
London Mathematical Society ISSN 1461–1570

ON SMALL CHARACTERISTIC ALGEBRAIC TORI
IN PAIRING-BASED CRYPTOGRAPHY

R. GRANGER, D. PAGE and M. STAM

Abstract

The value of the Tate pairing on an elliptic curve over a finite
field may be viewed as an element of an algebraic torus. Using this
simple observation, we transfer techniques recently developed for
torus-based cryptography to pairing-based cryptography, resulting
in more efficient computations, and lower bandwidth requirements.
To illustrate the efficacy of this approach, we apply the method to
pairings on supersingular elliptic curves in characteristic three.

1. Introduction

The use of pairings in cryptography is now a well-studied area, with resulting applications to
identity-based encryption, key-agreement and signature schemes [5, 44], tripartite Diffie–
Hellman key-agreement [29], and short signatures [6], to name just a few amongst numerous
others (see, for example, [12] for a recent survey).

To support these applications, much research activity has focused on developing efficient
and easily implementable algorithms for their deployment [2, 17, 13]. One of the fastest
algorithms for pairing computation on elliptic curves is that of Duursma and Lee [13],
which applies to the class of supersingular elliptic curves in characteristic three with so-
called embedding degree six, and is preferable in pairing implementations for contemporary
security parameters.

One is therefore free to use the trace-based methods found in LUC [49] and XTR [33] for
post-pairing arithmetic, resulting in the compression of pairing outputs by a factor of two
and three respectively; this was pointed out to us by E. Verheul in a personal comunication.
Scott and Barreto [46] also describe the use of traces for the computation of the pairing
itself; however, closer inspection of their work shows that their claim is misleading. Indeed,
their method is essentially a polynomial basis transformation, and hence does not offer
any advantages during the computation of the pairing. Moreover, for characteristic three,
we demonstrate that (contrary to the claims of Scott and Barreto [46]) the performance
of their approach is inferior to a straightforward implementation. Thus, besides pairing
compression, the method that they advocate does not seem to offer any benefits.

Our contribution is to achieve both efficient pairing arithmetic, and also pairing
compression. Our methods are based on the simple observation that the quotient group
to which the natural output of the Tate pairing belongs, may be viewed as a special repre-
sentation of an algebraic torus. These groups were introduced to cryptography by Rubin and
Silverberg [42], who showed under certain conditions that one can represent elements of the
torus via rational embeddings into affine space, providing smaller bandwidth requirements
than the corresponding field-embedded representation.

Received 1 June 2004, revised 11 October 2005; published 9 March 2006.
2000 Mathematics Subject Classification 94A60, 20G40, 11T99
© 2006, R. Granger, D. Page and M. Stam

LMS J. Comput. Math. 9 (2006) 64–85https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/9
https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

Using this property and an efficient point-multiplication method developed for tori [25],
we are able to perform arithmetic with pairing values that is on average 30% faster than
previous methods.This is useful, for example, in pairing-based protocols where one typically
blinds a point by an ephemeral random value. By bilinearity, this blinding may be performed
either on the curve before the pairing evaluation, or in the extension field afterwards. Given
that a pairing evaluation is usually several times more costly than either a point multiplication
on the curve or an exponentiation in the field, if a pairing value ever needs to be re-used, it
is beneficial to compute it once and for all, and to perform each ephemeral blinding in the
extension field.

Examples where this occurs include the the Boneh–Franklin identity-based encryption
scheme [5], the identity-based signature scheme of Hess [28], and the certificate-based
encryption scheme of Gentry [21].

The aforementioned compression methods can also be used during any interactive pairing-
based protocol where pairing values are transmitted between parties. Such schemes include
the selective-ID identity-based encryption scheme of Boneh and Boyen [3], the interactive
proof of knowledge in the short group signature scheme of Boneh et al. [4], and various
others [22, 45].

One may regard our methods as a characteristic-three version of previous work on tori
[42, 25], tailored for pairings. However, they may also be used for pairings on any abelian
variety possessing an even embedding degree, which for efficiency reasons is the case for
all contemporary pairing algorithms. As such, they may also be applied to supersingular
binary elliptic curves, although we do not pursue this application here, since pairings based
on these curves possess an inferior security/efficiency trade-off [16].

The remainder of the paper is organised as follows. We next give some background on
the Tate pairing and algebraic tori. In Section 3 we develop fast arithmetic for pairing values,
and in Section 4 we give algorithms for efficient exponentiation. In Section 5, we describe
the field representation that we use, while in Section 6 we detail our improvements to the
Duursma–Lee algorithm. In Section 7, we present implementation results, and in the final
section we make some concluding remarks and present some open problems.

2. Preliminaries

In this section we briefly provide some mathematical background, and fix some notation.

2.1. The Tate pairing

The Tate pairing on an elliptic curve is usually computed using a variant of Miller’s
algorithm [36]. For the special curves often used in cryptography, however, it was shown
independently by Barreto et al. [2] and Galbraith et al. [17] that much of the computation
of the algorithm is redundant. In terms of performance, the former paper provides the
better alternative, and we refer to their algorithm as the reduced Tate pairing, or the BKLS
algorithm.

2.1.1. The reduced Tate pairing
Let E be an elliptic curve over a finite field Fq , and let OE denote the identity element of
the associated group of rational points on E(Fq). For a positive integer l | #E(Fq) coprime
to q, let Fqk be the smallest extension field of Fq which contains the lth roots of unity
in Fq . Also, let E(Fq)[l] denote the subgroup of E(Fq) of all points of order dividing l,

65https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

and similarly for the degree-k extension of Fq . From an efficiency perspective, k is usually
chosen to be even [2]. For a thorough treatment of the following, we refer the reader to [2]
and also [17], and to [48] for an introduction to divisors. Then, assuming that l2 � #E(Fqk),
the reduced Tate pairing of order l is the map

el : E(Fq)[l] × E(Fqk)[l] → F×
qk
/(F×

qk
)l,

given by el(P,Q) = fP,l(D). Here fP,l is a function on E whose divisor is equivalent
to l(P)− l(OE), D is a divisor equivalent to (Q)− (OE), whose support is disjoint from
the support of fP,l , and fP,l(D) = ∏

i fP,l(Pi)
ai , where D = ∑

i aiPi . It satisfies the
following properties [15].

• For each P �= OE there exists Q ∈ E(Fqk)[l] such that el(P,Q) �= 1 ∈ F×
qk
/(F×

qk
)l

(non-degeneracy).

• For any integer n, el([n]P,Q) = el(P, [n]Q) = el(P,Q)n for all P ∈ E(Fq)[l] and
Q ∈ E(Fqk)[l] (bilinearity).

• Let L = hl. Then el(P,Q)(q
k−1)/ l = eL(P,Q)(qk−1)/L.

When one computes fP,l(D), the value obtained belongs to the quotient group
F×
qk
/(F×

qk
)l , and not F×

qk
. In this quotient, for a and b in F×

qk
, a ∼ b if and only if there exists

c ∈ F×
qk

such that a = bcl . Clearly, this is equivalent to saying that

a ∼ b if and only if a(q
k−1)/ l = b(qk−1)/ l,

and hence one ordinarily uses this value as the canonical representative of each coset.
The isomorphism between F×

qk
/(F×

qk
)l and the elements of order l in F×

qk
given by

this exponentiation makes it possible to compute fP,l(Q) rather than fP,l(D); see [2].
It also removes the need to compute the costly denominators in Miller’s algorithm.

2.1.2. The modified Tate pairing
At Asiacrypt 2003, Duursma and Lee introduced an algorithm for pairing computation on
a special family of supersingular hyperelliptic curves [13]. In common with the authors
of [46], for the elliptic case, which occurs only in characteristic three, we refer to the
algorithm as the modified Tate pairing. In Table 1, we list a sample of curves from this
family, upon which we base our implementation.

