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Abstract. We remove the assumption ‘p 6¼ 2 or k is totally imaginary’ from several well-known

theorems on Galois groups with restricted ramification of number fields. For example, we
show that the Galois group of the maximal extension of a number field k which is unramified
outside 2 has finite cohomological 2-dimension (also if k has real places).
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1. Introduction

Number theorist’s nightmare, the prime number 2, frequently causes technical pro-

blems and requires additional efforts. In Galois cohomology, the problems with

p ¼ 2 are essentially due to the fact that the decomposition groups of the real places

are 2-groups and so the case of a totally imaginary number field is comparatively

easier to deal with.

A classical object of study in number theory is Galois groups with restricted rami-

fication. For a number field k, a set S of primes of k and a prime number p, one is

interested in the Galois group GSð pÞ ¼ GðkSð pÞjkÞ of the maximal p-extension kSð pÞ

of k which is unramified outside S. If S is empty, then GSð pÞ is the Galois group of

the so-called p-class field tower of k and, besides the fact that it can be infinite

(Golod- �Safarevi�c), not much is known about this group. The situation is easier in

the case that S contains the set Sp of primes dividing p, where the cohomological

dimension of GSð pÞ is known to be less than or equal to two (cf. [9], (8.3.17),

(10.4.9)). However, there is an exception: if p ¼ 2 and k has at least one real place.

If, in this exceptional case, S contains all real places, then these places become com-

plex in kSð2Þ and therefore GSð2Þ, containing involutions, has infinite cohomological

dimension. Furthermore, the virtual cohomological dimension vcdGSð2Þ is less than

or equal to two in this case, i.e. GSð2Þ has an open subgroup U with cd U4 2. The

case when not all real places are in S has been open so far and is the subject of this

paper.
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THEOREM 1. Let k be a number field and let S be a set of primes of k which

contains all primes dividing 2. If no real prime is in S, then cdGSð2Þ4 2. If S

contains real primes, then they become complex in kSð2Þ and cdGSð2Þ ¼ 1,

vcdGSð2Þ4 2.

If S is finite, then HiðGSð2ÞÞ :¼ HiðGSð2Þ;Z=2ZÞ is finite for all i and w2ðGSð2ÞÞ ¼

�r2; where w2ðGSð2ÞÞ ¼
P2

i¼0ð�1Þ
i dimF2 H

iðGSð2ÞÞ is the second partial Euler charac-

teristic and r2 is the number of complex places of k.

The key for the proof of Theorem 1 is the following Theorem 2 in the case p ¼ 2

and T ¼ S [ SR, where SR is the set of real places of k. Theorem 2 is the number the-

oretical analogue of Riemann’s existence theorem and was previously known under

the assumption that p is odd or that S contains SR (see [9], (10.5.1)).

THEOREM 2. Let k be a number field, p a prime number and T 	 S 
 Sp sets of

primes of k. Then the canonical homomorphism

�
p2T n SðkSðpÞÞ

Tðkpð pÞjkpÞ �!GðkTð pÞjkSð pÞÞ

is an isomorphism. Here TðkpðpÞjkpÞ � GðkpðpÞjkpÞ is the inertia group and � denotes

the free pro-p-product.

Since the cyclotomic Z2-extension k1ð2Þ of k is contained in kS2 ð2Þ, the group

GS2 ð2Þ is infinite, in particular, it is nontrivial. Hence, for S 
 S2 and S \ SR ¼ Ø,

the group GSð2Þ is of cohomological dimension 1 or 2. The next theorem gives a cri-

terion for which case occurs. In condition ð3Þ below, Cl0SðkÞð2Þ denotes the 2-torsion

part of the S-ideal class group in the narrow sense of k.

THEOREM 3. Assume that S 
 S2 and S \ SR ¼ Ø. Then cdGSð2Þ ¼ 1 if and only if

the following conditions ð1Þ–ð3Þ hold.

ð1Þ S2 ¼ fp0g, i.e. there exist exactly one prime dividing 2 in k.

ð2Þ S ¼ fp0g [ fcomplex placesg.

ð3Þ Cl0SðkÞð2Þ ¼ 0.

In this case, GSð2Þ is a free pro-2-group of rank r2 þ 1 and p0 does not split in kS[SR
ð2Þ.

In particular, if k is totally real and GSð2Þ is free, then kSð2Þ ¼ k1ð2Þ.

Let k be a number field, p a prime number and S 
 Sp a set of places of k. A

(necessarily infinite) extension Kjk is called p-S-closed if it has no p-extension which

is unramified outside S. If p is odd and K is p-S-closed, then the group

ClSðKðmpÞÞð pÞð jÞ
GðKðmpÞjKÞ is trivial for j ¼ 0;�1, where mp is the group of pth roots

of unity, ð pÞ denotes the p-torsion part and ð jÞ the jth Tate-twist (see [9], (10.4.7)).

The corresponding result for p ¼ 2 is the following
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THEOREM 4. Let k be a number field, S 
 S2 a set of primes of k and K a 2-S-closed

extension of k. Then the following holds.

ðiÞ ClSðKðm4ÞÞð2Þ ¼ 0,
ðiiÞ Cl0SðKÞð2Þ ¼ 0:

Remarks. (1) The triviality of ClðKÞð2Þ and, hence, also that of ClSðKÞð2Þ, follows

easily from the principal ideal theorem; assertions (i) and (ii) do not.

(2) In (i) one can replace Kðm4Þ by any totally imaginary extension of degree 2 of K
in KSð2Þ.

Finally, we consider the full extension kS, i.e. the maximal extension of k which is

unramified outside S, and its Galois group GS ¼ GðkSjkÞ.

THEOREM 5. Let k be a number field and S a set of primes of k containing all

primes dividing 2. Then vcd2GS 4 2 and cd2GS 4 2 if and only if S contains no real

primes. For every discrete GSð2Þ-module A the inflation maps

inf : HiðGSð2Þ;AÞ �!HiðGS;AÞð2Þ

are isomorphisms for all i5 1.

Remark. If cdGSðKÞð2Þ ¼ 2 (e.g. if K contains at least two primes dividing 2) for

some finite subextension K of k in kS, then vcd2GS ¼ 2. This is always the case if

S 	 SR because the class numbers of the cyclotomic fields Qðm2nÞ are nontrivial for

n� 0. But, for example, we do not know whether cd2GðQS2 jQÞ equals 1 or 2. The

answer would be ‘2’ if at least one of the real cyclotomic fields Qðm2n Þ
þ, n ¼ 2; 3; . . . ;

would have a nontrivial class number. But this is unknown.

In Section 5 we investigate the relation between the cohomology of the group

GSðkÞ and the modified étale cohomology of the scheme SpecðOk;SÞ. A discrete

GSðkÞ-module A induces a locally constant sheaf on SpecðOk;SÞet;mod, which we will

denote by the same letter. We show the following theorem which is well known if

S contains all real primes (and also for odd p).

THEOREM 6. Let k be a number field and S a finite set of primes of k containing

all primes dividing 2. Then for every 2-primary discrete GSðkÞ-module A the natural

comparison maps HiðGSðkÞ;AÞ �! Hi
et;modðSpecðOk;SÞ;AÞ are isomorphisms for all

i5 0.

For finite A it is not difficult to show that the modified étale cohomology groups

on the right-hand side of the comparison map are finite and that they vanish for

i5 3 if S contains no real primes. Therefore one could deduce Theorem 1 (with

GSðkÞð2Þ replaced by GSðkÞ) from Theorem 6. However, in order to prove

Theorem 6, one needs information on the interaction between the decomposition
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groups of the real primes and so Theorems 1 and 6 are both consequences of

Theorem 2.

