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ON TRANSVERSALITY

by J. W. BRUCE

(Received 27th March 1985)

The notion of transversality has proved of immense value in differential topology. The
Thom transversality lemma and its many variants show that transversality is a dense,
and often open, property. In one parameter families the occurrence of non-transversality
is inevitable; for example one cannot pull two linked curves in U3 apart without a non
transverse intersection. The aim of this note is to prove the following. In any generic
family of mappings each map in the family fails to satisfy some fixed transversality
conditions at worst at isolated points, and even at these points in rather special sorts of
way. So, returning to the above example, given two space curves Cx and C2 without a
(necessarily non-transverse) intersection we expect, in any generic isotopy of C2, that it
will meet Cu if at all, at isolated points. In particular generically we do not expect Cx

and C2, any time, to have an arc in common
The key idea is the replacement of "transversality" by "weak transversality", and with

it the replacement of the idea of "submersion" by "finite singularity type". Our main
results then follow from well-established facts of singularity theory.

Some geometrical applications are given in Section 2 of the ideas and techniques
employed in the proof of our general results given in Section 1. Unfortunately each
geometrical application requires its own transversality result, and so no general theorem
seems likely to cover a substantial number of applications. This point is well illustrated
by a glance through [7]. Thus our definition of weak transversality in (1.4) and the
method of proof of our main results (1.1,1.3) can be regarded as prototypes in much the
same way as the standard Thom transversality results ([2, p. 68], [1, p. 54]) are for the
usual notation of transversality.

1.

Let A and B be smooth (C00) manifolds, C c B a smooth submanifold of B and
f:A->B a smooth map. Recall that / is transverse to C if and only if for each point
x e A with f(x) e C we have

TJ(TxA) + Tnx)C=Tfix)B

where 7^/is the tangent map of / at x, Tx A the tangent space to A at x etc.
Transversality is an extremely useful property (see [2], [7] for some nice geometrical

applications of the idea). If/ is transverse to C, written /rfiC, then fi(Q is a smooth
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116 J. W. BRUCE

submanifold of A and its codimension coincides with that of C in B. Hence the
"solution set of the equation" f(A) £ C has the nicest possible local structure and is of
the expected dimension. Moreover in the set of smooth mappings f:A->B, denoted by
C°°(J4, B), those transverse to C are residual; when C is closed they are in fact open and
dense. (See [1] Chapter II for proofs of these results). Of course another attractive
feature of the notion is that since it involves checking conditions on linear maps it is
computationally quite reasonable.

Instead of a single map f:A-+B we may consider a smooth map F: A x U-»B, which
we think of as a family of maps FU:A->B, one for each we V, where Fu(x) = F(x,u). It
will certainly no longer be true that by a small perturbation of F we can ensure that
Fu: A -> B is transverse to C for each u e U, as mentioned in the introduction. Two
connected questions come to mind. First how badly will the maps Fu fail to be
transverse to C? And secondly what will the sets F'^iC) look like?

Theorem 1.1. Let A, B, C, U be as above. For a residual set of mappings
FECX{AXU, B) the following holds:

(a) for each ueU the map FU:A-+B is transverse to C except possibly on a discrete set
of points;

(b) for each ueU the set FJ'^C) is smooth except possibly at a discrete set of points.
At each of these exceptional points F~1(C) is locally dijfeomorphic to the germ of an
algebraic variety of the same codimension as that of C in B, with the exceptional point
corresponding to an isolated singular point of the variety.

Notes 1.2. (a) In particular FJ^C) is smooth except at isolated points where it has
topologically a nice cone-like structure.

(b) As we shall see in the proof there is a natural local complexification of the above
situation and in this case F~1(C), at its non smooth points, is an isolated singular point
of a complete intersection and a great deal is known about such singularities (See [4]).

(c) The case when the codimension of C in B, codBC satisfies codBC^dim,4 is of
some interest. Here generically F^iQ is a discrete set of points (or empty) for all ueU.
As a special case when dim A = dim B and C is a point this can be interpreted as
"blowing-up phenomena are infinitely rare in differential topology".

The Theorem above can be extended in a number of ways. One natural candidate is
to consider the case when B is the total space of a C^-bundle, so suppose that there is a
submersion 0: B -*• D for some smooth manifold D.

Theorem 1.3. Let A, B, D, U and <j):B->D be as above. Then for a residual set of
mappings FeC00 (AxU, B) the conclusions of Theorem 1.1 hold for all submanifolds
C = 4>-1(d),deD.