Table 1: Field definitions and curve equations

Field Field polynomial Curve Order MOV security

F379 t79 + t26 + 2 Y 2 = X3 −X − 1 379 + 340 + 1 750

F397 t97 + t12 + 2 Y 2 = X3 −X + 1 (397 + 349 + 1)/7 906

F3163 t163 + t80 + 2 Y 2 = X3 −X − 1 3163 + 382 + 1 1548

F3193 t193 + t12 + 2 Y 2 = X3 −X − 1 3193 − 397 + 1 1830

F3239 t239 + t24 + 2 Y 2 = X3 −X − 1 3239 − 3120 + 1 2268

F3353 t353 + t142 + 2 Y 2 = X3 −X − 1 3353 + 3177 + 1 3354

66https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

The first column gives the field over which each curve is defined, and the second lists the
corresponding irreducible polynomials defining the field extensions. The third column lists
the curve equations, and the fourth gives the order of the subgroup used. The final column
gives the bit-length of the smallest finite field into which the pairing value embeds, which
is a degree-six extension for these curves. These parameter values were generated simply
by testing which prime extension degrees yielded orders for supersingular curves that are
prime, or almost prime: that is, those possessing a small cofactor.

The modified Tate pairing improves upon the reduced variant in three ways. Firstly,
by using the third property listed above instead of computing the Tate pairing of order l,
one uses the pairing of order q3 + 1, which eliminates the need for any point additions in
Miller’s algorithm. Secondly, while this apparently increases the trit-length of the exponent
by a factor of three (where a trit is a ternary digit, by analogy with ‘bit’), Duursma and
Lee show that the divisor computed when processing three trits at a time has a very simple
form, and hence no losses are incurred. Lastly, they provide a closed form expression for the
pairing, thus simplifying implementations. We give a full description of the Duursma–Lee
algorithm in Section 6, where we also make some elementary computational improvements.

2.2. Algebraic tori

In 1985, ElGamal [14] made the suggestion that Diffie–Hellman key exchange, digital
signatures and ElGamal encryption be performed in the multiplicative group of an extension
of Fp, although without going into details. Recent trends in cryptographic research have
shown that by exploiting the algebraic structure not available in prime fields, one can obtain
compression of elements and efficient arithmetic.

Due to the observation of Pohlig and Hellman [39], one typically works in a prime-order
subgroup of sufficient size in the multiplicative group of the extension field. To ensure that a
particular subgroup does not embed into any subfield of the extension field, it must belong to
the cyclotomic subgroup [32], which conjecturally attains the discrete logarithm security of
the extension field. The public key cryptosystem XTR [33] exploits compression of elements
in the cyclotomic subgroup of F×

p6 by taking their trace with respect to the quadratic subfield,
to obtain a compression factor of three.

Based on similar ideas, Rubin and Silverberg [42] proposed the notion of torus-based
cryptography as an alternative way to obtain compression of elements in the cyclotomic sub-
group of a suitable field extension, which is isomorphic to an algebraic torus (cf. Lemma 1).
The public key system CEILIDH proposed in that paper is based on the torus T6. This torus
has the property that it is birationally isomorphic to two-dimensional affine space, which
means that its elements can be parametrised via rational functions by only two elements of
the base field, rather than the six elements ordinarily required.

It was also shown in [42] that efforts to find a natural extension of the trace-based method
of XTR using symmetric functions [7] cannot work. It is an open conjecture whether or not
Tn is ‘rational’ for all n, in which case one could efficiently compress elements of Tn by a
factor of n/φ(n); see [54, 42]. This conjecture is known to be true when n is either a prime
power, or the product of two prime powers. However, for the applications that concern us
here, the status of the conjecture is unlikely to have any impact, as we explain in Section 6.

2.2.1. The torus Tn(Fq)
Let Fq be a finite field where q is a power of a prime, and let �n be the nth cyclotomic
polynomial. We write Gq,n for the subgroup of F×qn of order �n(q), and let An(Fq) denote
the n-dimensional affine space over Fq : that is, the variety whose points lie in Fnq .

67https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

Definition 1. Let k = Fq and L = Fqn . The torus Tn is the intersection of the kernels of
the norm maps NL/F , for all subfields k ⊂ F � L:

Tn(k) :=
⋂

k⊂F�L

Ker[NL/F].

The following lemma provides some relevant properties of Tn.

Lemma 1 (see [42]). (i) Tn(Fq) ∼= Gq,n, and thus #Tn(Fq) = �n(q).
(ii) If h ∈ Tn(Fq) is an element of prime order not dividing n, then h does not lie in

a proper subfield of Fqn/Fq .

3. The quotient group

Throughout this section and the remainder of the paper we assume that we are working
in characteristic-three fields with prime extension degree (though the ideas apply equally
well to arbitrary finite fields, with some minor deviations for the binary case) and so, where
relevant, all exponents are written in ternary.

Let l | #E(Fq) and suppose that we wish to compute the modified Tate pairing of order l.
Then, invoking the third property of Section 2.1, one uses the Duursma–Lee algorithm to
first compute eq3+1, which is an element in the quotient group

G = F×
q6/(F

×
q6)

q3+1.

For any a ∈ F×
q6 we have aq

3+1 ∈ F×
q3 , and so G simplifies to F×

q6/F
×
q3 .

Let Gl ⊂ F×
q6 denote the subgroup of order l, and let e ∈ G. Then the two properties:

gcd(l, q3 − 1) = 1 and eq
3−1 ∈ Gl

imply that e = gh for some g ∈ Gl , h ∈ F×
q3 . Hence powering e by q3 − 1 gives

eq
3−1 = (gh)q3−1 = gq3−1,

which can then be used in protocols. If a particular protocol requires an exponentiation of
this value by some integer k mod l, this is performed in Fq6 .

In this section we give an alternative way to obtain unique representatives of G easily, that
furthermore permits fast multiplication, and provides automatic compression by a factor of
two. We then show that the natural embedding of G into the extension field is just a special
representation of an algebraic torus, which permits further compression.

3.1. The basic idea

Let Fq6 = Fq3 [σ]/(σ 2 + 1), which is the extension that we use in the Duursma–Lee
algorithm. Writing e = e0 + e1σ and g = g0 + g1σ , by the above we have

e = gh = g0h+ g1hσ.

Since the represented coset remains invariant under multiplication by elements of F×
q3 ,

we can divide by e1, giving

e′ = ee−1
1 = e0/e1 + σ = g0/g1 + σ.

This also eliminates h, and may equally well be used as a canonical representative of the
coset to which e belongs.

68https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

This element of the quotient group can be represented simply by the Fq3 element e0/e1,
and thus compresses the coset representation by a factor of two. Computationally, this
involves a division in Fq3 .

Comparing this to powering by q3 − 1, the saving is not significant, since:

eq
3−1 = e0 − e1σ

e0 + e1σ
,

and hence requires only a division in Fq6 .
However, if one exponentiates this value by some integer k mod l, this operation will

be faster than if one had first powered e by q3 − 1, since multiplying a generic element
of G by this element is cheaper than multiplying two generic elements. To see this, let
g = g0/g1 = e0/e1 and a0 + a1σ ∈ G. Then

(g + σ)(a0 + a1σ) = (ga0 − a1)+ (ga1 + a0)σ,

which costs just two Fq3 multiplications, and not the three required if both elements are
generic, in which case the arithmetic is identical to that of Fq6 . If one assumes that cubings
and additions are essentially free, then this method will always be roughly one third faster,
for whatever practical method one uses to exponentiate. The defining property of the quotient
group G thus reduces the cost of arithmetic performed on pairing values.