The main ingredients in the proofs of Theorems 1–5 are Poitou–Tate duality,

the validity of the weak Leopoldt conjecture for the cyclotomic Zp-extension

and, most essential, the systematic use of free products of bundles of profinite

groups over a topological base. The reason that the above theorems had not been

proven earlier seems to be a psychological one. At least the author always thought

that one has to prove Theorem 1 first, before showing the other assertions.

For example, Theorem 2 for p ¼ 2, T ¼ S2 [ SR and S ¼ S2 was known if

kS2 ð2Þ ¼ k1ð2Þ (see [12], § 4.2, for the case k ¼ Q and [15], Satz 1.4, for the general

case). But now it is Theorem 2 which is used in the proof of Theorem 1. Finally, we

should mention that Theorem 1 was formulated as a conjecture in O. Neumann’s

article [10].

2. Free Products of Inertia Groups

In this section we briefly collect some facts on free products of profinite groups

and how they naturally occur in number theory. For a more detailed presentation

and for proofs of the facts cited below we refer the reader to [9], chap. IV and

chap.X, §1.

A profinite space is a topological space which is compact and totally disconnected.

Equivalently, a profinite space is a topological inverse limit of finite discrete spaces.

A profinite group is a group object in the category of profinite spaces. It can be

shown that a profinite group is the inverse limit of finite groups. A full class of finite

groups c is a full subcategory of the category of all finite groups which is closed under
taking subgroups, quotients and extensions. A pro-c-group is a profinite group which
is the inverse limit of groups in c.
Let T be a profinite space. A bundle of profinite groups G over T is a group object in

the category of profinite spaces over T. We say that G is a bundle of pro-c-groups if
the fibre Gt of G over every point t 2 T is a pro-c-group. The functor ‘constant bun-
dle’, which assigns to a pro-c-group G the bundle pr2 : G� T! T has a left adjoint

fbundles of pro-c-groups over T g �! fpro-c-groupsg
G 7 �! �

T
G:

The image �TG of a bundle G under this functor is called its free pro-c-product. It
satisfies a universal property which is determined by the functor adjunction. Bundles

of pro-c-groups often arise in the following way:
Let G be a pro-c-group and assume we are given a continuous family of closed sub-

groups of G, i.e. a family of closed subgroups fGtgt2T indexed by the points of a pro-

finite space T which has the property that for every open subgroup U � G the set

TðUÞ ¼ ft 2 T jGt � Ug is open in T. Then

G ¼ fðg; tÞ 2 G� T j g 2 Gtg
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is in a natural way a bundle of pro-c-groups over T. We have a canonical homo-

morphism f : �
T
G�!G and we say that G is the free product of the family fGtgt2T

if f is an isomorphism.
The usual free pro-c-product of a discrete family of pro-c-groups as defined in var-

ious places in the literature (e.g. [8]) fits into the picture as follows. For a family

fGigi2I we consider the disjoint union ð[
.

i GiÞ [
. f�g of the Gi and one external point

�. Equipped with a suitable topology, this is a bundle of pro-c-groups over the
one-point compactification �I ¼ I[. f�g of I and the free pro-c-product of the family
fGigi2I coincides with that of the bundle (cf. [9], chap. IV, §3, examples 2 and 4).

For the free product of a discrete family of pro-c-groups we have the following pro-
finite version of Kurosh’s subgroup theorem (see [2] or [9], (4.2.1)).

THEOREM 2.1. Let G ¼ �
i2I

Gi be the free pro-c-product of the discrete family Gi and

let H be an open subgroup of G. Then there exist systems Si of representatives si of the

double coset decomposition G ¼
S.

si2Si
HsiGi for all i and a free pro-c-group F � G of

finite rank

rkðFÞ ¼
X
i2I

½ðG : HÞ � #Si� � ðG : HÞ þ 1;

such that the natural inclusions induce a free product decomposition

H ¼ �
i;si

ðGsi

i \HÞ �F;

where Gsi

i ð¼ siGis
�1
i Þ denotes the conjugate subgroup.

In number theory, continuous families of pro-c-groups occur in the following way.
For a number field k we denote the one-point compactification of the set of all places

of k by SpðkÞ. The compactifying point will be denoted by Zk and should be thought

as the generic point of the scheme SpecðOkÞ in the sense of algebraic geometry or as

the trivial valuation of k from the point of view of valuation theory. For an infinite

extension Kjk, we set

SpðKÞ ¼ lim
 �

k0

Spðk0Þ;

where k0 runs through all finite subextensions of k in K. The complement of the

(closed and open) subset of all Archimedean places of K in SpðKÞ is naturally iso-

morphic to SpecðOKÞ endowed with the constructible topology (see [6], chap. I, §7,

(7.2.11) for the definition of the constructible topology of a scheme). Let S be a

set of primes of k and �S its closure in SpðkÞ ( �S ¼ S if S is finite, �S ¼ S [ fZkg if S

is infinite). The pre-image �SðKÞ of �S under the natural projection SpðKÞ ! SpðkÞ is

the closure of the set SðKÞ of all prolongations of primes in S to K in SpðKÞ.

Now assume thatM 	 K 	 k are possibly infinite extensions of k such thatMjK is

Galois and GðMjKÞ is a pro-c-group. The natural projection �SðMÞ ! �SðKÞ has a

section (in fact, there are many of them). For a fixed section s: �SðKÞ ! �SðMÞ we

consider the family of inertia groups fTsðpÞðMjKÞgp2 �SðKÞ, where by convention
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TZM
¼ f1g. Since a finite extension of number fields is ramified only at finitely many

primes, this is a continuous family of subgroups of GðMjKÞ indexed by �SðKÞ. We

obtain a natural homomorphism

f : �
�SðKÞ

TsðpÞðMjKÞ �!GðMjKÞ;

which we also write in the form

f : �
p2SðKÞ

TpðMjKÞ �!GðMjKÞ:

The cohomology groups of the free product on the left-hand side with coefficients in

a trivial module do not depend on the particularly chosen section s. The question,

however, whether the homomorphism f is an isomorphism does depend on s. More-

over, if s is a section for which f is an isomorphism, we always find a section s0 for

which it is not, at least if c is not the class of p-groups, where p is a prime number. In

the case of pro-p-groups this pathology does not occur because of the following easy

and well-known.

LEMMA 2.2. Let p be a prime number and let f: G0 �!G be a ðcontinuousÞ homo-

morphism of pro-p-groups. Let A be Z=pZ or Qp=Zp with trivial action. Then f is an

isomorphism if and only if the induced homomorphism

Hiðf;AÞ: HiðG;AÞ �!HiðG0;AÞ

is an isomorphism for i ¼ 1 and injective for i ¼ 2.

In the number theoretical situation above, we have the following formula for the

cohomology of the free product with values in a torsion group A (considered as a

module with trivial action) and for i5 1:

Hi �
p2SðK Þ

TpðMjK Þ;A

� �
¼ lim
�!

k0

M
p2Sðk0Þ

HiðTpðM
0jk0Þ;AÞ;

where k0 runs through all finite subextensions of k in K and M0 is the maximal pro-c
Galois subextension of Mjk0 (so M ¼ lim

�!
M0). The limit on the right-hand side

depends on K and not on k and we denote it by
M0

p2SðKÞ
HiðTpðMjKÞ;AÞ: If Kjk

is Galois, then this limit is the maximal discrete GðKjkÞ-submodule of the productQ
p2SðKÞH

iðTpðMjKÞ;AÞ.

