, r + 1) and the
(1, r + 1) entry is zero. (See Proposition 2.1.5 below.)

We note that the basic properties of the Massey products in [Kra66] and [May69] (for singular
cohomology) also hold for the profinite group cohomology, since we have isomorphisms for G =
lim←−Gi, Gi being finite,

H∗(G,R) = lim−→H∗(Gi, R) = lim−→H∗(K(Gi, 1), R)

where K(Gi, 1) is the Eilenberg–MacLane space.

We recollect some properties from [Kra66, Dwy75].

2.1.2. Let f : G′ −→ G be a homomorphism of profinite groups. Then if 〈α1, . . . , αr〉 is defined
for αi ∈ H1(G,R) with defining system A = (aij), then so is 〈f∗(α1), . . . , f∗(αn)〉 with defining
system A∗ = (f∗(aij)), and f∗(〈α1, . . . , αr〉) ⊂ 〈f∗(α1), . . . , f∗(αr)〉. If f is an isomorphism, the
equality holds.

2.1.3. (cf. [Kra66, Lemma 20]). Assume that for any β1, . . . , βs, s < r, 〈β1, . . . , βs〉 is defined
and 〈β1, . . . , βs〉 = 0. Then the rth Massey product 〈α1, . . . , αr〉 is defined for αi ∈ H1(G,R) and
〈α1, . . . , αr〉 has no indeterminacy, i.e. it consists of a single element. For the case r = 2, the product
is given by the cup product 〈α1, α2〉 = α1 ∪ α2, and has no indeterminacy.

2.1.4. ([Kra66, Theorem 8]). Assume 〈α1, . . . , αr〉 is defined. Then 〈αr, . . . , α1〉 is defined and
〈α1, . . . , αr〉 = (−1)r−1〈αr, . . . , α1〉.

A group-theoretic meaning of the Massey product is given as an obstruction for the lifting of a
nilpotent representation. Let Nk(R) be the group of k × k upper triangular unipotent matrices
over R and Zk(R) the center of Nk(R) as in Subsection 1.2, and set Nk(R) = Nk(R)/Zk(R)
so that for A = (aij) and A′ = (a′ij) in Nk(R), A ≡ A′ mod Zk(R) if and only if aij = a′ij
for (i, j) 
= (1, k). Suppose A = (aij) is a defining system for the Massey product 〈α1, . . . , αr〉,
αi ∈ H1(G,R). Condition 2 of Definition 2.1.1 means that φA := (−aij) mod Zr+1(R) defines a
homomorphism φA : G −→ Nr+1(R). Then we have the following.

Proposition 2.1.5. (cf. [Dwy75, Theorem 2.4]). Let α1, . . . , αr ∈ H1(G,R). Then the correspon-
dence A �→ φA gives a bijection between the set of defining systems A for the Massey product
〈α1, . . . , αr〉 and continuous group homomorphism φ = (φij) : G −→ N r+1(R) with φi,i+1 = αi

(1 � i � r). Moreover, the value 〈α1, . . . , αr〉A = 0 if and only if φA lifts to a homomorphism
G −→ Nr+1(R).
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Proof. The bijection follows from conditions 1 and 2 of Definition 2.1.1. To see the latter assertion,
it suffices to note that 〈α1, . . . , αr〉A corresponds to the group extension

1 −→ R = Zr+1(R) −→ E
pr−→ G −→ 1

where E = {(g, u) ∈ G×Nr+1(R) | φA(g) = u mod Zr+1(R)}.

2.2 Stein’s formula and the transgression
Let G be a finitely generated pro-l group with a minimal presentation

1 −→ N −→ F
π−→ G −→ 1

where F is a free pro-l group on x1, . . . , xn and we set τi = π(xi). Let leG be the exponent of G/G(2)

and we fix m = le with 1 � e � eG so that H1(F,Z/mZ) = H1(G,Z/mZ) � (Z/mZ)n. In this
subsection, we give a general formula bridging the Magnus coefficients of f ∈ N (cf. Subsection 1.2)
and the Massey products 〈α1, . . . , αr〉, αi ∈ H1(G,Z/mZ) via the transgression. Our formula is
based on the following (pro-l version of) Stein’s formula [Ste90].

