A CAUCHY CRITERION AND A CONVERGENCE THEOREM FOR RIEMANN-COMPLETE INTEGRAL

H. W. PU

(Received 10 October 1969; revised 8 January 1970) Communicated by B. Mond

In 1957 Kurzweil [1] proved some theorems concerning a generalized type of differential equations by defining a Riemann-type integral, but he did not study its properties beyond the needs of that research. This was done by R. Henstock [2, 3], who named it a Riemann-complete integral. He showed that the Riemanncomplete integral includes the Lebesgue integral and that the Levi monotone convergence theorem holds. The purpose of the present paper is to give a necessary and sufficient condition for a function to be Riemann-complete integrable and to establish a termwise integration theorem for a uniformly convergent sequence of Riemann-complete integrable functions.

Throughout this paper, all functions considered are real-valued and defined in a closed interval [a, b].

DEFINITION 1. A division \mathfrak{D} of [a, b] consists of two finite sequences $\{x_j\}_{j=0}^n$ and $\{z_j\}_{j=1}^n$ with conditions:

and

$$a = x_0 < x_1 < \cdots < x_n = b$$

$$x_{j-1} \leq z_j \leq x_j \quad (j=1,\cdots,n).$$

DEFINITION 2. A division \mathfrak{D} of [a, b] is said to be *compatible with* $\delta(z) > 0$ defined in [a, b] if, for each $j = 1, \dots, n$, $|x_j - z_j| < \delta(z_j)$ and $|z_j - x_{j-1}| < \delta(z_j)$.

It should be noted that there is at least a division \mathfrak{D} of [a, b] which is compatible with a given function $\delta(z) > 0$ defined in [a, b] [3, p. 83].

DEFINITION 3. A function f is Riemann-complete integrable in [a, b] with integral I(f) if there is a real number I(f) such that to each $\varepsilon > 0$ there corresponds a function $\delta(z) > 0$ defined in [a, b] with

$$|\sum_{j=1}^{n} f(z_{j})(x_{j}-x_{j-1}) - I(f)| < \varepsilon$$

for all sums over divisions \mathfrak{D} of [a, b] compatible with $\delta(z)$.

In the sequel, we shall simply use the terms 'integrable' and 'integral' for

H. W. Pu

'Riemann-complete integrable in [a, b]' and 'Riemann-complete integral in [a, b]' respectively. Also, for simplicity, we shall replace the words 'sum over a division of [a, b] compatible with $\delta(z)$ ' by 'sum over (\mathfrak{D}, δ) '.

LEMMA 4. If f and g are integrable and α , β are real numbers, then $\alpha f + \beta g$ is also integrable and $I(\alpha f + \beta g) = \alpha I(f) + \beta I(g)$.

PROOF. Let $\varepsilon > 0$ be given. If $\alpha \neq 0$, since f is integrable, there corresponds a function $\delta_f(z) > 0$ defined in [a, b] such that

$$|S_f - I(f)| < \varepsilon/(2|\alpha|)$$

for all sums for f over (\mathfrak{D}, δ_f) . Clearly we have, for any α ,

$$|S_{\alpha f} - \alpha I(f)| = |\alpha| |S_f - I(f)| < \varepsilon/2$$

for all sums for αf over (\mathfrak{D}, δ_f) . Similarly, there also corresponds a function $\delta_g(z) > 0$ defined in [a, b] such that

$$|s_{\beta g} - \beta I(g)| < \varepsilon/2$$

for all sums for βg over (\mathfrak{D}, δ_g) .

Let $\delta(z) = \min \{\delta_f(z), \delta_g(z)\}$ for all z in [a, b]. Thus

$$|S_{\alpha f + \beta g} - (\alpha I(f) + \beta I(g))| \leq |S_{\alpha f} - \alpha I(f)| + |S_{\beta g} - \beta I(g)| < \varepsilon$$

for all sums for $\alpha f + \beta g$ over (\mathfrak{D}, δ) . The proof is completed.

DEFINITION 5. Let \mathscr{D} be the set of all pairs (\mathfrak{D}, δ) , where δ is a positive function defined in [a, b], and \mathfrak{D} is a division of [a, b] compatible with δ . For each function f, define $S_f : \mathscr{D} \to R$ by setting $S_f(\mathfrak{D}, \delta)$ to be the sum for f over (\mathfrak{D}, δ) .