3. Proof of Theorem 2

Let us first remark that for p 2 T n SðkÞ the inertia group has the following

structure:

- if p is non-Archimedean and NðpÞ � 1 mod p (i.e. if there is a primitive pth root of

unity in kp), then TðkpðpÞjkpÞ is a free pro-p-group of rank 1, i.e. isomorphic to

Zp.

- if p is non-Archimedean and NðpÞ 6� 1 mod p, then TðkpðpÞjkpÞ ¼ f1g.
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- if p is real and p ¼ 2, then TðkpðpÞjkpÞ ffi Z=2Z.

- if p is real and p 6¼ 2 or if p is complex, then TðkpðpÞjkpÞ ¼ f1g.

If p is odd or if p ¼ 2 and S 	 SR, then Theorem 2 is known (see [9], (10.5.1)). So

we assume that p ¼ 2 and S 6	 SR. For a pro-2-group G we use the notation HiðGÞ

for HiðG;Z=2ZÞ. We start with the following lemma:

LEMMA 3.1. Let G and G0 be pro-2-groups which are generated by involutions and

assume that H2ðG;Q2=Z2Þ ¼ 0 ¼ H2ðG0;Q2=Z2Þ. Let f : G0 ! G be a ðcontinuousÞ

homomorphism. Then the following assertions are equivalent.

ðiÞ f is an isomorphism.

ðiiÞ H1ðfÞ : H1ðGÞ ! H1ðG0Þ is an isomorphism.

ðiiiÞ H2ðfÞ : H2ðGÞ ! H2ðG0Þ is an isomorphism.

Proof. Clearly, (i) implies (ii) and (iii) and, by Lemma 2.2, (ii) and (iii) together

imply (i). So it remains to show that (ii) and (iii) are equivalent. Since

H2ðG;Q2=Z2Þ ¼ 0, the exact sequence 0! Z=2Z! Q2=Z2! Q2=Z2! 0 induces

the four term exact sequence

0! H1ðGÞ!
a

H1ðG;Q2=Z2Þ!
b

H1ðG;Q2=Z2Þ!
g

H2ðGÞ ! 0:

Since G is generated by involutions, a is an isomorphism. Hence b is zero and g is an
isomorphism. The same argument also applies to G0 and therefore (ii) and (iii) are

both equivalent to

ðivÞ H1ðf;Q2=Z2Þ : H1ðG;Q2=Z2Þ ! H1ðG0;Q2=Z2Þ is an isomorphism.

This concludes the proof. &

We show Theorem 2 first in the special case T ¼ S2 [ SR, S ¼ S2. The groups

�p2SRðkS2
ð2ÞÞ Tðkpð2ÞjkpÞ and GðkS2[SR

ð2ÞjkS2ð2ÞÞ are both generated by involutions.

Since H2ðTðkpð2ÞjkpÞ;Q2=Z2Þ ¼ 0 for every p 2 SRðkS2ð2ÞÞ, we have

H2 �
p2SRðkS2

ð2ÞÞ
Tðkpð2ÞjkpÞ;Q2=Z2

� �
¼ 0:

By [9], (10.4.8), the inflation map

H2ðGðkS2[SR
ð2ÞjkS2 ð2ÞÞ;Q2=Z2Þ �! H2ðGðkS2[SR

jkS2 ð2ÞÞ;Q2=Z2Þ

is an isomorphism and, since kS2 ð2Þ contains the cyclotomic Z2-extension k1ð2Þ of k,

the validity of the weak Leopoldt conjecture for the cyclotomic Zp-extension (see [9],

(10.3.25)) implies (by [9], (10.3.22)) that

H2ðGðkS2[SR
ð2ÞjkS2 ð2ÞÞ;Q2=Z2Þ ¼ 0:
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By Lemma 3.1 and the calculation of the cohomology of free products (see Section

1), it therefore suffices to show that the natural map

H2ðfÞ : H2ðGðkS2[SR
ð2ÞjkS2 ð2ÞÞ !

M
p2SRðkS2

ð2ÞÞ

0H2ðTðkpð2ÞjkpÞÞ

is an isomorphism. Now let K be a finite extension of k inside kSð2Þ. The 9-term exact

sequence of Poitou–Tate induces the exact sequence

0!S2ðKS2[SR
;Z=2ZÞ ! H2ðGðkS2[SR

jKÞ;Z=2ZÞ !M
p2S2[SRðKÞ

H2ðGð �kpjKpÞ;Z=2ZÞ ! H0ðGðkS2[SR
jKÞ; m2Þ

_
! 0;

where _ denotes the Pontryagin dual. Furthermore, we have

S2ðKS2[SR
;Z=2ZÞ ffiS1ðKS2[SR

; m2Þ
_
¼S1ðKS2[SR

;Z=2ZÞ_¼ClS2 ðKÞ=2:

For a finite, nontrivial extension K0 of K inside kS2 ð2Þ the corresponding homo-

morphism H0ðGðkS2[SR
jKÞ; m2Þ

_
! H0ðGðkS2[SR

jK0Þ; m2Þ
_ is the dual of the norm

map, hence trivial. Furthermore, H2
�
Gð �kpjðkS2 ð2ÞÞpÞ;Z=2Z

�
¼ 0 for p 2 S2ðkS2 ð2ÞÞ

(see [9], (7.1.8)(i)). Therefore, we obtain the following exact sequence in the limit over

all finite subextensions Kjk in kS2ð2Þjk (the omitted coefficients are Z=2Z):

ClS2 ðkS2ð2ÞÞ=2,!H2
�
GðkS2[SR

jkS2ð2ÞÞ
�
�!!

M
p2SRðkS2

ð2ÞÞ

0H2
�
Gð �kpjkpÞ

�
:

The principal ideal theorem implies that ClðkS2 ð2ÞÞð2Þ ¼ 0, and therefore also

ClS2ðkS2 ð2ÞÞ=2 ¼ 0. Furthermore, Gð �kpjkpÞ ¼ Tðkpð2ÞjkpÞ for p 2 SRðkS2 ð2ÞÞ and the

inflation map

H2
�
GðkS2[SR

ð2ÞjkS2 ð2ÞÞ
�
�!H2

�
GðkS2[SR

jkS2 ð2ÞÞ
�

is an isomorphism (see [9], (10.4.8)). This concludes the proof of Theorem 2 in the

case T ¼ S2 [ SR, S ¼ S2. For the proof in the general case we need the

PROPOSITION 3.2. Let k be a number field, p a prime number and T 	 S 
 Sp sets of

primes in k. Let K be a p-Sp-closed extension of k. Then the following assertions are

equivalent.

ðiÞ The natural homomorphism

fT;Sp: �
p2T n Sp ðKÞ

TðKpðpÞjKpÞ ! GðKTðpÞjKÞ

is an isomorphism.

ðiiÞ The natural homomorphisms

fT;S : �
p2T n SðKSðpÞÞ

TðKpð pÞjKpÞ ! GðKTð pÞjKSð pÞÞ

and
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fS;Sp
: �

p2S n SpðKÞ
TðKpð pÞjKpÞ ! GðKSð pÞjK Þ

are isomorphisms.

Here � denotes the free pro-p-product.