Proposition 2.2.1. Let ψ = (ψij) : F −→ Nr+1(Z/mZ) be a continuous homomorphism. Then we
have, for 1 � i < j � r + 1 and f ∈ F ,

ψij(f) =
j−i∑
k=1

∑
c1+···+ck=j−i

∑
I=(i1···ik)

ψi,i+c1(xi1)ψi+c1,i+c1+c2(xi2) · · ·ψj−ck,j(xik)εI(f)m

where c1, . . . , ck run over positive integers satisfying c1 + · · · + ck = j − i and I = (i1 · · · ik) over
multi-indices 1 � i1, . . . , ik � n.

Proof. Consider the map ψ′ : F → Nr+1(Z/mZ) whose (i, j)-component is given by the right-hand
side of the above formula. Then, as in the proof of Lemma 1.5 of [Ste90], we can see that ψ′ gives
a homomorphism. Since ψ(xi) = ψ′(xi) for 1 � i � n, we have ψ = ψ′.

Recall that the transgression tg : H1(N,Z/mZ)G → H2(G,Z/mZ) is defined as follows.
For a ∈ H1(N,Z/mZ)G, choose a 1-cochain b : F → Z/mZ such that b|N = a. The value
db(f1, f2), fi ∈ F , depends only on the cosets f1 mod N and f2 mod N , and so there is a
2-cocycle c ∈ C2(G,Z/mZ) such that π∗(c) = db. Then we set tg(a) = c. By the Hochschild–
Serre sequence, tg is an isomorphism, and we let tg∨ : H2(G,Z/mZ)→ H1(N,Z/mZ)G be the dual
of tg (Hopf’s isomorphism).

Theorem 2.2.2. With the notation as above, let α1, . . . , αr ∈ H1(G,Z/mZ) and let A = (aij)
be a defining system for the Massey product 〈α1, . . . , αr〉. Let f ∈ N and set η = (tg∨)−1(f mod
Nm[F,N ]). Then we have

〈α1, . . . , αr〉A(η) =
r∑

k=1

(−1)k+1
∑

c1+···+ck=r

∑
I=(i1···ik)

a1,1+c1(τi1) · · · ar+1−ck,r+1(τik)εI(f)m

where c1, . . . , ck run over positive integers satisfying c1 + · · · + ck = r and I = (i1 · · · ik) over
multi-indices 1 � i1, . . . , ik � n.

Proof. Let φA : G −→ N r+1(Z/mZ) be the homomorphism corresponding to A by Proposition 2.1.5.
For a ∈ C∗(G,Z/mZ), we simply write a∗ for π∗(a) in the following. By (2.1.2), A∗ = (a∗ij) is a
defining system for 〈α∗

1, . . . , α
∗
r〉 and π∗(〈α1, . . . , αr〉A) = 〈α∗

1, . . . , α
∗
r〉A∗ =

[∑r
k=2 a

∗
1k ∪ a∗k,r+1

]
.

Since H2(F,Z/mZ) = 0, there is a b ∈ C1(F,Z/mZ) such that db =
∑r

k=2 a
∗
1k ∪ a∗k,r+1. Hence we

have tg(b|N ) = 〈α1, . . . , αr〉A, and the homomorphism φA∗ = φA ◦π corresponding to A∗ lifts to the
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homomorphism φ̃A∗ : F −→ Nr+1(Z/mZ) given by

φ̃A∗ =




1 −a∗12 −a∗13 . . . −a∗1r −b
0 1 −a∗23 . . . −a∗2r −a∗2,r+1

...
. . . . . . . . .

...
...

...
. . . . . .

...
...

0 . . . . . . 0 1 −a∗r,r+1

0 . . . . . . 0 0 1



.

Therefore, we have

〈α1, . . . , αr〉A(η) = tg(b|N )((tg∨)−1(f mod Nm[F,N ]))

= b(f)

=
r∑

k=1

(−1)k+1
∑

c1+···+ck=r

∑
I=(i1···ik)

a∗1,1+c1(xi1) · · · a∗r+1−ck,r+1(xik)εI(f)m

=
r∑

k=1

(−1)k+1
∑

c1+···+ck=r

∑
I=(i1···ik)

a1,1+c1(τi1) · · · ar+1−ck,r+1(τik)εI(f)m

where the third equality follows from Proposition 2.2.1.

Corollary 2.2.3. With the notation as above, assume f ∈ Fr,m ∩N . Then we have

〈α1, . . . , αr〉A(η) = (−1)r+1
∑

I=(i1···ir)

α1(τi1) · · ·αr(τir)εI(f)m.