Notes 1.2 continued, (d) The particular case when D = B and <j> is the identity is
worthy of note. When dim 4 = dim B it follows that non locally finite maps between
manifolds of the same dimension are infinitely rare. (Compare [3]).

The rest of this section will be taken up with the proofs of Theorems 1.1 and 1.3.
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Start of Proof of Theorem 1.1.

The basic idea is very simple. Let f :A-*B=>C be as above, with x e A, f(x) e C. If we
write C near/(x) as the inverse image of a regular value of a smooth germ

then / is transverse to C at x if and only if g° f :(A,x)->(Um,0) is the germ of a
submersion. In some sense Sard's theorem ([1] p. 34) leads one to the conclusion that
g° f usually will be a submersion; indeed Sard's theorem is a crucial ingredient in all
proofs of the transversality result. Replacing / by a family F:AxU->B singularities at
x of g o Fu are unavoidable. Instead of asking that g ° / is a submersion at x we can
merely ask that it is of finite singularity type (F.S.T.). (See [5], p. 205, [6], p. 513). Here
are the crucial facts we shall need concerning this notion. First some notation. The ring
of germs of smooth functions /:(R",0)->R is denoted by Sn; its maximal ideal of
functions vanishing at 0 by mn. The ^-module of germs (R",0)-»Rp is denoted by
&(n,p\ and any germ /:(R",0)->(Rp,0) induces a ring homomorphism f*:gp-+Sn via
composition.

I. A map germ / :(Rn,0) ->(Rp,0) is of F.S.T. if and only if the ^-module

*H{df/dxlt..., df/dxn} + f*™p. S(n, p) <= S(n, p)

denoted by TeK.f, contains mk
n.£(n,p) for some fc^l. This may be taken as the

definition of F.S.T. (Here the first term in the expression above is the ^-module
generated by the df/dx(.)

II. If /:(Rn,0)->(Rp,0) is of F.S.T. then / is contact equivalent ([5], p. 209, [6],
p. 482) to its r-jet / / for some r<oo. (Indeed given the inclusion of I we can take r = k.)
In particular the germs (/^(O^O) and ((ff)~\0),0) are locally diffeomorphic.
Moreover if two germs /1,/2:(Rn,0)-»(R'',0) are contact equivalent and ft is of F.S.T.
than f2 is also.

III. If / is as in II the polynomial g = / / can be considered as a complex map germ
g:(C,0)->(Cp,0). Then if 2,g is the set of critical points of g (i.e. points x where 7̂ g is
not onto) this set meets ^~x(0), locally, only at 0.

IV. For any positive integer k the set of polynomial germs g:(W,0)-*(W,0) for which
TeK. g + mk

n. &{n, p) has codimension ^k in &(n,p) is an algebraic subset Wk, of the
vector space Jk

0{n,p) of such germs, of codimension say dk. Moreover dk is a non
decreasing sequence, \imk_codk = co, and if for any germ /:(R",0)->(Rp,0) we have
jkf$Wk then / is contact equivalent to / / and both are of F.S.T. See [6, p. 513] for
proofs of these results.

Result IV above can be roughly interpreted to mean that germs not of F.S.T. are
infinitely rare.

We now make the obvious definition.
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Definition 1.4. Let f:A^B~>C be as above. Then / is weakly transverse to C if for
each point xeA with f(x)eC the following holds. Writing C locally as the inverse
image of the regular value 0 of a germ g:(B,f(x))-*Rm,0 the composite g°f:
(>l,x)-+([Rm,0)isof F.S.T.

Lemma 1.5. The definition above is independent of the choice of submersion g.

Proof. If gx and g2 are two such germs the ideals (gl ° f)*mm, (g2 ° f)*™m coincide,
for they coincide with / * / where / is the ideal of germs h:(B,x) ->(R,0) which vanish on
C. It now follows from [5, p. 212] that gl of and g2° f are contact equivalent, and so
ifi ° / is of F.S.T. if and only if g2 ° / is.

We shall actually show that for a residual set of mappings F in C°°(A x U, B) the maps
FU:A->B are weakly transverse to C for all u in U; the proof of Theorem 1.1 then easily
follows. For l.l(a) is a consequence of Property III above of germs of F.S.T.: if Fu is
weakly transverse to C at some point x then either F is transverse to C at x or fails to
be transverse locally only at x. The proof of l.l(b) on the other hand is a direct
consequence of Property II which states that germs of F.S.T. are finitely determined.

