
8

Factorization for DIS, mostly in simple field theories

In this chapter, I treat the complications caused by renormalizability of the underlying field
theory when one analyzes the asymptotics of processes like DIS. There are four inter-related
issues:

• The leading regions include hard-scattering subgraphs that can be of arbitrarily high
order in the coupling.

• There are logarithmic unsuppressed contributions from momenta that interpolate between
the different regions for a graph.

• The definitions of the parton densities are modified to remove their UV divergences. This
we do by renormalization.

• The parton densities acquire a scale argument μ, the dependence on which is governed by
renormalization-group (RG) equations, the famous Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equations. In applications, we set μ of order Q, the large scale in the
hard scattering.

I will give a derivation of factorization that in the absence of gauge fields is complete and
satisfactory, and is also reasonably elementary. In QCD, the same factorization theorem is
also valid for simple processes, like DIS, but its derivation needs enhancement, to be given
in later chapters.

8.1 Factorization: overall view

To motivate the factorization idea, we still use the ideas about the space-time structure of
DIS that motivated the parton model. As illustrated in the spatial diagram of Fig. 8.1, an
electron undergoes a wide-angle hard scattering off a single parton in a high-energy target
hadron. In the center-of-mass frame, the target is time-dilated and Lorentz contracted.
Thus over the short time and distance scale 1/Q of the hard scattering, the struck parton’s
interactions with the rest of the target can be neglected; in the hard scattering, the incoming
parton can be approximated as a free particle. A single struck parton dominates, because
the other partons are separated from it by a hadronic scale of ∼1 fm, large compared with
1/Q.

Relative to the parton model, an important change in a renormalizable theory is that
the dimensionlessness of the coupling allows multiple particles to be created in the hard
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244 Factorization for DIS, mostly in simple field theories

Fig. 8.1. Deeply inelastic scattering of an electron on a hadron. This is like Fig. 2.2, but with
more partons exiting the short-distance hard scattering. The struck parton and the partons
resulting from the hard scattering are indicated by dashed lines.
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Fig. 8.2. Most general leading regions for DIS. The lines in the lower bubble are collinear
to the target hadron, and the lines in the upper bubble have large transverse momentum, of
order Q. (a) In a theory without gauge fields, exactly one line on each side of the final-state
cut joins the two bubbles. The labels ω and ω′ are for the flavor, color and spin of the
intermediate parton lines. (b) In a theory with gauge fields, arbitrarily many extra gauge-
field lines may join the bubbles. The solid lines may be quarks or transversely polarized
gluons. In a gauge theory there may also be a soft subgraph at leading power.

scattering without a power-law suppression. This is manifested experimentally in events
like that in Fig. 5.10. Naturally, an appropriate coupling for the short-distance scattering is
αs(Q), whose smallness in QCD allows the use of perturbation theory.

Our calculations in Sec. 6.11 showed another consequence of a dimensionless coupling,
that the number density of partons only falls off in transverse momentum roughly as 1/k2

T.
Therefore the number of partons, integrated over kT, and naively interpreted, diverges. The
picture of limited transverse momentum for the constituents, implicit in Fig. 8.1, therefore
needs to be distorted.

The formalization of these ideas starts from the Libby-Sterman analysis in Ch. 5, which
determines that the leading regions for DIS are those illustrated in Fig. 8.2.

8.1.1 Leading-power regions without gauge fields

In a model field theory without gauge fields, all the leading regions are of the form of
Fig. 8.2(a). The lower bubble consists of lines whose momenta are collinear to the target.
The upper bubble consists of lines with very different directions than the target or that are
far off-shell. On each side of final-state cut, one line connects the collinear subgraph to
the hard subgraph. This corresponds to the single struck parton in Fig. 8.1. Scattering off
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8.2 Elementary treatment of factorization 245

multiple partons would correspond to extra lines connecting the upper and lower bubbles
in Fig. 8.2(a), and is power-suppressed, by Libby and Sterman’s power-counting.