Proof. If fT;Sp
is an isomorphism, then also fS;Sp

is an isomorphism. Further-

more, a straightforward application of Theorem 2.1 shows that also fT;S is an iso-

morphism in this case. Let us show the converse statement. Assume that fT;S and

fS;Sp
are isomorphisms. Note that all primes in S n SpðKSð pÞÞ split completely in

KTð pÞjKSð pÞ. Therefore the extension of pro-p-groups

1! GðKTð pÞjKSð pÞÞ ! GðKTð pÞjKÞ ! GðKSð pÞjKÞ ! 1 ð1Þ

splits. By Lemma 2.2, we have to show that the induced homomorphism

HiðfT;Sp
Þ : Hi

�
GðKTð pÞjKÞ

�
�!

M
p2T n SpðKÞ

0HiðTðKpð pÞjKpÞÞ

is an isomorphism for i ¼ 1 and injective for i ¼ 2 (coefficients Z=pZ). This follows

easily from the Hochschild–Serre spectral sequence associated to the split exact

sequence (1):

E ij
2 ¼ Hi

�
GðKSð pÞjKÞ;H

jðGðKTð pÞjKSð pÞÞÞ
�
¼)HiþjðGðKTð pÞjKÞÞ:

First of all, the differentials d2 are zero (�d2 is the cup-product with the extension

class, see [9], (2.1.8)). Furthermore, every prime in T n SðKÞ splits completely in

KSð pÞjK because these primes are unramified in KSð pÞjK and K contains K1ð pÞ.

Since fT;S is an isomorphism, the GðKSðpÞjKÞ-module ( j5 1)

HjðGðKTð pÞjKSð pÞÞÞ ¼
M

p2T n SðKSðpÞÞ

0HjðTðKpð pÞjKpÞÞ

¼ IndGðKSðpÞjKÞ

M
p2T n SðKÞ

0HjðTðKpð pÞjKpÞÞ

is cohomologically trivial. Therefore we obtain short exact sequences

0! HiðKSð pÞjKÞ ! HiðKTð pÞjKÞ !
M

p2T n SðKÞ

0HiðTðKpð pÞjKpÞÞ ! 0

for i ¼ 1; 2, and the result follows from the five-lemma. &

Now we can prove Theorem 2 in the general case. It is true for odd p and for p ¼ 2

in the special cases T ¼ S2 [ SR, S ¼ S2 and T ¼ fall primesg, S ¼ S2 [ SR. Apply-

ing Proposition 3.2 in the situation p ¼ 2, T ¼ fall primesg, S ¼ S2 [ SR and

K ¼ kS2ð2Þ, we obtain Theorem 2 in the ‘extremal’ case T ¼ fall primesg, S ¼ S2.

Applying Proposition 3.2 again, we obtain the case T ¼ fall primesg and S arbitrary

and then the general case. This concludes the proof of Theorem 2. &

A straightforward limit process shows the following variant of Theorem 2.
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THEOREM 20. Let k be a number field, p a prime number and T 	 S 
 Sp sets of

primes of k. Let K be a p-S-closed extension field of k. Then the canonical homo-

morphism

�
p2T n SðKÞ

TðKpð pÞjKpÞ �!GðKTð pÞjKÞ

is an isomorphism.

4. Proofs of the Remaining Statements

In order to prove Theorem 1, we may assume that S 6	 SR and we investigate the

Hochschild–Serre spectral sequence

Eij
2 ¼ HiðGSð2Þ;H

jðGðkS[SR
ð2ÞjkSð2ÞÞÞ¼)HiþjðGS[SR

ð2ÞÞ;

where the omitted coefficient are Z=2Z ¼ m2. By Theorem 2, we have complete con-
trol over the GSð2Þ-modules HjðGðkS[SR

ð2ÞjkSð2ÞÞ, which are for j5 1 isomorphic to

IndGSð2Þ

M
p2SR n SðkÞ

HjðGðCjRÞÞ:

In particular, Eij
2 ¼ 0 for ij 6¼ 0. Therefore the spectral sequence induces an exact

sequence

0! H1ðGSð2ÞÞ ! H1ðGS[SR
ð2ÞÞ !

M
p2SR n SðkÞ

H1ðGðCjRÞÞ !

H2ðGSð2ÞÞ ! H2ðGS[SR
ð2ÞÞ !

M
p2SR n SðkÞ

H2ðGðCjRÞÞ ! 0
ð2Þ

and exact sequences

0! HiðGSð2ÞÞ ! HiðGS[SR
ð2ÞÞ !

M
p2SR n SðkÞ

HiðGðCjRÞÞ ! 0 ð3Þ

for i5 3. If S is finite, this shows the finiteness statement on the cohomology of

GSð2Þ and that w2ðGSð2ÞÞ ¼ w2ðGS[SR
ð2ÞÞ: But w2ðGS[SR

ð2ÞÞ ¼ w2ðGS[SR
Þ ¼ �r2 (see

[9], (8.6.16) and (10.4.8)).

For arbitrary S and i5 3 the restriction map

HiðGS[SR
ð2ÞÞ !

M
p2SRðkÞ

HiðGðCjRÞÞ

is an isomorphism (see [9], (8.6.13)(ii) and (10.4.8)). This together with (3) shows that

the natural homomorphism

HiðGSð2ÞÞ !
M

p2S\SRðkÞ

HiðGðCjRÞÞ

is an isomorphism for i5 3. Therefore cd GSð2Þ4 2 if S \ SR ¼ Ø. For later use we

formulate the last result as a proposition.

276 ALEXANDER SCHMIDT

https://doi.org/10.1023/A:1020038431624 Published online by Cambridge University Press

https://doi.org/10.1023/A:1020038431624


PROPOSITION 4.1. Let k be a number field and S 	 S2 a set of primes. Then the

natural homomorphism

HiðGSð2Þ;Z=2ZÞ !
M

p2S\SRðkÞ

HiðGðCjRÞ;Z=2ZÞ

is an isomorphism for i5 3.

In order to conclude the proof of Theorem 1, it remains to show that every real

prime in S ramifies in kSð2Þ. Let S f be the subset of non-Archimedean primes in

S. Then Theorem 2 yields an isomorphism

�
p2SRðkSf ð2ÞÞ

Tðkpð2ÞjkpÞ ffi GðkSð2ÞjkSf ð2ÞÞ

which shows the required assertion. This finishes the proof of Theorem 1. &

Now we prove Theorem 3. To fix conventions, we recall the following definitions.

For a set S of primes of k the group O�k;S of S-units is defined as the subgroup in k�

of those elements which are units at every finite prime not in S and positive at every

real prime not in S. The S-ideal class group Cl0SðkÞ in the narrow sense of k is the

quotient of the group of fractional ideals of k by the subgroup generated by the

non-Archimedean primes in S and the principal ideals ðaÞ with a positive at every real

place of k not contained in S. In particular, Cl0ØðkÞ ¼ Cl
0
ðkÞ is the ideal class group in

the narrow sense and Cl0S[SR
ðkÞ ¼ ClSðkÞ is the usual S-ideal class group. By class

field theory, Cl0SðkÞ is isomorphic to the Galois group of the maximal Abelian exten-

sion of k which is unramified outside SR and in which every prime in S splits com-

pletely. By Kummer theory, we can replace condition (3) of Theorem 3 by the

following condition

fx 2 k�
�� x 2 k�2p0 and 2 j vpðxÞ for every finite prime pg ¼ k�2: ð3Þ

LEMMA 4.2. If S 
 S2 and cdGS2ð2Þ ¼ 1, then S ¼ S2.