Given A, B, C as above we shall now construct a subset Clk(C) of each jet space
Jk(A,B) with the property that f:A->B is weakly transverse to C if and only if
jkf:A^J\A,B) misses Qk(C). We first construct Qfc locally. So let A=(W,0), B=(W,0)
and C = (R?,0)c:(Rp,0) be given the vanishing of the last p-q co-ordinates of W. We
denote by J%(n,p) the space of polynomial germs (R",0)->(Rp,0) of degree :gfc. Such a
germ g will be weakly transverse to (R«,0) at 0 if and only if nog:(R",0)->(Rp~9,0) is
of F.S.T. where II:(RP ())->• ((Rp~«,0) is projection to the last p-q co-ordinates of
Rp. Composition with II induces a linear surjection Yii).:J

k
0(n,p)-^Jk

0(n,p—q). If
Wk<^Jk

o{n,p — q) is the set of polynomial germs of IV above we set ^
Clearly Q!k is also a union of algebraic varieties of the same codimension in Jk

0{n,p) as
that of Wk in Jk

0{n,p — q). The lemma above shows that Q'k is independent of the
choice of projection n . Moreover if $ t : (R

n, ())-•(R",0) is the germ of a diffeomorphism,
as is </>2:(R

p,0)->(Rp,0) with #2 preserving (Rp"9,0)c(IRp,0) it is not difficult to see
that for any germ g:((R",0)->(IRp,0) we have jkgeQ[ if and only if/ {4>2ogo^>l)e^ll

k.
For we claim that Yl°<j)2°g°<l>l and Yl°g are contact equivalent; it is clearly enough
to show that Tl°g and TI°(l>2°g are, but this follows from Lemma 1.5, for II and n°</>2

are two choices of suitable submersions for defining (R?,0)<=(Rp,0).
We can now define the subset fik(C)c J\A,B). We define it to be the set of fc-jets a

with target aeC such that for any representative germ f:(A,x)->(B,f(x)=>(C,f(x)) and
any co-ordinate representation of / , / :((R",0)->(RP,0):D(R«,0) we have / / e Cll

k <= Jk
0(n, p).

It follows from the above that Qk{C) is well defined. It is not difficult to see that since Ql
k

can be given a manifold partition into manifolds of codimension ^.dk the set
Qk(C)cz J\A,B) can be partitioned into manifolds of codimension ^dk + codBC, since
locally Ot(C) is a product AlxClx Q.'k where Ax (resp. Ct) is an open set in A (resp. C).
Theorem 1.1 now follows from the Thom transversality lemma. For choosing k
sufficiently large we can ensure that Qk(C) is of codimension > dim (A x U), and for a
residual set of mappings FeC°{A x U,B) the jet extension j\F:A x U-+Jk(A,B) defined
by j\F(x,u)=jkFu(x) is transverse to the strata of Qk(C). Consequently j\F(A x U) misses
Qk(C) and for each ue U we have FU:A->B weakly transverse to C as required.
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Since a minor variant of the usual Thorn transversality lemma of [1, p. 54], (7, p. 739]
is required, because of the presence of the [/-parameter space, we sketch the correspond-
ing (slight) changes in the proof.

Lemma 1.6. Let Q. be a submanifold of the jet space J\A, B). There is a residual set of
smooth mappings F e C° (A x U, B) such that the jet extension

j\F:AxU-*Jk{A,B)

is transverse to Q.

Proof. First recall the fundamental fact behind all transversality proofs ([1, p. 54],
[7,p.739]). If G:N xU->P is a submersion, QcP a submanifold then the restriction
gu = F | N x {u}: N x {M} ->P is transverse to Q for almost all u e U, in the sense of Lebesgue
measure. This proves density of transverse maps, the residual property follows by
standard arguments. The key to proving the transversality result we require, then, is to
find for any F e C%4 x U, B) a family G.AxUxV^B with OeKcR", such that
G(a, u, 0) = F(a, u) for all (a, u)eAxU and j\G: A x U x V-> Jk(A, B) is a submersion.
However, in [7, p. 740] Wall describes a method for obtaining a family G as above with
the jet extension jkG :AxUx F-> Jk(A xU,B) a submersion. Now there is a canonical
projection II: J\A x U,B)^Jk(A,B) defined by II((a,u), f(a,u), jkf(a,u)) = (a,f(a,u),
}kfu(a)) which is also a submersion, and since II ° jkG = j \ G the result follows. The proof
of this lemma concludes the proof of Theorem 1.1.