While keeping the restriction to this single pair of connecting lines, the upper subgraph
can be arbitrarily complicated. This gives the possibility of multijet production, as seen
experimentally in Fig. 5.10. Associated with this is an essential complication, that a single
graph for DIS can have multiple decompositions of the form of Fig. 8.2(a).

The upper bubble, the “hard subgraph”, has on-shell final-state lines, but we will nev-
ertheless treat it as if it is a short-distance object, with all internal lines off-shell by order
Q2. The demonstration uses arguments given in Secs. 4.1.1, 4.4, and 5.3.3, where the
short-distance property applies to a local average in the cross section (e.g., an average in
x). Further details are found later in Secs. 11.2 and 12.7.

8.1.2 Leading-power regions with gauge fields

In a gauge theory, like QCD, leading regions can also have extra target-collinear gluons
attaching to the hard scattering, as in Fig. 8.2(b). In the methodology where we treat the
upper bubble as a pure hard scattering, this exhausts the leading regions; this applies, for
example, to the uncut hadronic tensor and the structure functions averaged in x, as in
Sec. 5.3.3. But it is also possible to consider the actual on-shell final states in the upper
bubble; in that case there are final-state jet subgraphs, and a soft subgraph that connects
any or all of the collinear subgraphs.

We now use the first methodology. The leading part of each extra gluon exchange
involves the product of the minus component of the vertex at the upper end of the gluon line
and a plus component at the lower end, schematically U−L+. Thus the extra gluons can
be eliminated by the use of the light-cone gauge, A+ = 0: in light-cone gauge, the leading
regions have the same form, Fig. 8.2(a), as in a non-gauge theory.

Therefore once we have proved factorization in a non-gauge theory, which is done in an
elementary fashion in this chapter, we can copy the proof in light-cone-gauge QCD. To take
it literally, one must be concerned about problems with the 1/k+ singularities in the light-
cone-gauge gluon propagator, (7.30) and (7.31). These problems will become particularly
apparent when we work with TMD distributions in Ch. 13. Nevertheless, divergences due
to the 1/k+ singularities cancel in the treatment of DIS, although giving a full satisfactory
proof is non-trivial.

For a fully satisfactory treatment, it will be better to return to Feynman gauge. We have
already seen, in Sec. 7.7, that at the level of the parton model, the extra gluons can be
extracted from the hard scattering to give the Wilson lines in gauge-invariant definitions of
the parton densities. This is a result that generalizes, but I postpone a treatment to Ch. 11.

8.2 Elementary treatment of factorization

Before going to a strict derivation of factorization in non-gauge theories, it is useful to give
an approximate proof. Its inspiration is a naive interpretation of the diagram Fig. 8.2(a)
for the leading regions. This is that the momenta of lines can be unambiguously split into
two classes, corresponding to the two subgraphs in the figure. Hard momenta, in the upper
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246 Factorization for DIS, mostly in simple field theories

subgraph U , have virtualities of order Q2. Collinear momenta, in the lower subgraph L,
have orders of magnitude typical for target momenta, i.e., (k+, k−, kT) ∼ (Q,m2/Q,m),
where m is a typical light hadron scale; their virtualities stay fixed when Q becomes large.

This supposition enables a simple proof to be given, and gives a mental picture linking
the leading-region diagram Fig. 8.2(a) with the factorization formula. We will take the
opportunity to introduce notation that will be useful more generally.

But a clear division between the regions of momenta does not exist; there are important
contributions from intermediate momenta. We will overcome this problem by the use of a
subtractive formalism, in Sec. 8.9.

8.2.1 Decomposition by regions

We now start from an assumption that there is a clear decomposition of momenta by regions.
Then we can decompose each graph into a sum of terms of the form of Fig. 8.2(a), each
term corresponding to a particular assignment of momentum types to subgraphs. Let F

denote a structure function or the hadronic tensor. Then we have

F =
∑

2PR graphs �

� + non-leading power

=
∑

2PR graphs �

∑
leading regions R

U (R) L(R)+ non-leading power, (8.1)

where the summation over � is restricted to those graphs that are two-particle reducible in
the t channel and that therefore have at least one decomposition of the form of Fig. 8.2(a). A
region R corresponds to assignments of momentum types to subgraphs, and is determined
by the subgraphs: U (R) for the upper bubble, restricted to hard momenta, and L(R) for
the lower bubble, restricted to collinear momenta. We define L(R) to include the full
propagators for the two lines that join the L and U subgraphs, since these lines carry
collinear momenta.