DEFINITION 6. Let $(\mathfrak{D}_i, \delta_i) \in \mathscr{D}$, i = 1, 2. We shall say $(\mathfrak{D}_1, \delta_1) < (\mathfrak{D}_2, \delta_2)$ if $\delta_2 \leq \delta_1$. Clearly, this is a partial ordering of \mathscr{D} .

LEMMA 7. For any $f, S_f : \mathcal{D} \to R$ is a net.

PROOF. We need only show that $\{\mathscr{D}, <\}$ is a directed set. Let $(\mathfrak{D}_i, \delta_i) \in \mathscr{D}$, i = 1, 2, be given. Define δ_0 by $\delta_0(z) = \min \{\delta_1(z), \delta_2(z)\}$ for all $z \in [a, b]$. Then for any division \mathfrak{D}_0 compatible with δ_0 , $(\mathfrak{D}_0, \delta_0) \in \mathscr{D}$ and $(\mathfrak{D}_i, \delta_i) < (\mathfrak{D}_0, \delta_0)$, i = 1, 2.

For a function f, we consider the following

CONDITION 8. To each $\varepsilon > 0$ there corresponds a function $\delta(z) > 0$ defined in [a, b] with $|S' - S''| < \varepsilon$ whenever S' and S'' are sums for f over divisions compatible with $\delta(z)$.

LEMMA 9. Condition 8 is necessary and sufficient for the net $S_f : \mathcal{D} \to R$ to be Cauchy.

PROOF. Sufficiency: Let $\varepsilon > 0$ be given. Consider the function $\delta(z) > 0$

22

stated in condition 8, it is immediate that $|S_f(\mathfrak{D}_1, \delta_1) - S_f(\mathfrak{D}_2, \delta_2)| < \varepsilon$ for any $(\mathfrak{D}_i, \delta_i) \in \mathscr{D}$ such that $(\mathfrak{D}, \delta) < (\mathfrak{D}_i, \delta_i), i = 1, 2$, where \mathfrak{D} is an arbitrary division compatible with $\delta(z) > 0$. The proof for necessity is similar.

Since R is a complete uniform space, a Cauchy net $S_f : \mathcal{D} \to R$ has a limit in R [4, pp. 193–194]. Thus we obtain the following Cauchy criterion:

THEOREM 10. A function f is integrable if and only if it satisfies condition 8, or equivalently, if and only if the net $S_f : \mathcal{D} \to R$ is Cauchy.

THEOREM 11. If $\{f_n\}$ is a sequence of integrable functions and converges uniformly to f in [a, b], then f is integrable with integral $I(f) = \lim_{n \to \infty} I(f_n)$.

PROOF. Let $\varepsilon > 0$ be given, choose a positive number $\eta < \varepsilon/(4(b-a))$. By hypothesis, there is an n_0 such that

$$|f_n(z) - f(z)| < \eta$$
 for every $z \in [a, b]$ and every $n \ge n_0$.

Since f_{n_0} is integrable, there exists $(\mathfrak{D}^*, \delta^*) \in \mathscr{D}$ such that

 $|S_{f_{n_0}}(\mathfrak{D}_1, \delta_1) - S_{f_{n_0}}(\mathfrak{D}_2, \delta_2)| < \varepsilon/2 \quad \text{whenever } (\mathfrak{D}^*, \delta^*) < (\mathfrak{D}_i, \delta_i),$

i = 1, 2. Thus we have

$$\begin{aligned} |S_{f}(\mathfrak{D}_{1}, \delta_{1}) - S_{f}(\mathfrak{D}_{2}, \delta_{2})| \\ &\leq |S_{f}(\mathfrak{D}_{1}, \delta_{1}) - S_{f_{n_{0}}}(\mathfrak{D}_{1}, \delta_{1})| + |S_{f_{n_{0}}}(\mathfrak{D}_{1}, \delta_{1}) - S_{f_{n_{0}}}(\mathfrak{D}_{2}, \delta_{2})| \\ &+ |S_{f_{n_{0}}}(\mathfrak{D}_{2}, \delta_{2}) - S_{f}(\mathfrak{D}_{2}, \delta_{2})| < \eta(b-a) + \varepsilon/2 + \eta(b-a) < \varepsilon \\ &\text{whenever } (\mathfrak{D}^{*}, \delta^{*}) < (\mathfrak{D}_{i}, \delta_{i}), \qquad i = 1, 2. \end{aligned}$$

It follows from theorem 10 that f is integrable.