Proof. By Theorem 2, we have an isomorphism

�
p2S n S2ðkS2

ð2ÞÞ
Tðkpð2ÞjkpÞ �!

 
GðkSð2ÞjkS2ð2ÞÞ

Since for non-Archimedean primes p 62 S2 the maximal unramified 2-extension

of kp is realized by k1ð2Þ � kS2 ð2Þ, this shows that for p 2 S n S2 the maximal

2-extension of the local field kp is realized by kSð2Þ or, in other words, the natural

homomorphism

Gðkpð2ÞjkpÞ �!GSð2Þ

is injective. But for these primes we have cdGðkpð2ÞjkpÞ5 2 which shows that

S n S2 ¼ Ø. &

Now assume that GS2ð2Þ is free. For a prime p we denote the local group
Gðkpð2ÞjkpÞ by Gp and the inertia group Tðkpð2ÞjkpÞ by T p. By Čebotarev’s density
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theorem, we find a finite set of non-Archimedean primes T 	 S2 such that the nat-

ural homomorphism

H1ðGS2Þ �!
M

p2T n S

H1ðGp=T pÞ

is an isomorphism. It is then an easy exercise using Lemma 2.2 to show that the

natural homomorphism

�
p2T n S2

Gp=T p�!GS2 ð2Þ

is an isomorphism. Theorem 2 for T ¼ S2 [ SR and S ¼ S2 and the same arguments

as in the proof of Proposition 3.2 show that the natural homomorphism

�
p2T n S2

Gp=T p � �
p2SR

Gp�!GS2[SR
ð2Þ

is an isomorphism. Then, by ([16], Theorem 6) or ([9], (10.7.2)), we obtain the condi-

tions (1)–(3) and that the unique prime p0 dividing 2 in k does not split in kS2[SR
. If, on

the other hand, conditions (1)–(3) of Theorem 3 are satisfied, then we obtain (loc. cit.)

the above isomorphism and deduce that GS2ð2Þ is free. The statement on the rank of

GS2 ð2Þ follows from w2ðGS2ð2ÞÞ ¼ �r2. If k is totally real, then the homomorphism

GS2ð2Þ �!Gðk1ð2ÞjkÞ

is a surjection of free pro-2-groups of rank 1 and hence an isomorphism. This con-

cludes the proof of Theorem 3.

Next we show Theorem 4. Let S be a set of finite primes of k and S ¼ S [ SR. If S

is finite, then the image of the group of S-units of k under the logarithm map

Log : O�k;S�!
L

v2S R, a 7! ðlog jajvÞv2S is a lattice of rank equal to #Sþ r1þ

r2 � 1 (Dirichlet’s unit theorem). Complementary to this map is the signature map

(which is also defined for infinite S)

Signk;S : O�k;S�!
M
v2SR

R�=R�2:

More or less by definition, there exists a five-term exact sequence

0! O�k;S ! O�k;S !
M

v2SRðkÞ

R�=R�2! Cl0SðkÞ ! Cl0SðkÞ ! 0;

and so the cokernel of Signk;S measures the difference between the usual S-ideal

class group ClSðkÞ ¼ Cl
0
SðkÞ and that in the narrow sense. Of course this discussion

is void if k is totally imaginary. If K is an infinite extension of k, we define the sig-

nature map

SignK;S : O�K;S�! lim
�!

k0

M
v2SRðk0Þ

R�=R�
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as the limit over the signature maps Signk0;S, where k0 runs through all finite sub-

extension k0jk of Kjk. If K is 2-S-closed, then ClSðKÞð2Þ ¼ 0 and so statement (ii)

of Theorem 4 is equivalent to the statement that SignK is surjective.

Now assume that k, S, K are as in Theorem 4. By Theorem 1, all real places in S

become complex in K. By the principal ideal theorem, ClðKÞð2Þ ¼ 0 and so statement

(i) and (ii) are trivial if K is totally imaginary (note that K ¼ Kðm4Þ in this case). So we
may assume that SRðKÞ 6¼ Ø and, by Theorem 1, we may suppose S \ SR ¼ Ø.

Let K 0 ¼ Kðm4Þ. Then K 0 is totally imaginary and G ¼ GðK 0jKÞ is cyclic of order 2.

Let S ¼ S [ SR and let KS be the maximal (not just the pro-2) extension of K which

is unramified outside S. Inspecting the Hochschild–Serre spectral sequence associ-
ated to KSjKSð2ÞjK and using the well-known calculation of H iðGðKSjKÞ;O�KS;SÞ

(cf. [9], (10.4.8)) we see that

H1ðGðKSð2ÞjKÞ;O�KSð2Þ;SÞ ¼ H1ðGðKSjKÞ;O�KS;SÞð2Þ ð4Þ

¼ ClSðKÞð2Þ ¼ 0

and the same argument shows that

H1ðGðKSð2ÞjK
0 Þ;O�KSð2Þ;SÞ ffi ClSðK

0Þð2Þ: ð5Þ

Next we consider the Hochschild–Serre spectral sequence for the extension

KSð2ÞjK
0jK and the module O�KSð2Þ;S. By (4) and (5), we obtain an exact sequence

0! ClSðK
0Þð2ÞG ! H2ðG;O�K0;SÞ!

f
H2ðGðKSð2ÞjKÞ;O�KSð2Þ;SÞ:

Since G is a 2-group, in order to prove assertion (i), it suffices to show that f is injec-
tive. Let c be a generator of the cyclic group H2ðG;ZÞ. For each prime p 2 SRðKÞ

(respectively for the chosen prolongation of p to KSð2Þ, cf. the discussion in § 1),

the composition TpðKSð2ÞjKÞ ! GðKSð2ÞjKÞ ! G is an isomorphism and we denote

the image of c in H2ðTpðKSð2ÞjKÞ;ZÞ by cp. As is well known, the cup-product with c

induces an isomorphism Ĥ0ðG;O�K0;SÞ!
 

H2ðG;O�K0;SÞ and the similar statement
holds for each cp, p 2 SRðKÞ.

The quotient O�KSð2Þ;S=m21 is uniquely 2-divisible, and so we obtain a natural
isomorphism

H2ðGðKSð2ÞjKÞ; m21Þ �!
 

H2ðGðKSð2ÞjKÞ;O�KSð2Þ;SÞ:

Furthermore, for each p 2 SR n S we obtain an isomorphism

H2ðTpðKSð2ÞjKÞ; m21Þ �!
 