The product U (R) L(R) is defined as a convolution product, with an integral over the
momentum k flowing between U and L, and with summations over the color, spin and
flavor indices for the fields. So we write U = U (k, ω, ω′; q) and L = L(k, ω, ω′; P, S),
where ω and ω′ are composite indices for the flavor, color and spin of the fields, while P

and S are the momentum and spin vector of the target state. Then

UL =
∑
ω,ω′

∫
d4−2εk

(2π )4−2ε
U (k, ω, ω′; q) L(k, ω, ω′; P, S). (8.2)

A region is completely specified by its hard and target subgraphs, so we replace the sum
over graphs and regions by independent sums over graphs for U (R) and L(R). So we write

F = UL+ non-leading power, (8.3)

where U and L, without a region specifier, are the sum over all possibilities for the hard
and target-collinear subgraphs of Fig. 8.2(a), with the momenta being restricted to the
appropriate regions.
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k
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Fig. 8.3. Graph with three decompositions of the form of Fig. 8.2(a).

In (8.3) we have a multiplicative structure: the structure function is a product of a
hard part and a collinear part. In contrast, at the level of individual graphs for the structure
function, we have an additive structure: in the second line of (8.1) there is a sum over regions
for a given graph. An illustration is given by Fig. 8.3. The possible regions are: where the
top rung alone is hard, where the top two rungs are hard, and where all three rungs are hard.

Diagonality in flavor and color

In the convolution of U and L, there is a sum over indices ω and ω′, which we now simplify.
For QCD, each index has 88 independent values: There are 6 flavors of quark, of antiquark,
and a gluon. The quarks and antiquarks each have 3 colors, the gluons have 8, and each
flavor-color combination has 2 spin values. We can separate the parts of the index ω as j ,
c and α, for flavor, color and spin. Here we refer to the QCD version even though in this
chapter we will only present proofs in a non-gauge theory: the ideas are general.

In principle, there are separate sums over the indices ω and ω′ for the two parton lines
connecting U and L. I now show that the sums over flavor and color indices are diagonal
in the cases of interest; i.e., the flavor and color parts of ω and ω′ are equal.

We choose the flavor label to correspond to the different types of mass eigenstate for the
partons (e.g., u, d, etc.). Normal targets (nucleons and pions) are flavor eigenstates, so the
lower subgraph L is flavor-diagonal. An exception would be DIS on a K0

L or K0
S , which

is not a likely experiment. Note that, for charged-current weak-interaction processes, the
upper subgraph U can be flavor changing. Thus, in neutrino DIS, we can have the sequence
of quark flavor transitions d �→ u �→ s. But diagonality of L implies that off-diagonal terms
in U do not contribute.

As for color, all electroweak currents are color-singlet. Therefore U is diagonal in color,
and all the diagonal color components of U are equal.

In contrast the spin-sum need not be diagonal. So we rewrite (8.2) as

F =
∑
j,α,α′

∫
d4−2εk

(2π )4−2ε
U
(
k, j, α, α′; q

)∑
c

L(k, j, c, α, α′; P, S)

+ non-leading power. (8.4)

Here we have left a single flavor label j on U and L, and a single color label c on L. The
remaining sum, over α and α′, is for Dirac spin indices. The U part can be considered a
color average, as will fit its later interpretation in terms of a parton-level cross section.
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248 Factorization for DIS, mostly in simple field theories

8.2.2 Parton approximator

To get the factorization theorem, we use exactly the same method we applied in Sec. 6.1
for the parton model. (a) In U we neglect the small components of momenta, k− and kT,
entering it from L, and we also neglect particle masses. (b) In the sum over Dirac indices,
we project onto those parts that give the leading power. This operation, which we call the
parton approximator, results in an error that is suppressed by one or two powers of Q.