3.2. Arithmetic in G

We first introduce some terminology to clarify the operations available in G. The property
that a given coset is invariant under multiplication by elements of F×

q3 is suggestive of the
projective line

P1(Fq3) = {(x, y) ∈ (Fq3)2 \ {(0, 0)}}/∼
where (x1, y1) ∼ (x2, y2) if and only if a λ ∈ F×

q3 exists such that (x1, y1) = (λx2, λy2).
The reduction of e to e0/e1 may also be viewed as a map to the affine line A1(Fq3). With
this analogy, we introduce the following definition.

Definition 2. GP is the projective line P1(Fq3) endowed with the group operation induced
by the arithmetic of the quadratic extension Fq6 = Fq3 [σ]/(σ 2 + 1) via the map (x, y)→
x + yσ . The identity element is represented by the point (λ, 0) for any λ ∈ F×

q3 .
GA is the affine part of the line GP . The affine point corresponding to (x, y) is X =

A(x, y) = (x/y). Via this map, the identity element is the point at infinity which we denote
by OG.

With this terminology, it should be clear that we can mimic mixed addition methods for
point multiplication on elliptic curves [9]. The use of signed digit representations follows
since inverses are cheap, as we show below. In Section 4 we derive an exponentiation
algorithm using a split exponent method.

Let P = (x, y) ∈ GP with corresponding affine representation (X) ∈ GA. We refer
to the generator of Gal(Fq6/Fq) as the q-Frobenius (that is, the automorphism given by
powering by q). As already stated, computing the inverse of an element is virtually free.
This follows since the order of G is∣∣F×

q6/F
×
q3

∣∣ = (q6 − 1)/(q3 − 1) = q3 + 1,

and so applying the cube of the Frobenius gives the inverse: P−1 = (x,−y) or (−X) in
affine. Cubing is also straightforward, since we are working in characteristic three: P 3 =
(x3,−y3).

69https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

For multiplication of two points P1 = (x1, y1), P2 = (x2, y2) ∈ GP with affine
representations (X1), (X2) ∈ GA, we use the following easy lemma.

Lemma 2. LetM and I represent the cost of a multiplication and an inversion, respectively,
in Fq3 . Then the group operation for combinations of point representations is computed as
shown in Table 2.

Table 2: The group operation for combinations of point representations

P1 P2 P1 · P2 Formula Cost

GA GA GA (X1X2 − 1)/(X1 +X2) 2M + I
GA GA GP (X1X2 − 1, X1 +X2) 1M

GP GP GA (x1x2 − y1y2)/(x1y2 + x2y1) 4M + I
GP GP GP (x1x2 − y1y2, x1y2 + x2y1) 3M

GA GP GA (X1x2 − y2)/(X1y2 + x2) 3M + I
GA GP GP (X1x2 − y2, X1y2 + x2) 2M

Squaring can, naturally, be performed with slightly fewer Fq3 muliplications than above;
the corresponding formulae are easily deduced. Besides the precomputation necessary for
the exponentiation algorithms that we present in Section 4, however, squarings are not
required.

With regard to exponentiations, it is clear that the mixed multiplication shown in the final
row is the most efficient. If we want to compute P k for some k mod l, we first convert P to
affine, and for each non-zero trit in the expansion of k we perform a mixed multiplication
of this point with the projective representation of the intermediate value. A multiplication
with both points in projective form is equivalent to an ordinary multiplication in Fq6 , so
the mixed multiplication is essentially what allows the savings over arithmetic in Fq6 . We
exploit these observations in the exponentiation algorithms developed in Section 4.

3.3. An equivalent representation of the quotient group

The arithmetic just described for the quotient group is essentially identical to that devel-
oped for the torus T2; see [25, 42]. Indeed, it is not difficult to see that G is isomorphic to
T2(Fq3), and that the affine arithmetic for G is identical to that given by Rubin and Silverberg
for the compressed representation of T2(Fq3).

Given e ∈ G, it is possible to compute the embedding eq
3
/e of e into Fq6 and maintain

invariance under multiplication by elements of F×
q3 . This may seem odd, since Fq6 does not

possess this property. However, our choice of representation of elements in the subgroup of
order q3 + 1 makes this possible. Again, let e = e0 + e1σ . Then

eq
3 = e0 − e1σ,

and hence

eq
3−1 = e0 − e1σ

e0 + e1σ
∈ Gl ⊂ Fq6 . (1)

One can perform this division in Fq6 and use the ordinary polynomial representation. Here
we choose to leave this fraction unevaluated. Note that multiplying the numerator and
denominator of (1) by any element of F×

q3 leaves the represented element unchanged.

70https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

An interesting property of this representation is that when multiplying two fractions of
this form, the coefficients of the numerator and the denominator correspond exactly: let

c = c0 − c1σ

c0 + c1σ
, d = d0 − d1σ

d0 + d1σ
,

with ci, di ∈ Fq3 . Then, since σ 2 + 1 = 0, we see that

cd = (c0d0 − c1d1)− (c0d1 + c1d0)σ

(c0d0 − c1d1)+ (c0d1 + c1d0)σ
.

This also follows trivially from the fact that (cd)q
3−1 = cq3−1 · dq3−1.

For an implementation, this allows one therefore to work with the denominator only,
since one knows that the coefficients of the numerator will be identical. Hence one may
view our previous operations in G without powering equivalently as operating purely on the
denominator of (1) after powering, and so all the arithmetic carries over unchanged.

Remark 1. The representation (1) and its identification with P1 were given explicitly by
Rubin and Silverberg [42]. However, the arithmetical consequences of embedding this
representation into the extension field were only fully considered in [25], where it was also
noted that one may also represent T2 as a quotient group. Thus while these ideas are not
new (the representation (1) is a simple application of Hilbert’s Theorem 90), they find a
novel application in pairing-based cryptography.

3.4. Further compression using T6(Fq)

Since the characteristic-three supersingular elliptic curves that we consider have em-
bedding degree six, one may ask why we use the arithmetic of T2(Fq3) when the order-l
subgroup is in fact in T6(Fq). The reason is that there seems no obvious way to utilise
the extra structure provided by T6(Fq) (see [25]), though we do not rule out such a pos-
sibility. However, we know that |T6(Fq)| = (q2 − q + 1) | (q3 + 1) = |T2(Fq3)|, and
so T6(Fq) ⊂ T2(Fq3). Thus one can use the properties of the latter and apply them to the
former, utilising the improvements derived over the extension field representation.

While arithmetic improvements do not seem to be available with T6, one can exploit it
for better compression. As T6 is rational, one can map nearly all its elements to the affine
plane and use this representation instead for data transmissions.

Using the method described by Rubin and Silverberg [42], and thanks to some serendip-
itous equations for characteristic three and the given field representation, one obtains this
additional compression for free.

By Definition 1,

T6(Fq) = Ker(NF
q6/Fq3) ∩ Ker(NF

q6/Fq2) = T2(Fq3) ∩ Ker(NF
q6/Fq2).

To obtain a suitable representation, one therefore needs only to parametrise those elements
of the form (1) which have norm equal to one in the second factor.

Let e = (a − σ)/(a + σ) be the compressed representation for e, and let a =
a0 + a1ρ + a2ρ

2, where ρ3 − ρ ± 1 = 0 defines the cubic extension that we later use for
the Duursma–Lee algorithm. Then we obtain an equation in a0, a1, and a2 by the condition

(
a − σ
a + σ

)1+q2+q4

= 1.

71https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

This is equivalent to 1 + a2
1 − a0a2 − a2

2 = 0, which one can parametrise easily with just
a1 and a2, since a0 = (1+ a2

1 − a2
2)/a2. It is therefore sufficient to specify only a1 and a2,

to describe all points on T6(Fq) bar the identity, and this is essentially all that we need. We
therefore have a map

ψ : A2(Fq) \ {(a1, 0)} → T6(Fq) \ {1}
given by

ψ(a1, a2) = ((1+ a2
1 − a2

2)+ a1a2ρ + a2
2ρ

2)− a2σ

((1+ a2
1 − a2

2)+ a1a2ρ + a2
2ρ

2)+ a2σ
.