H2ðTpðKSð2ÞjKÞ;O�KSð2Þ;SÞ

ffi H2ðGð �KpjKpÞ; �K�p Þ:

Therefore, the calculation of the cohomology in dimension i5 2 of free products

with values in torsion modules (see [10], Satz 4.1 or [9], (4.1.4)) and Theorem 2

for the pair S, S show that we have a natural isomorphism
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H2ðGðKSð2ÞjKÞ;O�KSð2Þ;SÞ �!
 M

p2SRðKÞ

0H2ðGð �KpjKpÞ; �K�p Þ:

(Alternatively, we could have obtained this isomorphism from the calculation of the

cohomology of the S-units, cf. ([9], (8.3.10)(iii)) by passing to the limit over all finite
subextensions of k in K.) We obtain the following commutative diagram

Ĥ0ðG;O�K0;SÞ � � � ����������!
c L0

p2SRðKÞ

Ĥ0ðGð �KpjKpÞ; �K�p Þ

 
�
�
�
�
�

#

[ c  
�
�
�
�
�

#

L0
[ cp

H2ðG;O�K0;SÞ �!
f

H2ðGðKSð2ÞjKÞ;O�KSð2Þ;SÞ �!
 M

p2SRðKÞ

0H2ðGð �KpjKpÞ; �K�p Þ:

Hence, kerðfÞ ffi kerðcÞ and cokerðfÞ ffi cokerðcÞ. Since

Ĥ0ðG;O�K0;SÞ ¼ O�K;S=NK0 jKðO�K0;SÞ;

each element in kerðcÞ is represented by an S-unit in K and we have to show that all

these are norms of S-units in K 0. Let e 2 O�K;S. Then Kð
ffiffiffi
e
p
ÞjK is a 2-extension which

is unramified outside S, hence trivial. Therefore e is a square in K and if f 2 ¼ e, then

f 2 O�K;S and e ¼ NK0 jKð f Þ.

This concludes the proof of assertion (i).

To show assertion (ii), it remains to show that cokerðSignK;SÞ ¼ cokerðcÞ ffi
cokerðfÞ is trivial. Using the same spectral sequence as before, in order to see that
cokerðfÞ ¼ 0, it suffices to show that the spectral terms

- E022 ¼ H0ðG;H2ðGðKSð2ÞjK
0Þ;O�KSð2Þ;SÞÞ and

- E112 ¼ H1ðG;ClSðK
0Þð2ÞÞ

are trivial. The first assertion is easy, because K 0 is totally imaginary and contains

k1ð2Þ and so H2ðGðKSð2ÞjK
0Þ;O�KSð2Þ;SÞ ¼ 0. That the second spectral term is trivial

follows from (i). This completes the proof of Theorem 4. &

Finally, we prove Theorem 5. The statement on cd2GS and vcd2GS follows by

choosing a 2-Sylow subgroup H � GS and applying Theorem 1 to all finite subexten-

sions of k in ðkSÞ
H. It remains to show the statement on the inflation map. It is

equivalent to the statement that

inf#Zð2Þ : HiðGSð2Þ;AÞ # Zð2Þ �!HiðGS;AÞ # Zð2Þ

is an isomorphism for every discrete GSð2Þ-module A and all i5 0, where Zð2Þ
denotes the localization of Z at the prime ideal ð2Þ.
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Since cohomology commutes with inductive limits, we may assume that A is

finitely generated (as a Z-module). Using the exact sequences

0�! torðAÞ �!A�!A=torðAÞ �! 0;

0�!A=torðAÞ �!
�
A=torðAÞ

�
#Q�!

�
A=torðAÞ

�
#Q=Z�! 0

and using the limit argument for
�
A=torðAÞ

�
#Q=Z again, we are reduced to the case

that A is finite. Every finite GSð2Þ-module is the direct sum of its 2-part and its prime-

to-2-part. The statement is obvious for the prime-to-2-part and every finite 2-

primary GSð2Þ-module has a composition series whose quotients are isomorphic to

Z=2Z. Therefore we are reduced to showing the statement on the inflation map

for A ¼ Z=2Z. But it is more convenient to work with A ¼ Q2=Z2 (with trivial

action) which is possible by the exact sequence

0�!Z=2Z�!Q2=Z2�!Q2=Z2�! 0:

Using the Hochschild–Serre spectral sequence for the extensions kSjkSð2Þjk, we thus

have to show that

HiðGðkSjkSð2ÞÞ;Q2=Z2Þ ¼ 0

for i5 1. The case i ¼ 1 is obvious by the definition of the field kSð2Þ. By Theorem 1,

every real prime in S becomes complex in kSð2Þ and therefore cd2GðkSjkSð2ÞÞ4 2.

It remains to show that H2ðGðkSjkSð2ÞÞ;Q2=Z2Þ ¼ 0. Therefore the next proposition

implies the remaining statement of Theorem 5.

PROPOSITION 4.3. Let k be a number field, S 
 S2 a set of primes in k and

K 
 k1ð2Þ an extension of K in kS. Then

H2ðGðkSjKÞ;Q2=Z2Þ ¼ 0:

Proof. Let H be a 2-Sylow subgroup in GðkSjKÞ and L ¼ ðkSÞ
H. Then the

restriction map

H2ðGðkSjKÞ;Q2=Z2Þ �!H2ðGðkSjLÞ;Q2=Z2Þ

is injective and so, replacing K by L, we may suppose that kS ¼ KSð2Þ. Applying

Theorem 20 to the 2-S-closed field KSð2Þ, we obtain an isomorphism

GðKS[SR
ð2ÞjKSð2ÞÞ ffi �

p2SRðKSð2ÞÞ
TpðKpð2ÞjKpÞ:

Hence we have complete control over the Hochschild–Serre spectral sequence asso-

ciated to KS[SR
ð2ÞjKSð2ÞjK. Furthermore, the weak Leopoldt conjecture holds for the

cyclotomic Z2-extension and K 
 k1ð2Þ, which implies that H 2ðGðKS[SR
ð2ÞjKÞ;

Q2=Z2Þ ¼ 0. The exact sequence (2) of Section 4 applied to all finite subextensions

k0jk of Kjk yields a surjection
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M
p2SR n SðKÞ

0H1ðTðKpð2ÞjKpÞ;Q2=Z2Þ �!! H2ðGðKSð2ÞjKÞ;Q2=Z2Þ:

and therefore, in order to prove the proposition, it suffices to show that the group

H2ðGðKSð2ÞjKÞ;Q2=Z2Þ is 2-divisible. This is trivial if S \ SRðKÞ ¼ Ø because then

cdGðKSð2ÞjKÞ4 2. Otherwise, this follows from the commutative diagram

H2ðGðKSð2ÞjKÞ;Q2=Z2Þ=2 ,! H3ðGðKSð2ÞjKÞ;Z=2ZÞ??y ??yoM
p2S\SRðKÞ

0H2ðTðKpð2ÞjKpÞ;Q2=Z2Þ=2 ,!
M

p2S\SRðKÞ

0H3ðTðKpð2ÞjKpÞ;Z=2ZÞ:

The right-hand vertical arrow is an isomorphism by Proposition 4.1. But

H2ðTðKpð2ÞjKpÞ;Q2=Z2Þ ¼ 0 for all p 2 S \ SRðKÞ and therefore the object in the

lower left corner is zero. &

5. Relation to Étale Cohomology

Let k be a number field and S a finite set of places of k. We think of SpecðOk;SÞ as

‘fscheme-theoretic points of SpecðOk;SÞg [ freal places of k not in Sg’. Essentially

following Zink [17], we introduce the site SpecðOk;SÞet;mod.

Objects of the category are pairs �U ¼ ðU;UrealÞ, whereU is a scheme together with an

étale structural morphism fU: U! SpecðOk;SÞ and Ureal is a subset of the set of real

valued points UðRÞ ¼MorSchemesðSpecðRÞ;UÞ of U such that fUðUrealÞ � SRðkÞ n S.

Morphisms are scheme morphisms f : U! V over SpecðOk;SÞ satisfying

fðUrealÞ � Vreal.

Coverings are families fpi: �Ui ! �Ugi2I such that fpi: Ui ! Ugi2I is an étale cover-

ing in the usual sense and
S

i2I piðUirealÞ ¼ Ureal.