We notate the result as

U
←−
T |V L = Cregion ⊗ fregion

def=
∑

j

∫
dξ

ξ
Cj, region(x, ξ ) fj, region(ξ ), (8.5)

which is a factorized form for the cross section. Here we have defined a fractional momen-
tum variable ξ = k+/P+. The tripartite symbol

←−
T |V denotes the parton approximator, for

which we will give a precise definition below. The arrow in
←−
T implies that the kinematic

part of the approximation is applied to the object to its left, i.e., to U . The quantity V sym-
bolizes the vertex for a parton density that is a factor in the approximator. We separate these
symbols by a vertical bar, which will be a useful notation in treating renormalization of the
parton densities. Although the above formula makes it appear that the parton approximator
is a linear operator, certain features of the approximator, notably that it sets to zero the
parton masses in U , take us beyond ordinary linear algebra. Even so, many of the rules of
linear algebra still apply.

The parton approximator will give a factor that has a vertex for a parton density integrated
with the L factor. Therefore on the right-hand side of (8.5), we have used a notation to
express this. The resulting object has the standard definition of a parton density, except
that the momenta inside L are restricted to be collinear. So f is equipped with a subscript
“region”, to label this variation in the definition. A parton density is a function of just
one kinematic argument ξ , so we represent the corresponding kind of convolution by the
symbol ⊗, which is defined as on the rightmost part of the equation. The quantity C is the
approximated U , but with a particular normalization. It goes by several names: coefficient
function, short-distance partonic scattering, Wilson coefficient. To save extra notational
complication, only the unpolarized terms are written explicitly.

Kinematic approximation

The first, kinematic, part of the approximator gives

F =
∑
j,α,α′

∫ 1+

x−

dξ

ξ
U
(
k̂, j, α, α′; q,m = 0

)

×
∑

c

∫
dk− d2−2ε kT

(2π )4−2ε
ξP+L(k, j, c, α, α′; P, S)+ non-leading power. (8.6)

Here, we have changed variable from k+ to ξ , and we have defined k̂ = (ξP+, 0, 0T), for
the approximated parton momentum in U . The integral over k− and kT is now confined to
the L factor, as in a parton density, and we included with it a factor of ξP+ for the sake of
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boost invariance. The upper limit on ξ is imposed by the parton density, for positivity of the
energy in its final state, P+ − ξP+ ≥ 0. The lower limit is set from positivity of the energy
in the hard part of the graph, q+ + ξP+ ≥ 0. In general, the integrand can be a generalized
function (distribution) with singularities at the endpoints. For example, there can be delta
functions at ξ = 1 in L, and at ξ = x in U (after approximation). The singularities are
properly treated if we take the range of integration over ξ to extend beyond the kinematic
limits, so I notate the limits as x− and 1+.

Approximator for scalar parton

When j denotes a scalar parton, there are no spin labels, so (8.4) gives the definition of
U
←−
T |V L for a scalar quark:

(U
←−
T |V L)scalar j

def=
∫ 1+

x−

dξ

ξ
U (q; k̂, j ; m = 0)

×
∑

c

∫
dk− d2−2ε kT

(2π )4−2ε
ξP+L(k, j, c; P, S). (8.7)

The second line, including the color sum and the factor ξP+, reproduces exactly the
definition of the density of a scalar quark, (6.124). The first factor, the approximated U ,
has the normalization appropriate to DIS on an on-shell massless parton target, but with
internal momenta restricted to being in the hard region. The integral joining the two factors
is a convolution with measure dξ /ξ , which we choose as its standard form.