The inverse map
ψ−1 : T6(Fq) \ {1} → A2(Fq) \ {(a1, 0)}

is given as above; that is, we just take the second and third coefficients in the fractional
expression for e.

Note that A2(Fq) \ {(a1, 0)} and T6(Fq) \ {1} both have cardinality q2 − q. In terms of
the quotient group G and an actual pairing computation, once e0/e1 has been computed one
can use the second and third coefficients to parametrise the element, without any further
computation.

Remark 2. In the context of compression, Rubin and Silverberg [41, 43] have shown how
one can compress BLS short-signatures [6] by using the trace-zero subvariety contained in
the Weil restriction of scalars of an elliptic curve defined over a composite field extension.
This method provides a compression factor of n/φ(n) also, where gcd(n, 2) = 1, and can
be applied to any pairing-based protocol where one is required to transmit a point on the
curve, such as [29]. However for n � 5, building upon an idea of Semaev [47], Gaudry
has shown [20] that such curves are weaker than those defined over the prime field, and
hence this method should be regarded with some caution. We point out that this form of pre-
compression is distinct from the post-compression described here, and thus these attacks
do not apply.

4. Exponentiation

Now that we have set up the basic arithmetic for the quotient group G = F×
q6/(F

×
q6)

q3+1,
we explore how one can optimise the basic operation of exponentiation in practice. For
comparison, we also describe fast algorithms for exponentation in the order-l subgroup
Gl ⊂ F×

q6 using existing techniques [52] and point multiplication in E(Fq), incorporating
a novel technique that we develop here.

For ease of notation, we write the group operation for all three groups multiplicatively,
and for each of the above we compare four exponentiation methods, which we detail in turn.
The input to each algorithm is a base e and an integer k mod l in standard ternary format.
The output is ek . When applicable, precomputed values are stored in affine to facilitate the
mixed multiplication. We note that in all three groups, inversions are essentially for free, so
we consider signed digit representations. For the remainder of the paper, m represents the
cost of one Fq multiplication.

Method 1: Signed ternary expansion

Using the generalised non-adjacent form, or G-NAF [8], one can take the ternary expan-
sion of an exponent k mod l and transform it into an equivalent signed ternary representation.
Such a representation is easy to compute, and reduces the average density of non-zero trits
from two thirds to one half. The precomputation involves just a single squaring of the base.

72https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

Method 2: Signed nonary expansion

This is the same as Method 1, except we use a base-nine expansion of k. This essentially
halves the trit-length of k for the cost of precomputing ei, i = 1, ..., 8. Again using the
G-NAF, the average density of non-zero ‘nits’ in this expansion is four fifths.

Method 3: Sliding window ternary expansion

We use an unsigned ternary expansion of k with a sliding window of width three [35,
Chapter 14,Algorithm 14.85]. To do so, one needs to precompute and store ei for 0 < i < 27
and i �= 0 mod 3.

Method 4: Frobenius expansion

For e ∈ G, the q-Frobenius map is easily computed. Moreover, the qth power of a
compressed element is itself compressed. Since the Frobenius map satisfies q2−q+1 = 0
(as maps) and the group order divides q2 − q + 1, one can split the exponent k in two
halves k1 and k2, where k1, k2 are approximately half the trit-length of l and satisfy k ≡
k1+k2q mod l; see [52]. One can find k1 and k2 very quickly, having performed a one-time
Gaussian two-dimensional lattice basis reduction.

Thus a single exponentiation can be transformed into a double exponentiation for half the
trit-length of k, for the cost of performing a double exponentiation instead. To compute ek

for a random k mod l, we perform the double exponentiation ek1(eq)k2 using Shamir’s trick,
originally due to Straus [53]. We detail the required precomputation in the next section.

For each of k1, k2 we invoke the G-NAF. The average density of non-zero trits in each
of their ternary expansions is 1/2, and hence the average number of non-zero trits in the
paired ternary expansion of k1, k2 is 1− (1/2)2 = 3/4. We therefore expect to perform on
average (3/4) ·m/2 = (3/8)m multiplications of mixed type during an exponentiation.

Interestingly enough, this method also works for the elliptic curve. Clearly, one can use
the same expansion of k on E(Fq), with powering by q replaced by scalar multiplication
by q. Somewhat surprisingly, on the curve also, multiplication by q is an efficiently com-
putable automorphism since [q]P = (x − (m mod 3)b,−y) for P = (x, y) on the curve
(where the curve equation is Y 2 = X3 − X + b). Thus we arrive at a novel application of
the Gallant–Lambert–Vanstone exponent split method using fast automorphisms [18].

We note that for supersingular curves over characteristic three, there is also an efficient
scalar multiplication algorithm due to Koblitz [30] based on the curve automorphism
mapping the point (x, y) to (x3, y3).

4.1. Precomputation

The necessary precomputation for Methods 1, 2 and 3 is straightforward. For Method 4,
we can take advantage of the q-Frobenius to reduce the cost. We use the notation of G. Let
e = e0 + e1σ . In order to use Shamir’s trick, we need to know the values

(e0/e1 + σ)i+qj i, j ∈ {0,±1,±2} (2)

in affine. Let (i, j) represent the corresponding term in (2). Then we can use the fact that
for any e ∈ G, we have eq

2−q+1 = OG to generate most of the required terms easily. To
achieve this, one applies the q-Frobenius iteratively to obtain (i, j)q = (−j, i+ j). We list
these operations in Algorithm 1. In Gl we use the same method, having first powered e by
q3 − 1, but clearly without needing to obtain affine representatives.

73https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

input: e = e0 + e1σ ∈ G
output: Representatives in GA of
(i, j) := (e0 + e1σ)

i+jq , i, j ∈ {0,±1,±2}

(1, 0)← A(e)

(0, 1)←−(1, 0)q

(−1, 1)←−(0, 1)q

(−1, 0)←−(−1, 1)q

(0,−1)←−(−1, 0)q

(1,−1)←−(0,−1)q

(2, 0)← mul((1, 0), (1, 0))
(2, 0)← A((2, 0))
(0, 2)←−(2, 0)q

(−2, 2)←−(0, 2)q

(−2, 0)←−(−2, 2)q

(0,−2)←−(−2, 0)q

(2,−2)←−(0,−2)q

(1, 1)← mul((1, 0), (0, 1))
(1, 1)← A((1, 1))
(−1, 2)←−(1, 1)q

(−2, 1)←−(−1, 2)q

(−1,−1)←−(−2, 1)q

(1,−2)←−(−1,−1)q

(2,−1)←−(1,−2)q

(1, 2)← mul((1, 0), (0, 2))
(1, 2)← A((1, 2))
(−1,−2)←−(1, 2)

(2, 1)← mul((2, 0), (0, 1))
(2, 1)← A((2, 1))
(−2,−1)←−(2, 1)

(2, 2)← mul((2, 0), (0, 2))
(2, 2)← A((2, 2))
(−2,−2)←−(2, 2)

Algorithm 1: Online pre-computation for double exponentiation

4.2. Comparison with trace-based exponentiation

The cost of a mixed multiplication in G is 12M . Since l ≈ 3m, an exponentiation using
Method 4 costs on average about 4.5mM . This improves considerably on the 12mM required
by the trace method of [46]. Even without mixed multiplication, this exponentiation still

74https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

only requires 6.75mM , and with neither the exponent splitting nor the mixed multiplication,
this cost is only about 9mM . Hence ordinary field arithmetic outperforms the proposed
trace method, which can in fact be reduced further to about 10.3mM using a Euclidean
algorithm [51], but is still over twice as slow.

4.3. Application to other pairings

We have focused primarily on small characteristic tori because the Duursma–Lee algo-
rithm is currently1 the most efficient for pairing computation. In the future, the preferred
embedding degree of a curve will increase in order to maintain a good security/efficiency
trade-off, and thus it is likely that non-supersingular curves over large characteristic fields
will be used.