Proof. This follows from the fact that εI(f)m = 0 for |I| < r.

2.3 The normalized Massey products and the Milnor µm-invariants

We first introduce the notion of a normalized Massey system following Turaev [Tur79]. We keep the
same notation as in § 2.2. For an ideal a ⊂ a′, we denote by ϕaa′ the homomorphism C∗(G, (Z/mZ)/a)
→ C∗(G, (Z/mZ)/a′) induced by the natural map (Z/mZ)/a→ (Z/mZ)/a′.

Definition 2.3.1. A normalized Massey system (a, a) for (G; τ1, . . . , τn) over Z/mZ is a system of
ideals a(J) of Z/mZ and 1-cochains a(J) ∈ C1(G, (Z/mZ)/a(J)), where J ranges over multi-indices
of |I| � 1, which satisfies the following conditions:

1) a(J) is the smallest ideal containing the ideal of Z/mZ generated by
(

leG
t

)
, 1 � t � |J |, and

all a(J ′), J ′ running over all proper subsequences of J , and such that for J = (j1 · · · js),
s∑

k=2

ϕ
a(j1···jk−1)
a(J) (a(j1 · · · jk−1)) ∪ ϕa(jk···js)

a(J) (a(jk · · · js))

is null-cohomologous (in particular, a(1) = · · · = a(n) = 0);

2) this sum equals da(I) in C2(G, (Z/mZ)/a(I)) (in particular, da(i) = 0); and

3) a(j)(τj) = 1 for 1 � j � n and a(J)(τi) = 0 for other cases.
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It is easy to see by induction on |J | that a normalized Massey system exists. For a multi-index
I = (i1 · · · ir) with r � 2, we denote by m(a)(I) the ideal of Z/mZ generated by

(
leG
t

)
, 1 � t � |I|,

and all a(I ′), I ′ taken over all proper subsequences of I, and by m(a)(I) the cohomology class of
the 2-cocycle

r∑
k=2

ϕ
a(i1···ik−1)
m(a)(I) (a(i1 · · · ik−1)) ∪ ϕa(ik···ir)

m(a)(I) (a(ik · · · ir)) (I = (i1 · · · ir)).

The collection (m(a),m(a)) is called the product of a normalized Massey system (a, a).

Let us go back to our arithmetic situation with G being the Galois group GS(l), eG = eS .
We use the same notation as in § 1 which is consistent with that in Subsection 2.2. In order to
obtain an analog of Turaev’s formula for a link [Tur79], the normalized Massey product must be
evaluated on a suitable second homology class ηi representing an analog of the ‘boundary of tubular
neighborhood’ for a prime pi. In view of the analogy (1.1.3), we define this class ηi as follows.
First note that the local Galois group Gi := Gal(Qpi(l)/Qpi) has the presentation Gi = Fi/Ni where
Fi is the free pro-l group generated by xi, yi and Ni is the closed subgroup generated normally by
ri := xpi−1

i [x−1
i , y−1

i ]. Let tg∨ : H2(Gi,Z/mZ) ∼→ H1(Ni,Z/mZ)Gi = Ni/N
m
i [Ni, Fi] � Z/mZ be

the dual of the transgression (Hopf’s isomorphism) as before. Noting that H2(Spec(Qpi),Z/mZ) =
H2(Gi,Z/mZ), we define the class ηi to be the image of the canonical generator (tg∨)−1(ri) of
H2(Gi,Z/mZ) under the map H2(Gi,Z/mZ) → H2(GS(l),Z/mZ). Of course, ηi is defined with
coefficient (Z/mZ)/b for any ideal b of Z/mZ.

Then our main result, which gives the connection between the normalized Massey products and
the Milnor µm-invariants, is stated as follows.

Theorem 2.3.2. Let (a, a) be a normalized Massey system for (GS(l); τ1, . . . , τn). Let I = (i1 · · · ir)
be a multi-index with 2 � r � leS and let ηi be the class (tg∨)−1(ri) defined with coefficient
(Z/mZ)/m(a)(I). Then we have

1) m(a)(I) = ∆(I); and

2) m(a)(I)(ηir ) = −m(a)(I)(ηi1) ≡ (−1)rµm(I) mod ∆(I).