Approximator for spin- 1
2 parton

When j denotes a fermion quark, we have two formulations. One involves projection
matrices PA and PB on each line, as in (6.13). The other reorganizes this, as in (6.19), into
terms involving different kinds of spin-projected parton density. Thus we have

(U
←−
T |V L)Dirac j

def=
∑

α,β,α′,β ′

∫
dk+ U (q; k̂, j, α, α′; m = 0)

× (PA)αβ(PB)β ′α′
∑

c

∫
dk− d2−2ε kT

(2π )4−2ε
L(k, j, c, β, β ′; P, S)

=
∫

dξ

ξ
Tr
D

[
U (q; k̂, j ; m = 0)

/̂k

2

]∑
c

∫
dk− d2−2ε kT

(2π )4−2ε
Tr
D

γ+

2
L(k, j, c; P, S)

+ terms with polarized parton densities. (8.8)

The factor /̂k/2 is exactly the external line factor for U that corresponds to a spin-averaged
on-shell Dirac particle. See (6.19) and the preceding definitions (6.17) and (6.18) for the
form of the polarized terms. They can be allowed for by replacing the factor /̂k/2 by the
form (A.27) with polarization for the quark.
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k

Fig. 8.4. One-loop graph for DIS in a model theory. The lines may represent any kind
of field.

8.2.3 Factorization

We have now completed the definition of the parton approximator, and the result is a
factorization of the form shown in (8.5).

8.2.4 Why the simple derivation does not work

The above derivation of the factorization theorem would be valid if one could use a fixed
decomposition of momentum space into regions appropriate for U and L, at least up to
power-suppressed terms. But in renormalizable theories, no clear separation of scales can
be made. The issue is quite generic, so I illustrate it by examining a one-loop graph related
to the calculations, in Sec. 6.11, of UV divergences in parton densities.

Consider a one-loop graph for DIS with an elementary-particle target, Fig. 8.4. We
perform the k± integrals by the mass-shell delta functions for the two final-state particles,
to leave only an integral over k2

T. By the Libby-Sterman analysis, we obviously have
leading-power contributions when k2

T is comparable to m2 and when it is comparable to
Q2; these correspond, respectively, to regions where only the top rung is the hard subgraph,
and where the whole graph is the hard subgraph.

But, as we now show, there is also a leading contribution from intermediate momenta,
i.e., where m� kT � Q. Since kT � Q, we can apply the parton-model approximation
to the top rung, and replace the calculation by the calculation of a parton density, as in
Sec. 6.11. Then because, m� kT, we can neglect m, thereby obtaining a logarithmic
integral:

constant×
∫ ∼Q2

∼m2

dk2
T

k2
T

. (8.9)

That this is a logarithmic integral follows from the fact that the couplings are dimensionless.
The whole graph has the same dimension as a lowest-order graph. Hence the momentum
integral is dimensionless. Corrections to this formula are suppressed by powers of kT/Q

and of m/kT.
Each range of a factor of 2 (say) in k2

T gives the same contribution. This contribution
is also comparable in size to that from the hard range, kT ∼ Q, and from the collinear
range, kT ∼ m. There is therefore no power-suppression (in m/Q) of the intermediate
region. Indeed the intermediate region is slightly enhanced, i.e., logarithmically, by a factor
ln(Q/m).
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8.3 Renormalization of parton densities 251

The elementary proof in Secs. 8.2.1–8.2.3 relied on a strict separation of scales: some
momenta have kT ∼ m and some have high virtuality, O(Q2), with unimportant contri-
butions from intermediate momenta. When this is valid, errors of order m/Q result from
neglecting kT relative to Q. But the logarithmic contribution from the intermediate region
violates the initial assumption.

One could try rescuing the argument by using an intermediate scale μ to separate
collinear and hard momenta. In a one-loop graph this would result in errors of order μ/Q

and of order m/μ: the first is from neglecting collinear transverse momenta relative to Q,
and the second error is from neglecting masses with respect to hard momenta. The minimum
error is of order

√
m/Q, obtained when μ ∼ √mQ. This is very non-optimal compared

with the m/Q error (modified by logarithms) that is obtained from a better derivation of
factorization.

Moreover in higher-order graphs, like Fig. 8.3, the errors from using a simple cutoff to
separate the regions are actually unsuppressed. To see this consider a configuration in which
the transverse momentum lT in the lower loop of Fig. 8.3 is slightly below the cutoff, while
kT in the upper loop is slightly above the cutoff. Then l is target-collinear while k is hard.
The elementary derivation tells us to neglect kT with respect to lT, producing a 100% error.

So we need a more powerful method, which we will come to in due course.