Since the embedding degreenof a pairing on a given abelian variety is minimal, the output
of any pairing may be considered an element of the torus Tn. Hence all of the techniques
developed for torus-based cryptography may be applied, certainly for any embedding degree
less than thirty.

However, earlier work [25] shows that for large characteristic, the trace-based methods
such as LUC [49] (for degree-two extensions), and XTR [33, 51] (for degree-six extensions),
are slightly faster than the torus approach. For the near future, however, our methods are
likely to remain near-optimal.

5. Field representation

We briefly describe efficient arithmetic for Fq and the required extensions.

5.1. Field arithmetic in Fq

Let Fq = F3m . Let a = am−1x
m−1 + . . . + a1x + a0 be an element of Fq , held in a

polynomial basis, so that ai ∈ F3. We follow other work [17, 27] and represent the element
a as two bit-vectors aH and aL. If we let aH [i] and aL[i] denote bit i of aH and bit i of aL
respectively, the vectors aH and aL are constructed from a such that for all i

aH [i] = ai div 2;
aL[i] = ai mod 2.

That is, aH and aL are a bit-sliced representation of the coefficients of a where aH holds
the high bit and aL the low bit of a given coefficient. Given a representation of this type,
we can perform a component-wise addition ri = ai + bi of two elements a and b using the
following word-wise logical operations:

rH [i] = (aL[i] ∨ bL[i])⊕ t,
rL[i] = (aH [i] ∨ bH [i])⊕ t,

where

t = (aL[i] ∨ bH [i])⊕ (aH [i] ∨ bL[i]).
1After the initial submission of this paper and the dissemination of a preprint of it [26], generalizations of the
Duursma–Lee algorithm were found [1, 31]. In particular the η-pairing [1] can be faster than the Duursma–Lee
algorithm optimized in this paper. However, both our methods of exploiting the sparsity of the multiplicands (to be
discussed in Section 6) and the techniques to deal with the final exponentiations and handle the resulting pairing
value (described in this section) apply to these more recent results.

75https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

Subtraction, and hence multiplication by two, are equally efficient since the negation of an
element a simply swaps the vectors aH and aL over, and can therefore be implemented by
the same function as addition.

On a given computer with word-sizew, we hold the bit-vectors aH and aL that represent
a as two word-vectors of length n = m/w�, and hence we can apply logical operations in
parallel to w coefficients at a time. However, since our representation remains bit-oriented,
we can borrow further techniques developed for fields of characteristic two. Specifically, it is
possible to construct multiplication using a variation of the often-cited ‘comb’ method [34]
and inversion by altering the binary extended Euclidean algorithm. We used a Karatsuba
method to aggressively split the multiplication operands into word-sized chunks, an option
that provided significant performance improvements. Unlike elements in characteristic two,
squaring in characteristic three is only marginally less expensive than general multiplication.
However, cubing can be performed very quickly using table-lookup in an analogous way
to the so-called coefficient thinning method in characteristic two.

5.2. Field arithmetic in Fq3

Let Fq3 = Fq [ρ]/(ρ3 − ρ − b), with b = ±1 depending on the curve equation. Let

a = a0 + a1ρ + a2ρ
2 and b = b0 + b1ρ + b2ρ

2

be two generic elements. We require the following operations.

q-Frobenius
Since ρ3 = ρ + b, we have ρ3m = ρ + (m mod 3)b and (ρ2)3

m = (ρ3m)2 = ρ2 +
2b(m mod 3)ρ + (m2 mod 3). Hence

a3m = (a0 + a1ρ + a2ρ
2)3

m

= (a0 + a1b(m mod 3)+ a2b)+ (a1 − a2b(m mod 3))ρ + a2ρ
2.

Multiplication
Let t00 = a0b0, t11 = a1b1, t22 = a2b2, t01 = (a0+a1)(b0+b1), t12 = (a1+a2)(b1+b2),
and t20 = (a2 + a0)(b2 + b0). Then

ab = (t00+ (t12− t11− t22)b)+ (t01− t00+ t11+ t12+ t22(b− 1))ρ+ (t20− t00+ t11)ρ
2.

Cubing
This is straightforward in characteristic three, since

a3 = (a3
0 + a3

2 + a3
1b)+ (a3

1 − a3
2b)ρ + a3

2ρ
2.

Inversion
Since the extension degree is small, we can perform this directly. Let t00 = a2

0 , t11 = a2
1 ,

t22 = a2
2 , t01 = a0a1, t12 = a1a2, t20 = a2a0, and let� = a3

0 + a3
1b+ a3

2 + t20(a2 − a0)−
a1(t01 + t22b). Then

a−1 = �−1((t00 − t20 + t22 − t11 − t12b)+ (t22b − t01)ρ + (t11 − t20 − t22)ρ
2).

5.3. Field arithmetic in Fq6

Let Fq6 = Fq3 [σ]/(σ 2 + 1). Let c = c0 + c1σ and d = d0 + d1σ with ci, di ∈ Fq3

being two generic elements. The arithmetic is as follows.

76https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

input: point P = (x1, y1), point Q = (x2, y2)

output: fP (φ(Q)) ∈ G

f ← 1
for i = 1 to m do
x1 ← x3

1 , y1 ← y3
1

µ← x1 + x2 + b, λ←−y1y2σ − µ2

g← λ− µρ − ρ2, f ← f · g
x2 ← x

1/3
2 , y2 ← y

1/3
2

end
return f

Algorithm 2: The Duursma–Lee algorithm

q-Frobenius
Since σ 2 = −1, we have σ 3 = −σ and, as m is odd, we obtain

c3m = c3m
0 − c3m

1 σ.

Multiplication
Let t00 = c0d0, t11 = c1d1, and t01 = (c0 + c1)(d0 + d1). Then

cd = (t00 − t11)+ (t01 − t00 − t11)σ.

Cubing

c3 = c3
0 − c3

1σ.

Inversion
Let � = c2

0 + c2
1. Then

c−1 = �−1(c0 − c1σ).

6. The modified Tate pairing algorithm

In this section we detail how to efficiently implement the Duursma–Lee algorithm for
the computation of the modified Tate pairing.

Let P = (x1, y1) and Q = (x2, y2) be points of order l. Then the modified Tate pairing
on the supersingular curveE(Fq) : Y 2 = X3−X+b is the mapping fP (φ(Q))q

3−1, where
φ : E(Fq)→ E(Fq6) is the distortion map φ(x2, y2) = (ρ − x2, σy2). However, making
use of the techniques of Section 3, we do not need to perform the final powering, as we
presume that the output will be stored and transmitted in compressed form (Algorithm 2).

6.1. Cost analysis

Let M denote the cost of an Fq multiplication. Each iteration of the loop requires 2M
to compute µ2 and y1y2, and an Fq6 multiplication to compute f · g. Since a generic Fq6

multiplication costs 18M , Scott and Barreto [46] reckon that besides the necessary cubings
and cube roots, each loop iteration costs 20M . However, in each iteration g is sparse (that
is, not all of its terms are non-trivial), one can exploit this to reduce the cost of multiplying
g and f , which is not sparse in general, to 13M . This total of 15M improves on the trace-
based method suggested by Scott and Barreto. In fact, one can reduce the cost for each loop

77https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

input: point P = (x1, y1), point Q = (x2, y2)

output: fP (φ(Q)) ∈ G

f ← 1

for i = 1 to (m− 1)/2 do
x1 ← x3

1 , y1 ← y3
1

µ← x1 + x2 + b, λ←−y1y2σ − µ2

g1 ← λ− µρ − ρ2

x2 ← x
1/3
2 , y2 ← y

1/3
2

x1 ← x3
1 , y1 ← y3

1

µ← x1 + x2 + b, λ←−y1y2σ − µ2

g2 ← λ− µρ − ρ2

g← g1g2, f ← f · g
x2 ← x

1/3
2 , y2 ← y

1/3
2

end
x1 ← x3

1 , y1 ← y3
1

µ← x1 + x2 + b, λ←−y1y2σ − µ2

g← λ− µρ − ρ2, f ← f · g
return f

Algorithm 3: A refined Duursma–Lee algorithm

iteration in the ordinary Duursma–Lee algorithm to just 14M , by unrolling the main loop
and better exploiting the sparsity of g.