Proof of Theorem 1.3. Clearly we want to show that for a residual set of mappings
FeC°°(/4x U,B) we have FU:A->B weakly transverse to 4>~1(d) for each deD. In other
words we want <p°Fu:A-*D of F.S.T. for each ue U. We have, by IV above, for each k
a subset Qk(=Jk(A,D) of jets with the property that if f-.A^D satisfies jkf(A)n£ik = 0
then / is of F.S.T. Moreover the codimension of Qk, which is locally algebraic, tends to
infinity as k increases. Choose k so that this codimension exceeds dim(/4 x U). We need
only show that for a residual set of Fe C°{A x U, B) the jet extension

j\((t>of): A xU^Jk(A,D)

is transverse to Qk. Thus we are reduced to proving a variant of the usual Thom
transversality lemma. However composition with </> induces a map
0*: J\A, B) -»J \A, D) which is easily checked to be a submersion. Again it is not now
difficult to see that the usual proof of the transversality lemma, as in [7] for example,
can be adapted as above to give this slightly stronger version here.

2. Geometrical applications

In this section we briefly mention some geometrical applications of the ideas rather
than the results discussed in Section 1. Applications of the fact that mappings between
smooth equidimensional manifolds are in general finite are given in [3] in some detail.
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In what follows the techniques employed in [3] can be easily adapted to fill in gaps in
the proofs. As remarked above each geometrical application requires its own transvers-
ality result.

Application 2.1. Let M and N be smooth submanifolds of W. For almost any such M
and any N the intersection of M with any translate N + {a} of N, for a e IR", is smooth
in M (of the correct codimension) except at a discrete set of points as in Theorem 1.1 (b)
where the intersection is locally diffeomorphic to a real algebraic variety with an
isolated singular point. In fact the inclusion M -* W is weakly transverse to JV + {a} for
all a e W.

Proof. We shall suppose that N is the inverse image of the regular value 0 by some
smooth map g: IR" -»IRm. (The general case is a straightforward if tedious deduction
using the fact that locally N can be written as such an inverse image.) We have a
smooth map G : M x B " - > r defined by G(x,a) = g(i(x) + a) where i:M->W is the
embedding of M in W. The result now follows if we can show that for almost any
embedding i the maps Ga:M-*Um, for aeW, are of F.S.T. (Compare the remarks
following Lemma 1.5.) Using the fact that g is a submersion it is easy to show that for a
residual set of embeddings i:M-*Rn the jet extension j\G:M x W-*Jk(M,Um) will be
transverse to the sets Qfc<= J\M, Um), using for example the ideas in [7].

The proof is as follows. We take Pr to be the space of polynomial maps R"-*^ of
degree ^ r and let U be a neighbourhood of the identity map Id in P" with the property
that for any f eU the restriction of / to M is an embedding. We then consider
G: M x W x U -> Um defined by

G{x,a,f)=g(foi{x) + a).

Clearly G{x, a, Id) = G(x, a); we now need to show that the jet-extension

j \ G: M x W x U -> J\M, W)

is a submersion, if r is sufficiently large, at M x W x {Id}.
Let F(x, a,f)=f° i(x) + a, with jet extension

j\F: M x M" x U -> J\M, U").

We claim it is enough to prove that this is a submersion at M x W x {Id}; for the
natural map g* : J\M, W) -> J\M, Um), obtained by composition with g is a submersion,
because g is, and j\G=g*° j\F. If h is any polynomial map of degree ^ r as above,
h: W ->• W, then id + sheU for s small, and

s-0 S

Since i is an immersion clearly if r^k the map j\F is a submersion and the trans-
versality result follows.
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The result required now follows by taking k sufficiently large, for then a generic G has
a jet-extension j\G missing Qk.

In fact a much stronger result is true. Namely if U is any manifold (assumed, for
simplicity, to be compact) and M is compact and / : M x ( / - » R " is a family of
embeddings of M then for a residual set of such # the above result holds for each

), ueU.