Proof. Note that {a(1), . . . , a(n)} forms the Z/mZ-basis of H1(GS(l),Z/mZ), Kronecker dual to
the monodromies {τ1, . . . , τn}. Let J = (j1, . . . , js) be any subsequence of I (1 � s � r). For 1 �
p < q � r + 1, (p, q) 
= (1, r + 1), we set apq = ϕ

a(ip···iq−1)
m(a)(I) (a(ip · · · iq−1)). By conditions 1–3 of

Definition 2.3.1, we see that A = (apq) forms a defining system of the product of a(1), . . . , a(n) over
(Z/mZ)/m(a)(J) and its value relative to A is given by m(a)(J) (concretely, apq’s are given by ρI

in § 1.2 mod m(a)(J)). By Theorem 2.2.2, we have

m(a)(J)(ηj) = (−1)r+1εJ(xpj−1
j [x−1

j , y−1
j ])m mod m(a)(J)

where ηj is the class (tg∨)−1(rj) with coefficient (Z/mZ)/m(a)(I).

By Lemma 1.2.2, we have

εJ(xpj−1
j [x−1

j , y−1
j ]) ≡



µm(j2 · · · jsj1), j = j1,

−µm(j1 · · · js−1js), j = js,

0, otherwise.

mod ∆(J)

Hence, by the cycle relation 1 of Theorem 1.2.5, we have

m(a)(J)(ηjs) = −m(a)(J)(ηi1) = (−1)sµm(J) mod m(a)(J) + ∆(J). (2.3.3)
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On the other hand, note that ϕm(a)(J)
a(J) (m(a)(J)) is the cohomology class of the cocycle

r∑
k=2

ϕ
a(j1···jk−1)
a(J) (a(j1 · · · jk−1)) ∪ ϕa(jk···js)

a(J) (a(jk · · · js)).

By the definition of a(J) and using equation (2.3.3), we see by induction on |J | that a(J ′) is the ideal
generated by ∆(J ′) and µm(J ′) for any proper subsequence J ′ of J , and hence m(a)(J) = ∆(J).
Taking J to be I in (2.3.3), we obtain the desired assertion.

Theorem 2.3.2 is seen as a generalization of the well-known relation between the power residue
symbol and the cup product [Koc70, Ser68] to the higher order operations.

Example 2.3.4.

1) (Linking number) The following is the well-known relation between the cup product and the
linking number or power residue symbol:

(a(1) ∪ a(2))(η2) ≡ lkm(p1, p2) mod ∆(12).

2) (Triple symbol) Assume that lkm(pi, pj) = µm(ji) = 0 for 1 � i 
= j � 3 and that pi ≡ 1
mod l2 (1 � i � 3) for l = 2, 3 so that we have ∆(123) = 0. Then we have

(a(12) ∪ a(3) + a(1) ∪ a(23))(η1) ≡ µ2(123) mod m.

This gives a cohomological interpretation of the Rédei triple symbol for the case m = 2.

Remark 2.3.5. In this paper, we have introduced the Massey products in terms of Galois cohomology
which is group-theoretic and elementary. More geometrically, it may be natural to use the étale
cohomology of Spec(Z) \S. To define the Massey products on the étale cohomology, we can use the
Čech cohomology construction, due to Verdier, via hypercoverings [AGV72].2 Suppose in general
that X is a scheme and let R be an étale sheaf of ring on X. Let U• be the hypercovering of the étale
site on X, and let R(U•) be the associated cochain complex. We then have the Alexander–Whitney
product

R(Um)×R(Um) −→ R(Um+n)
on the cochains which equips R(U•) =

⊕
n�0R(Un) the structure of a DGA. Thus, according to

the general procedure (cf. Subsection 2.1), we can introduce the Massey products on H∗(R(U•)).
Since we have

H∗(Xét,R) � lim−→H∗(R(U•))
where the colimit is over the opposite category of the homotopy category of the hypercoverings U•
of X ([AGV72], see also [AM69, Fri82]), we obtain the Massey product structure on H∗(Xét,R).
For our case where X = Spec(Z) \ S, R = Z/mZ, we can use the Čech nerves for hypercoverings.
Furthermore, the class η of a ‘boundary of the tubular neighborhood’ of a prime p is defined by
the image of the canonical generator of H2(Spec(Qp),Z/mZ) (cf. § 2.2) under the natural map
H2(Spec(Qp),Z/mZ)→ H2(Spec(Z) \ S,Z/mZ).
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