We demonstrate this technique inAlgorithm 3, which provides a saving since in each loop,
multiplying g1 by g2 costs only 6M . Multiplying g by f in each loop costs 18M since they
are both generic Fq6 elements. Bothµ2 andy1y2 are computed twice in each loop: once forg1
and once forg2. In total, the cost is therefore (6M+4M)(m−1)/2+18M(m−3)/2+13M =
14mM − 19M , which is equivalent to about 14M per loop iteration of Algorithm 2.

This cost analysis ignores the cost of computing cubings and cube roots. Because of the
large number of times each of these operations is invoked, it has been suggested that one
should use normal bases to accommodate them efficiently, since they are then implemented
using cyclic shifts. Normal bases are well-studied in even characteristic, but for charac-
teristic three one cannot construct optimal, type-one normal bases with prime extension
degree [19, 38], although type-two bases are available for some values of m. As a result,
the cost of general multiplication in software is relatively large, even when variations of
high-performance methods in characteristic two are used [40, 37]. For example, we found
that whenm = 239, normal basis multiplication is between two and three times slower than
a polynomial basis multiplication. However, in hardware implementations on a smart-card
for example, normal bases still seem the obvious choice since they can match the multipli-
cation speed of polynomial bases while offering inexpensive cube and cube-root operations,
although perhaps at the cost of flexibility.

To reduce the cost of computing cube roots using a polynomial basis, we observe that
the successive cube roots of x2 and y2 can be computed more easily in reverse order and
stored for the duration of the algorithm. Since for any x2 ∈ Fq , we have x2 = x3m

2 , the

78https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

required values x1/3i

2 can be computed as x3m−i
2 , and thus one does not need to compute

any cube roots at all. The memory requirement for this is only about 2−11m2 Kb, and the
time taken is just the cost of 2m cubings. If memory is at a premium, one can reduce this to
about 2−4.5m3/2 Kb with double the number of cubings, using further loop-unrolling and
pebbling strategies.

Remark 3. As already mentioned, Scott and Barreto’s method [46] is effectively a change
of basis and not a compressed method of computing a pairing. Hence it is unsurprising that
the loop-unrolling strategy of Algorithm 3 can be used to reduce the cost of the trace method
given there, as was kindly pointed out by Barreto in a personal communication.

Remark 4. Scott and Barreto [46] suggested an open problem, asking whether it is possible
to perform the pairing computation directly in compressed form for some compression factor
of at least 3 on ordinary (non-supersingular) curves in characteristic p > 3. A compression
factor larger than 3 is extremely unlikely. For pairing-based applications, the desirable
extension degrees in the near future are likely to remain small, and no larger than twenty.
By Lemma 1, the maximum compression factor possible for a given extension degree n is
n/φ(n), and for n < 20, this maximum is three, which has already been achieved for the
modified Tate pairing.

Table 3: Pairing and exponentiation timings

F379 F397 F3163 F3193 F3239 F3353

Pairing

BKLS 13.96ms 23.60ms 79.11ms 123.21ms 179.30ms 527.56ms

Algorithm 3 4.67ms 8.41ms 29.26ms 45.67ms 65.73ms 197.58ms

Exponentiation in Gl

Method 1 3.65ms 6.14ms 20.98ms 33.21ms 44.72ms 130.27ms

Method 2 4.57ms 7.25ms 21.53ms 31.61ms 43.56ms 119.16ms

Method 3 3.67ms 5.79ms 17.85ms 26.69ms 36.45ms 101.75ms

Method 4 3.06ms 5.10ms 16.55ms 24.67ms 34.74ms 99.56ms

Exponentiation in G

Method 1 2.55ms 4.27ms 14.15ms 21.67ms 30.69ms 88.06ms

Method 2 2.62ms 5.21ms 13.21ms 20.38ms 26.97ms 74.90ms

Method 3 3.69ms 4.72ms 15.78ms 22.96ms 37.96ms 73.29ms

Method 4 2.32ms 4.07ms 11.84ms 17.63ms 24.73ms 69.30ms

Point Multiplication in E(Fq)

Method 1 1.83ms 3.11ms 10.62ms 16.94ms 24.11ms 69.78ms

Method 2 1.72ms 2.84ms 9.47ms 14.73ms 21.15ms 60.70ms

Method 3 1.82ms 3.01ms 9.66ms 14.95ms 21.19ms 58.70ms

Method 4 1.18ms 1.95ms 8.11ms 12.75ms 19.04ms 55.93ms

79https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

7. Implementation results

In order to provide some concrete idea of the practical cost of our own and other
methods, we implemented the proposed field arithmetic, pairing algorithms and exponentia-
tion methods. We used a GCC 3.3 compiler suite to build our implementation, and ran timing
experiments on a Linux-based PC incorporating a 2.80 GHz Intel Pentium 4 processor. The
entire system was constructed in C++. We accept that further performance improvements
could be made through aggressive profiling and optimisation, but we are confident that our
results are representative of the underlying algorithms and allow a comparison between
them.

Table 3 shows the result of timing this implementation using a variety of different base
field sizes. In the pairing section, ‘Algorithm 3’refers to the augmented version of Duursma–
Lee presented in this paper, with the cube-root precomputation strategy and the loop
unrolling. The BKLS method is included as a reference. We do not include timings for
the methods of [46] since our operation count clearly shows they will be slower than our
alternatives. Table 4 gives timings for the underlying field operations.

Table 4: Timings for field operations

F379 F397 F3163 F3193 F3239 F3353

Fq

Add 0.55µs 0.53µs 0.58µs 0.63µs 0.61µs 0.64µs

Square 4.42µs 6.07µs 12.99µs 16.48µs 19.48µs 40.97µs

Cube 0.85µs 0.84µs 0.96µs 1.26µs 1.24µs 1.77µs

Invert 23.18µs 33.26µs 70.10µs 97.20µs 136.86µs 303.27µs

Multiply 4.06µs 6.02µs 12.80µs 17.83µs 19.42µs 43.11µs

Fq3

Add 0.60µs 0.60µs 0.80µs 0.90µs 0.90µs 0.50µs

Cube 2.10µs 2.10µs 2.30µs 2.50µs 3.20µs 4.20µs

Invert 65.00µs 94.70µs 204.40µs 275.90µs 350.60µs 741.80µs

Frobenius 1.10µs 0.90µs 1.10µs 1.00µs 1.30µs 1.40µs

Multiply 26.10µs 37.80µs 74.20µs 98.00µs 115.50µs 249.00µs

Fq6

Add 0.90µs 0.90µs 0.90µs 1.10µs 1.00µs 1.10µs

Cube 2.80µs 4.60µs 4.40µs 4.00µs 5.00µs 5.60µs

Invert 165.50µs 237.20µs 497.40µs 670.10µs 817.10µs 1709.50µs

Frobenius 2.00µs 2.10µs 1.90µs 2.00µs 2.10µs 2.10µs

Multiply 75.70µs 106.10µs 227.10µs 296.80µs 347.30µs 745.10µs

80https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

We note first that our implementation of Algorithm 3 is between two to three times faster
than the BKLS algorithm. With regard to exponentiation, Method 4 is the most efficient for
all field sizes and in all three groups, and in G is nearly twice as fast as Method 1 inGl . An
early estimate of Koblitz [30] states that the ratio of the time required for an exponentation
in Fq6 to the time required for a point multiplication inE(Fq) is 12; our results demonstrate
that for fields of a cryptographic size, this value is in fact closer to 1.3. Thus the techniques
from [52], together with the fast multiplication in G, considerably improve the efficiency
of post-pairing arithmetic.