There exists an obvious morphism of sites

SpecðOk;SÞet�! SpecðOk;SÞet;mod

and both sites coincide if S contains all real places of k. The pair �X ¼ ðX;XrealÞ with

X ¼ SpecðOk;SÞ and Xreal ¼ SRðkÞ n S is the terminal object of the category and the

profinite group GSðkÞ is nothing else but the fundamental group of �X with respect

to this site. Let Z denote the generic point of X. For a sheaf A of abelian groups

on SpecðOk;SÞet;mod and for any point v of �X we have a specialization homomorph-

isms sv: Av ! AZ from the stalk Av of A in v to that in Z. For each point v 2 Xreal
we consider the local cohomology Hi

vð
�X;AÞ with support in v. There is a long exact

localization sequence (see [17])

% % % !
M
v2Xreal

Hi
vð

�X;AÞ ! Hi
et;modð

�X;AÞ ! Hi
etðX;AÞ ! % % %

and the local cohomology with support in real points is calculated as follows:
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LEMMA 5.1. For v 2 Xreal the following holds.

H0
vð

�X;AÞ ¼ kerðsv: Av ! AZÞ;

H1
vð

�X;AÞ ¼ cokerðsv: Av! AZÞ;

Hi
vð

�X;AÞ ¼ Hi�1ðkv;AvÞ; for i5 2:

Here the right-hand side of the last isomorphism is the Galois cohomology of the

field kv.

Proof. See [17], Lemma 2.3. &

Remark. Suppose that S contains all primes dividing 2 and no real primes. Let A

be a locally constant constructible sheaf on SpecðOk;SÞet which is annihilated by a

power of 2. We denote the push-forward of A to SpecðOk;SÞet;mod by the same letter.

By Poitou–Tate duality, the boundary map of the long exact localization sequence

Hi
etðX;AÞ �!

M
v2Xreal

Hiþ1
v ð

�X;AÞ ¼
M
v arch:

Hiðkv;AvÞ

is an isomorphism for i5 3 and surjective for i ¼ 2. Therefore, we obtain the vanish-

ing of Hi
et;modðSpecðOk;SÞ;AÞ for i5 3. In this situation the modified étale cohomol-

ogy is connected to the ‘positive étale cohomology’ H�2ðSpecðOk;SÞ;AþÞ defined in [3]

in the following way. There exists a natural exact sequence

0! H 0
et;modðSpecðOk;SÞ;AÞ !

!
M
v arch:

H 0ðkv;AvÞ ! H 0
2ðSpecðOk;SÞ;AþÞ !

! H1
et;modðSpecðOk;SÞ;AÞ ! 0:

and isomorphisms

Hi
2ðSpecðOk;SÞ;AþÞ �!

 
Hiþ1
et;modðSpecðOk;SÞ;AÞ

for i5 1. This can be easily deduced from the long exact localization sequence,

Lemma 5.1 and the long exact sequence (2.4) of [3].

Now let A be a discrete GSðkÞ-module. The module A induces locally constant

sheaves on SpecðOk;SÞet;mod and SpecðOk;SÞet, which we will denote by the same letter.

According to Lemma 5.1, we obtain for every v 2 Xreal

H i
vð

�X;AÞ ¼ 0 for i ¼ 0; 1:

Let eX ¼ ðSpecðOkS;SÞ;SRðkSÞ n SðkSÞ be the universal covering of �X. The Hochschild–

Serre spectral sequence

E ij
2 ¼ HiðGSðkÞ;H

j
et;modð

eX;AÞÞ¼)H iþj
et;modð

�X;AÞ
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induces natural comparison homomorphisms

H iðGSðkÞ;AÞ �!Hi
et;modð

�X;AÞ

for all i5 0. It follows immediately from the spectral sequence that these homo-

morphisms are isomorphisms if Hj
et;modð

eX;AÞ ¼ 0 for all j5 1.

Next we are going to prove Theorem 6 of the introduction. Assume that S con-

tains all primes dividing 2 and that A is 2-torsion. Both sides of the comparison

homomorphism commute with direct limits, and so, in order to prove Theorem 6,

we may suppose that A is finite. Since A is constant on eX, we can easily reduce to
the case A ¼ Z=2Z, in order to show Hj

et;modð
eX;AÞ ¼ 0 for j5 1. Furthermore, the

assertion is trivial for j ¼ 1. The theorem is well-known if S contains all real primes

(see [17], prop. 3.3.1 or [7], II, 2.9) and so, passing to the limit over all finite subex-

tensions of k in kS, we obtain natural isomorphisms for all j5 0.

HjðGS[SR
ðkSÞ;Z=2ZÞ �!

 
Hj
etð

eX n SRðkSÞ;Z=2ZÞ:

On the other hand, Theorem 2 for T ¼ S [ SR, S ¼ S applied to all finite subexten-

sions of k in kS in conjunction with Theorem 5 induces isomorphisms for all j5 1.

HjðGS[SR
ðkSÞ;Z=2ZÞ �!

 
M

v2SR n SðkSÞ

0Hjðkv;Z=2ZÞ:

These two isomorphisms together with the long exact localization sequence show

that Hj
et;modð

eX;Z=2ZÞ ¼ 0 for j5 1. This completes the proof of Theorem 6. &

Theorem 6 is best understood in the context of étale homotopy, namely as a van-

ishing statement on the 2-parts of higher homotopy groups. For a scheme X we

denote by Xet its étale homotopy type, i.e. a pro-simplicial set. The étale homotopy

groups of X are by definition the homotopy groups of Xet and, as is well known,

these pro-groups are pro-finite, whenever the scheme X is noetherian, connected

and geometrically unibranch ([1] Theorem 11.1). If we consider the modified étale

site SpecðOk;SÞet;mod as above, we obtain in exactly the same manner as for the usual

étale site a pro-finite simplicial set �Xet;mod. We denote the universal covering of
�Xet;mod by eXet;mod. If p is a prime number and Y% is a pro-simplicial set, we denote

the pro-p completion of Y% by Y^p
% . Furthermore, we write GðpÞ for the maximal

pro-p factor group of a pro-group G.

LEMMA 5.2. Assume that Y% is a simply connected ði.e. p1ðY%Þ ¼ 0Þ pro-simplicial set

such that piðY%Þ is pro-finite for all i5 2. Then we have isomorphisms for all i:

piðY%ÞðpÞ �!piðY
^p
% Þ:

Proof. See [13], prop. 13. &

For a pro-group G we denote by KðG; 1Þ the Eilenberg–MacLane pro-simplicial set

associated with G (cf. [1], (2.6)). If S contains all real primes of k the following the-

orem was proved in [13], prop. 14.
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THEOREM 5.3. Let k be a number field and S a finite set of primes of k containing all

primes dividing 2. Let �X be the pair ðX;XrealÞ with X ¼ SpecðOk;SÞ and

Xreal ¼ SRðkÞ n S endowed with the modified étale topology. Then the higher homotopy

groups of �Xet;mod have no 2-part, i.e. pið �Xet;modÞð2Þ ¼ 0 for i5 2: Furthermore, the

canonical morphism ð �Xet;modÞ
^2
�!KðGSðkÞð2Þ; 1Þ is a weak homotopy equivalence.