Application 2.2. Let £, be a smooth vector bundle with total space E, base space B
and let U be a smooth manifold. Let r°°(^; U) be the space of smooth families of
sections of £ parametrised by U. For a residual set of such sections o.BxU -*E the
restrictions au = a\B x {u} are weakly transverse to the zero section Eo of E for all u.

(Note that when the dimension of the fibres of f coincides with the dimension of the
base this implies that the au all have isolated zeros.)

Proof. Let J\£) be the set of fe-jets of sections a: B -> E of the bundle <!;. Locally <* is,
of course, trivial so in turn Jk(£) locally reduces to Jk(B, W), where n is the dimension of
the fibre of £. In each jet space Jk(£) we have a set Glk of jets with the property that if
fa: B -* J\£) avoids flt the section a is weakly transverse to the zero section Eo of £,.
We need only show that for a residual set aeF00^, U) the jet map j\a:Bx U-+J\£,) is
transverse to Qk. But for some bundle t] the direct sum t; © r\ is trivial, i.e. isomorphic to
a bundle with total space BxUN (for some N) and has projection to the first factor B as
the bundle projection. Moreover there is a canonical bundle projection P: £ © r\ -+ £.
Given any family of sections <r of £ © fj let

be the map $(x, u, T) = <r(x, u) + T(X). Clearly the jet extension j f O , : B x ( / x
J*(B,RiV)-*y*(B>IR

A') is a submersion. So if

is the map O(X,U,T)=(X,O(X,U,T)) then <D is a family of sections of <J and the jet
extension j\Q>:BxUx J\B,UN)->Jk(£©?/) is a submersion.

Now if a is a family of sections of E, it can also be regarded as a family of sections of
£®r] as above. The map P :£©»?-> ii; yields a submersion P^: Jk(£ ©>;)-» ./*(£) and
hence P+°j\Q> is a submersion. Moreover P+°jkiQ> = j\(P°Q>) and P ° o is a family of
sections of £, with P ° <D(x, u, 0) = au(x) as required. Hence as usual for a residual set of
smooth families of sections a the jet extension j\a:Bx U->Jk(£) is transverse to Qk and
hence misses it for large enough k.

Application 2.3. Let B have a foliation (see [3]) and let Emb°°(>4, B) denote the space
of smooth embeddings A->B. Then for a residual subset of Embcc(y4, B) the embedded
A meets each leaf of the foliation transversally except at a discrete set of points, in the
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122 J. W. BRUCE

topology of the leaf. At these points the intersection is, in the leaf, of the type described
in Theorem l.l(b).

(The proof uses the ideas of Section 1 and [3] p. 149 and will not be given.)

Remarks 2.4. It would be nice to extend our main results to deal with jet extensions,
and not merely smooth mappings. So for example in an arbitrarily large family of
mappings F:AxU->B between 2-manifolds one would expect the singular set of each
Fu to be a curve with isolated singularities (diffeomorphic to those of a real algebraic
curve) and, moreover, one expects the differential of Fu here to have rank ^ 1 and Fu to
be a fold along this curve except, at worst, at isolated points. These results would
certainly follow if for each u the jet extension j2Fu: A -* J2(A, B) was weakly transverse
to the natural stratification of J2(A, B). (Some of these results follow fairly easily if each
Fu is merely of F.S.T. but certainly not all of them; the map (x,y)i->(x,y3) is of F.S.T.
but does not have the properties above.)

The problem with proving such theorems lies with the corresponding transversality
results and is related to the inbuilt symmetry in the jet spaces Jk(A, J'(A, B)) one would
have to consider. The same difficulty arises in the following situation.

Given a generic surface M in R3 the set of points where the Gaussian curvature
vanishes, the parabolic set, is a smooth curve. Along this curve the normal height
functions have a degenerate singularity of type A2 or, at points, of type A3 (see [7] for
the notation). Again one expects in arbitrarily large generic families of such surfaces the
parabolic set to be a curve and at all but isolated points the normal height function to
be of type A2. In particular one expects these height functions to be of corank2 only at
isolated points. Writing a surface M locally, at OeR3, as z = f(x,y) with (df/dx) —
(df/dy) = 0 at 0 this corank2 condition is that (d2f/dx2) = (d2f/dxdy) = (82f/dy2)=0
also at 0. The inbuilt symmetry here is partly reflected in the fact that the higher
derivatives of these three expressions are clearly not independent. It is, of course, the
existence of such symmetries which provides the only possible obstruction to proving
the required transversality result.
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