We conceed that while we have not implemented Koblitz’s complex multiplication
exponentiation method, due to the estimated large preprocessing time required, we do not
think that it would significantly affect this comparison.

Furthermore, due to our direct inversion method, the ratio of inversion time to multipli-
cation time in Fq3 is under three for all field sizes. This means that our compression method
in G costs roughly 4/3 multiplications in Fq6 , and is therefore also very efficient.

8. Conclusion and open problems

We have shown how to take advantage of the quotient group to which a pairing value
naturally belongs in order to speed up exponentiations, and to obtain fast compression of
pairing values. We have also proposed some simple refinements to the Duursma–Lee algo-
rithm to improve efficiency. Our results strongly indicate that there are definite advantages
to implementing pairing-based cryptographic protocols in characteristic three: the often-
quoted value of ten for the ratio of the speed of a pairing evaluation to a point multiplication
on the curve is really closer to three or four.

Some issues remain. One could certainly improve the exponentiation times for all three
groups if there existed an efficiently computable ternary analogue of the Joint Sparse
Form [50]. With regard to side channel attacks, such a method may be undesirable since
one cannot render cubing and multiplication in characteristic-three fields indistinguishable
without a serious detriment to performance. As such, a cube-and-multiply-always method
using the exponent splitting of Method 4 will halve the cost of a secure full-length expansion.

Also, the exact security of the discrete logarithm problem in characteristic three using the
ternary analogue of Coppersmith’s method has yet to be investigated [10, 11]. Preliminary
research into this problem using Adleman’s Function Field Sieve has been conducted [23,
24], but the problem should still be considered open.

Lastly, do there exist methods for faster pairing evaluation using MNT curves, and how
might they compare to those presented here?

Acknowledgements The authors would like to thank the anonymous referee, Paulo Barreto,
Steven Galbraith, Keith Harrison, Karl Rubin, Mike Scott, Alice Silverberg, Nigel Smart
and Fré Vercauteren for many helpful comments and fruitful discussions.

References

1. P. Barreto, S. Galbraith, C. Ó hÉigeartaigh and M. Scott, ‘Efficient pairing
computation on supersingular abelian varieties’, Cryptology ePrint Archive, Report
2004/375, http://eprint.iacr.org/2004/375. 75

81https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

http://eprint.iacr.org/2004/375
https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

2. P. Barreto, H. Kim, B. Lynn and M. Scott, ‘Efficient algorithms for pairing-based
cryptosystems’, Advances in cryptology (CRYPTO 2002), Lecture Notes in Comput.
Sci. 2442 (Springer, 2002) 354–368. 64, 65, 66

3. D. Boneh and X. Boyen, ‘Efficient selective-ID secure identity-based encryption
without random oracles’, Advances in cryptology (EUROCRYPT 2004), Lecture Notes
in Comput. Sci. 3027 (Springer, 2004) 223–238. 65

4. D. Boneh, X. Boyen and H. Shacham, ‘Short group signatures’, Advances in cryp-
tology (CRYPTO 2004), Lecture Notes in Comput. Sci. 3152 (Springer, 2004) 41–55.
65

5. D. Boneh and M. Franklin, ‘Identity-based encryption from the Weil pairing’, SIAM
J. Comput., 32 (2003) 586–615. 64, 65

6. D. Boneh, B. Lynn and H. Shacham, ‘Short signatures from the Weil pairing’,
Advances in cryptology (ASIACRYPT 2001), Lecture Notes in Comput. Sci. 2248
(Springer, 2001) 514–532. 64, 72

7. W. Bosma, J. Hutton and E. Verheul, ‘Looking beyond XTR’, Advances in cryptol-
ogy (ASIACRYPT 2002), Lecture Notes in Comput. Sci. 2501 (Springer, 2002) 46–63.
67

8. W. Clark and J. Liang, ‘On arithmetic weight for a general radix representation of
integers’, IEEE Trans. Inform. Theory 19 (1973) 823–826. 72

9. H. Cohen, A. Miyaji and T. Ono, ‘Efficient elliptic curve exponentiation using mixed
coordinates’, Advances in cryptology (ASIACRYPT 1998), Lecture Notes in Comput.
Sci. 1514 (Springer, 1998) 51–65. 69

10. D. Coppersmith, ‘Evaluating logarithms in GF(2n)’, 16th ACM Symp. Theory of
Computing (1984) 201–107. 81

11. D. Coppersmith, ‘Fast evaluation of logarithms in fields of characteristic two’, IEEE
Trans. Inform. Theory, 30 (July 1984) 587–594. 81

12. R. Dutta, R. Barua and P. Sarkar, ‘Pairing-based cryptographic protocols: a sur-
vey’, Cryptology ePrint Archive, Report 2004/064,
http://eprint.iacr.org/2004/064. 64

13. I. Duursma and H. Lee, ‘Tate pairing implementation for hyperelliptic curves y2 =
xp − x + d’, Advances in cryptology (ASIACRYPT 2003), Lecture Notes in Comput.
Sci. 2894 (Springer, 2003) 111–123. 64, 66

14. T. ElGamal, ‘A public key cryptosystem and a signature scheme based on discrete
logarithms’, IEEE Trans. Inform. Theory 31 (1985) 469–472. 67

15. G. Frey and H. Ruck, ‘A remark concerningm-divisibility and the discrete logarithm
problem in the divisor class group of curves’, Math. Comput. 62 (1994) 865–874. 66

16. S. Galbraith, Supersingular curves in cryptography’,Advances in cryptology
(ASIACRYPT 2001), Lecture Notes in Comput. Sci. 2248 (Springer, 2001) 495–513.
65

17. S. Galbraith, K. Harrison and D. Soldera, ‘Implementing the Tate pairing’, Proc.
ANTS V, Lecture Notes in Comput. Sci. 2369 (2002) 324–337. 64, 65, 66, 75

18. R. Gallant, J. Lambert and S. Vanstone, ‘Faster point multiplication on ellip-
tic curves with efficient endomorphisms’, Advances in cryptology (CRYPTO 2001),
Lecture Notes in Comput. Sci. 2139 (Springer, 2001) 190–200. 73

82https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

http://eprint.iacr.org/2004/064
https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

19. S. Gao, ‘Normal bases over finite fields’, PhD Thesis, Waterloo University, 1993. 78

20. P. Gaudry, ‘Index calculus for abelian varieties and the elliptic curve discrete loga-
rithm problem’, Cryptology ePrint Archive, Report 2004/073,
http://eprint.iacr.org/2004/073. 72

21. C. Gentry, ‘Certificate-based encryption and the certificate revocation problem’,
Advances in cryptology (EUROCRYPT 2003), Lecture Notes in Comput. Sci. 2656
(Springer, 2003) 272–293. 65

22. P. Golle and A. Juels, ‘Dining cryptographers revisited’, Advances in cryptology
(EUROCRYPT 2004), Lecture Notes in Comput. Sci. 3027 (Springer, 2004) 456–473.
65

23. R. Granger, ‘Estimates for discrete logarithm computations in finite fields of
small characteristic’, Cryptography and coding, Lecture Notes in Comput. Sci. 2898
(Springer, 2003) 190–206. 81

24. R. Granger, A. Holt, D. Page, N. Smart and F. Vercauteren, ‘Function field sieve
in characteristic three’, Proc. ANTS VI, Lecture Notes in Comput. Sci. 3076 (Springer,
2004) 223–234. 81

25. R. Granger, D. Page and M. Stam, ‘A Comparison of CEILIDH and XTR’, Proc.
ANTS VI, Lecture Notes in Comput. Sci. 3076 (Springer, 2004) 235–249. 65, 70, 71,
75