It remains to show that $\lim_{n\to\infty} I(f_n) = I(f)$. For this purpose, let $\varepsilon > 0$ be given and f_{n_0} be the same as above. Since f and all f_n are integrable, there exist $(\mathfrak{D}_0, \delta_0)$ and $(\mathfrak{D}_n, \delta_n)$ for each n such that

$$|S_{f}(\mathfrak{D}, \delta) - I(f)| < \varepsilon/4$$
 whenever $(\mathfrak{D}_{0}, \delta_{0}) < (\mathfrak{D}, \delta)$

and

 $|S_{f_n}(\mathfrak{D}, \delta) - I(f_n)| < \varepsilon/4$ whenever $(\mathfrak{D}_n, \delta_n) < (\mathfrak{D}, \delta)$, for each n.

Evidently, for $n \ge n_0$ and $(\mathfrak{D}, \delta) \in \mathcal{D}$, we have

$$|I(f_n) - I(f)| \leq |I(f_n) - S_{f_n}(\mathfrak{D}, \delta)| + |S_{f_n}(\mathfrak{D}, \delta) - S_f(\mathfrak{D}, \delta)| + |S_f(\mathfrak{D}, \delta) - I(f)|$$

$$< \varepsilon/4 + |S_f(\mathfrak{D}, \delta) - I(f)| + |S_{f_n}(\mathfrak{D}, \delta) - I(f_n)|$$

and the last two terms can be made less than $\varepsilon/2$ by choosing (\mathfrak{D}, δ) in \mathscr{D} with $(\mathfrak{D}_0, \delta_0) < (\mathfrak{D}, \delta)$ and $(\mathfrak{D}_n, \delta_n) < (\mathfrak{D}, \delta)$. The proof is completed.

COROLLARY 12. If $E \subset [a, b]$ is a Lebesgue null set and $\{f_n\}$ a sequence of integrable functions which converges to f uniformly on [a, b] - E, then f is integrable with integral $I(f) = \lim_{n \to \infty} I(f_n)$.

PROOF. For each *n* let g_n and h_n be functions defined by

$$g_n(z) = f_n(z) \text{ for } z \in [a, b] - E,$$

= 0 for $z \in E,$

and

 $h_n = f_n - g_n.$

Similarly, we define g and h by

$$g(z) = f(z) \text{ for } z \in [a, b] - E,$$

= 0 for $z \in E$

and

h = f - g.

It is trivial from the hypothesis that the sequence $\{g_n\}$ converges uniformly to g on [a, b] and that the functions h and all h_n are Lebesgue null. Since the integral considered here includes the Lebesgue integral, h and all h_n are integrable with $I(h) = I(h_n) = 0$ for all n. Since for each $n g_n = f_n - h_n$ and by hypothesis f_n is integrable, in view of lemma 4, each g_n is integrable and $I(g_n) = I(f_n)$. By theorem 11, g is integrable with $I(g) = \lim_{n \to \infty} I(g_n)$. By lemma 4 again, f = h + g is integrable and $I(f) = I(g) = \lim_{n \to \infty} I(g_n) = \lim_{n \to \infty} I(f_n)$.

It is worth while noting that the above corollary is not true for Riemann integrals.

The author is deeply grateful to Dr. H. H. Pu for her valuable suggestion.

References

- J. Kurzweil, 'Generalized ordinary differential equations and continuous dependence on a parameter', Czechoslovak Math. Jour. 7 (82) (1957), 418–446.
- [2] R. Henstock, Theory of Integration (Butterworths, London, 1963).
- [3] R. Henstock, 'A Riemann-type integral of Lebesgue power', Canad. J. Math. 20 (1968), 79-87.
- [4] J. L. Kelley, General Topology (Van Nostrand, Princeton, 1965).

Texas A&M University College Station, Texas U.S.A.

24