Proof. Since GSðkÞ is the fundamental group of �Xet;mod, Theorem 6 implies that

the universal covering eXet;mod of �Xet;mod has no cohomology with values in 2-primary

coefficient groups. By the Hurewicz theorem ([1], (4.5)), the pro-2 completion of
eXet;mod is weakly contractible. Therefore, Lemma 5.2 implies

pið �Xet;modÞð2Þ ffi piðeXet;modÞð2Þ ffi piððeXet;modÞ^2Þ ¼ 0
for i5 2, which shows the first statement of the theorem. By Theorem 5, for every

finite 2-primaryGSðkÞð2Þ-torsion moduleA the inflation homomorphismH iðGSðkÞð2Þ,

AÞ�!HiðGSðkÞ;AÞ is an isomorphism for all i. The same arguments as above show

that the universal covering of ð �Xet;modÞ
^2 is weakly contractible. This proves the sec-

ond statement. &

6. Closing Remarks

6.1. DUALIZING MODULES

Unfortunately, we do not have (despite semi-tautological reformulations of the defi-

nition) a good description of the p-dualizing module I of the group GS, where S is a

finite set of finite primes containing Sp. If k is totally imaginary, then I is determined

by the exact sequence

0�!mp1 �!
diag M

p2SðkSÞ

0 mp1 �! I�! 0

(see [9], (10.2.1)) and the group GS is a duality group at p of dimension 2 (see [13],

th. 4 or [9], (10.9.1)). The general case remains unsolved (also for odd p).

6.2. FREE PROFINITE PRODUCT DECOMPOSITIONS

In this paper we used free pro-p-product decompositions of Galois groups of pro-

p-extensions of global fields into Galois groups of local pro-p-extensions in an essen-

tial way. One might ask whether, for sets of places T 	 S, the natural homomorphism

f : �
p2T n SðkSÞ

Tð �kpjkÞ �!GðkTjkSÞ

is an isomorphism, where the free product on the left hand side is the free product of

profinite groups. More precisely, one has to ask, whether there exists a continuous

section to the natural projection T n SðkTÞ ! T n SðkSÞ such that the above map is

an isomorphism (cf. the discussion in section 2). We do not know the answers to this

question in general. It is ‘yes’ if S contains all but finitely many primes of k (see

below). But it seems likely that f is never an isomorphism if T and S are finite.

The present level of knowledge on this question is rather low. For example, we do
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not know whether there are infinitely many prime numbers p such that p1 divides

the order of GT. The best result known in this direction is that if T contains all real

places and all primes dividing one prime number p, then there exist infinitely many

prime numbers ‘ dividing the order of GT (see [14], cor. 3 or [9], (10.9.4)).

In the case that S contains all but finitely many primes of k, we can deduce the

above statement by applying the following slightly more general result to the com-

plement of S:

For a finite set S of primes of k, let kS be the maximal extension of k in which all

primes in S are totally decomposed. Then there exists a continuous section to the

natural projection Sð �kÞ ! SðkSÞ such that the natural map �p2SðkSÞ Gð �kpjkÞ �!

Gð �kjkSÞ is an isomorphism. This had been proved first in the special case S ¼ SR

by Fried, Haran and V �olklein [4] and then by Pop [11] for arbitrary finite S.

6.3. LEOPOLDT’S CONJECTURE

The Leopoldt conjecture for k and a prime number p holds if and only if the group

H2ðGS;Qp=ZpÞ is trivial for one (all) finite set(s) of primes S 
 Sp. The weak Leo-

poldt conjecture is true for k, p and a Zp-extension k1jk if and only if

H2ðGSðk1Þ;Qp=ZpÞ is trivial for one (all) finite set(s) of primes S 
 Sp (of k). This

is well known for odd p and for p ¼ 2 it can be easily deduced from the above results.

6.4. IWASAWA THEORY

Let k be a number field, S 
 S2 a finite set of primes of k and k1jk the cyclotomic

Z2-extension of k. Let G ¼ Gðk1jkÞ ffi Z2 and let L ¼ Z2½½G�� ffi Z2½½T�� be the Iwa-

sawa algebra. We consider the compact L-module XS ¼ GðkSð2Þjk1Þ
ab: Then the

following holds

ðiÞ XS is a finitely generated L-module.
ðiiÞ rankL XS ¼ r2 (the number of complex places of k).

ðiiiÞ XS does not contain any nontrivial finite L-submodule.
ðivÞ the m-invariant of XS is greater than or equal to #S \ SRðkÞ.

Properties (i)–(iii) follow in a purely formal way (see [9], (5.6.15)) from the facts that:

(a) w2ðGSð2ÞÞ ¼ �r2, (b) H2ðGSðk1Þð2Þ;Q2=Z2Þ ¼ 0 and (c) H2ðGSð2Þ;Q2=Z2Þ is

2-divisible. Assertion (iv) is trivial if S contains no real places and in the general case

it follows from the exact sequence

0! ðL=2Þ#S\SRðkÞ �!XS�!XS n SR
�! 0:

Now let kþ be a totally real number field, k ¼ kþðm4Þ, kþ1 the cyclotomic Z2-

extension of kþ and k1 ¼ kþ1ðm4Þ ¼ kðm21Þ. Let kn be the unique subextension of

degree 2n in k1 and let J be the complex conjugation. We set An ¼ ClðknÞð2Þ and

A�n :¼ fa 2 An j aJðaÞ ¼ 1g:
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Furthermore, let A�1 ¼ lim
�!

A�n , X
þ ¼ XS2 ðk

þÞ, let _ denote the Pontryagin dual and

ð�1Þ the Tate-twist by �1. Then there exists a natural homomorphism

f : ðA�1Þ
_
�!Xþð�1Þ

whose kernel and cokernel are annihilated by 2. If the Iwasawa m-invariant of k is

zero (this is known if kjQ is abelian), then f is a pseudo-isomorphism, i.e. f has
finite kernel and cokernel. This can be seen by a slight modification of the arguments

given in [5], §2:

LetMþ be the maximal Abelian 2-extension of kþ1 which is unramified outside S2,

in particular,Mþ is totally real. Kummer theory shows that, for an a 2 k�1, the field

k1ð
ffiffiffi
a2n
p
Þ is contained in Mþk1 if and only if: (a) a 2 k�2

n

1;p for all p 62 Sðk1Þ and

(b) aJðaÞ ¼ b2
n

for a totally positive element b 2 kþ1. Let Rn be the subgroup in

k�1=k
�2n

1 generated by elements satisfying (a) and (b) and let

M� :¼ lim
�!

n

Rn � k�1 # Q2=Z2:

Then we have a perfect Kummer pairing Xþ �M� ! m21 . Since all primes dividing
2 are infinitely ramified in k1jk, for a# 2�n 2M� there exists a unique ideal a in k1
with a2

n

¼ ðaÞ and the class ½ a � is contained in A�1. This yields a homomorphism

f_ : M� �!A�1. A straightforward computation shows that imðf
_
Þ 
 ðA�1Þ

2 and

that kerðf_Þ is the image of O�kþ1;Ø=O
�2
kþ1;SR

in M� (notational conventions as in
§4). Thus, if the Iwasawa m-invariant of k is zero, then the cokernel of f_ is finite
and it remains to show the same for its kernel. Since m ¼ 0, the F2-ranks of

2Cl
0
ðkþn Þ (the subgroup of elements annihilated by 2 in the ideal class groups in

the narrow sense) are bounded independently of n. Thus, also the F2-ranks of the

kernels of the signature maps

O�kþn ;SR
=O�2kþn ;SR

�!
M

v2SRðk
þ
n Þ

R�=R�2

are bounded independently of n. But the direct limit over n of these kernels is just the

group in question. Finally, we obtain the result by taking Pontryagin duals.
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