26. R. Granger, D. Page and M. Stam, ‘On small characteristic algebraic tori in pairing-
based cryptography, Cryptology ePrint Archive, Report 2004/132,
http://eprint.iacr.org/2004/132. 75

27. K. Harrison, D. Page and N. P. Smart, ‘Software implementation of finite fields of
characteristic three, for use in pairing based cryptosystems’, LMS J. Comput. Math.,
5 (2002) 181–193, http://www.lms.ac.uk/jcm/5/lms2002-002. 75

28. F. Hess, Efficient identity based signature schemes based on pairings’, Selected areas
in cryptography (SAC 2002), Lecture Notes in Comput. Sci. 2595 (Springer, 2003)
310–324. 65

29. A. Joux, ‘A one round protocol for tripartite Diffie–Hellman’, Proc. ANTS IV, Lecture
Notes in Comput. Sci. 1838 (Springer, 2000) 385–394. 64, 72

30. N. Koblitz, ‘An elliptic curve implementation of the finite field digital signature
algorithm’, Advances in cryptology (CRYPTO 98), Lecture Notes in Comput. Sci.
1462 (Springer, 1998) 327–337. 73, 81

31. S. Kwon, ‘Efficient Tate pairing computation for elliptic curves over binary fields’,
Proc. ACISP 2005, Lecture Notes in Comput. Sci. 3574 (Springer, 2005) 134–145. 75

32. A. Lenstra, ‘Using cyclotomic polynomials to construct efficient discrete logarithm
cryptosystems over finite fields’, Proc. ACISP97, Lecture Notes in Comput. Sci. 1270
(Springer, 1997) 127–138. 67

33. A. Lenstra and E. Verheul, ‘The XTR public key system’, Advances in cryptology
(CRYPTO 2000), Lecture Notes in Comput. Sci. 1880 (Springer, 2000) 1–19. 64, 67,
75

34. J. López and R. Dahab, ‘High speed software multiplication in F2m ’, Progress in
cryptography (INDOCRYPT 2000), Lecture Notes in Comput. Sci. 1977 (Springer,
2000) 203–212. 76

83https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

http://eprint.iacr.org/2004/073
http://eprint.iacr.org/2004/132
http://www.lms.ac.uk/jcm/5/lms2002-002
https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

35. A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of applied
cryptography (CRC Press, 1997). 73

36. V. Miller, ‘Short programs for functions on curves’, unpublished manuscript, 1986,
available from http://crypto.stanford.edu/miller/miller.pdf. 65

37. P. Ning and Y. L. Yin, ‘Efficient software implementation for finite field multiplication
in normal basis’, Information and communications security (ICICS), Lecture Notes
in Comput. Sci. 2229 (Springer, 2001) 177–188. 78

38. M. Nöcker, ‘Data structures for parallel exponentiation in finite fields’, PhD Thesis,
Universität Paderborn, 2001. 78

39. G. Pohlig and M. Hellman, ‘An improved algorithm for computing discrete loga-
rithms over GF(p) and its cryptographic significance’, IEEE Trans. Inform. Theory
24 (1978) 106–110. 67

40. A. Reyhani-Masoleh and M. A. Hasan, ‘Fast normal basis multiplication using
general purpose processors’, Selected areas in cryptography (SAC 2001), Lecture
Notes in Comput. Sci. 2259 (Springer, 2001) 230–244. 78

41. K. Rubin and A. Silverberg, ‘Supersingular abelian varieties in cryptology’, Ad-
vances in cryptology (CRYPTO 2002), Lecture Notes in Comput. Sci. 2442 (Springer,
2002) 336–353. 72

42. K. Rubin and A. Silverberg, ‘Torus-based cryptography’, Advances in cryptology
(CRYPTO 2003), Lecture Notes in Comput. Sci. 2729 (Springer, 2003) 349–365. 64,
65, 67, 68, 70, 71

43. K. Rubin and A. Silverberg, ‘Using primitive subgroups to do more with fewer bits’,
Algorithm number theory (ANTS-VI), Lecture Notes in Comput. Sci. 3076 (Springer,
2004) 18–41. 72

44. R. Sakai, K. Ohgishi and M. Kasahara, ‘Cryptosystems based on pairings’, Sympo-
sium on Cryptography and Information Security 2000 (SCIS2000), Okinawa, Japan,
Jan 26–28, 2000. 64

45. M. Scott, ‘Authenticated ID-based key exchange and remote log-in with insecure
token and PIN number’, Cryptology ePrint Archive, Report 2002/164,
http://eprint.iacr.org/2002/164. 65

46. M. Scott and P. Barreto, ‘Compressed pairings’, Advances in cryptology (CRYPTO
2004), Lecture Notes in Comput. Sci. 3152 (Springer, 2004) 140–156. 64, 66, 74, 77,
79, 80

47. I. Semaev, ‘Summation polynomials and the discrete logarithm problem on elliptic
curves’, Cryptology ePrint Archive, Report 2004/031,
http://eprint.iacr.org/2004/031. 72

48. J. Silverman, The arithmetic of elliptic curves, Grad. Texts in Math. 106 (Springer,
1986). 66

49. P. Smith and C. Skinner, ‘A public-key cryptosystem and a digital signature system
based on the Lucas function analogue to discrete logarithms’, Advances in cryptology
(ASIACRYPT 1995), Lecture Notes in Comput. Sci. 917 (Springer, New York, 1995)
357–364. 64, 75

50. J. A. Solinas, ‘Low-weight binary representations for pairs of integers’, University
of Waterloo, Technical Report CORR 2001-41. 81

84https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

http://crypto.stanford.edu/miller/miller.pdf
http://eprint.iacr.org/2002/164
http://eprint.iacr.org/2004/031
https://doi.org/10.1112/S1461157000001194

Small characteristic algebraic tori

51. M. Stam and A. Lenstra, ‘Speeding up XTR’, Advances in cryptology (ASIACRYPT
2001), Lecture Notes in Comput. Sci. 2248 (Springer, 2001) 125–143. 75

52. M. Stam and A. Lenstra, ‘Efficient subgroup exponentiation in quadratic and sixth
degree extensions’, Cryptographic hardware and embedded systems (CHES 2002),
Lecture Notes in Comput. Sci. 2523 (Springer, 2002) 318–332. 72, 73, 81

53. E. G. Straus, ‘Problems and solutions: (5125) Addition chains of vectors’, Amer.
Math. Monthly 71 (1964) 806–808. 73

54. V. E. Voskresenskiı̆, Algebraic groups and their birational invariants, Transl. Math.
Monogr. 179 (Amer. Math. Soc., Providence, RI, 1998). 67

R. Granger granger@cs.bris.ac.uk
D. Page page@cs.bris.ac.uk
http://www.cs.bris.ac.uk/∼page/

University of Bristol
Department of Computer Science
Merchant Venturers Building
Woodland Road
Bristol, BS8 1UB
United Kingdom

M. Stam martijn.stam@epfl.ch

EPFL – IC –LACAL
Station 14, INJ 3.33
CH-1015 Lausanne
Switzerland

85https://doi.org/10.1112/S1461157000001194 Published online by Cambridge University Press

mailto:granger@cs.bris.ac.uk
mailto:page@cs.bris.ac.uk
http://www.cs.bris.ac.uk/~page/
mailto:martijn.stam@epfl.ch
https://doi.org/10.1112/S1461157000001194

	Introduction
	Preliminaries
	The Tate pairing
	Algebraic tori

	The quotient group
	The basic idea
	Arithmetic in G
	An equivalent representation of the quotient group
	Further compression using T_6(F_q)

	Exponentiation
	Precomputation
	Comparison with trace-based exponentiation
	Application to other pairings

	Field representation
	Field arithmetic in F_q
	Field arithmetic in F_q3
	Field arithmetic in F_q6

	The modified Tate pairing algorithm
	Cost analysis

	Implementation results
	Conclusion and open problems