8.3 Renormalization of parton densities

We saw in calculations, Sec. 6.11, that parton densities have UV divergences at or above
the space-time dimension n = 4 where the theory has a dimensionless coupling. This is one
symptom that the parton model is not strictly correct. The Feynman graphs and momentum
region that give the parton model still exist in such theories, but there are additional
contributions.

In such a situation parton densities continue to be useful, but we have to adjust the
definitions to make the parton densities finite. Motivated by what happens with the operator
product expansion (OPE), reviewed in Collins (1984), we now construct such a definition
by applying conventional UV renormalization. This gives renormalized parton densities
as theoretical constructs, which can be studied in and of themselves, without regard to
applications. Of course, it is the applications that provide post hoc motivation for studying
parton densities.

8.3.1 Cutoff or renormalization?

An alternative to renormalization is to impose a cutoff in transverse momentum, e.g., to
modify (6.75) to

fj/h(ξ )
def=
∫

kT<μ

d2kT fj/h(ξ, kT). (8.10)

This definition has been particularly advocated by Brodsky and his collaborators (e.g.,
Lepage and Brodsky, 1980; Brodsky et al., 2001) and clearly has certain advantages. Both
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kinds of definition, by a cutoff and by renormalization, are legitimate, and there is a choice
between them influenced by practicalities and by actual practice, not by absolute necessity.
Recall the calculation in Sec. 3.4, where we showed that renormalization with a scale μ

is similar to a cutoff at approximately the same scale. Thus the two kinds of definition
of finite parton densities have similar properties and intuitive meanings. But one must
not take the equivalence between renormalization and a cutoff as a strict mathematical
property.

Serious work beyond leading order, or beyond leading-logarithm approximation,
requires us to take the definitions rather literally. Here certain disadvantages of the cutoff
method appear that lead us to use the renormalization method. One is simply that although
the cutoff method lends itself very nicely to getting an overall view, detailed calculations
can be harder. A second rather severe disadvantage is that the definition with a cutoff relies
on the definition of the unintegrated or TMD density. Now, in a gauge theory, the basic
definition of the unintegrated parton density entails the use of light-front gauge A+ = 0.
But this results in further divergences even before the kT integral, and therefore requires
even more complicated redefinitions (Ch. 13). This problem is often hidden in elemen-
tary discussions, but comes to the forefront once higher-order corrections are considered
correctly and is a continuing topic of research and debate.

8.3.2 Statement of renormalization of parton densities

In the theory of renormalization (e.g., Collins, 1984) there are two ways of viewing the
renormalization of composite operators. One is the multiplicative view, where renormalized
operators are factors times the bare operators. The other view is the counterterm view, where
for each Feynman graph a series of counterterms is subtracted to remove the divergences.
It is very useful to switch between the views as the occasion demands; we will see their
equivalence.

For the parton densities, the multiplicative view will result in the following formula:

fj/H (ξ ) =
∑
j ′

∫ 1+

ξ−

dz

z
Zjj ′ (z, g, ε) f(0) j ′/H (ξ/z). (8.11)

On the right-hand side is a bare parton density for a parton of flavor j ′. Here a bare
parton density is defined directly by whichever of operator formulae like (6.31) is appro-
priate, with the convention that the field operators are bare fields (i.e., that have canonical
(anti)commutation relations). The theorem of renormalization is that one can obtain UV-
finite parton densities fj/H (ξ ) by a proper choice of the renormalization factor Zjj ′ in (8.11).
The multiplication is in the sense of a convolution in the longitudinal momentum fraction
and of matrix multiplication on the flavor indices. In the MS scheme, the renormalization
factor is a function only of the ratio of the momentum fractions, the renormalized coupling
and the dimension of space-time.

We have written limits ξ− and 1+ in the integral over z in (8.11), with the same meaning
as in factorization formulae, such as (8.7). The upper limit is set by the renormalization
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kernel (which includes a delta function at z = 1). The lower limit is set by the bare parton
density, which is non-zero only for ξ/z ≤ 1.

8.3.3 Polarization dependence

Formula (8.11) applies both to the unpolarized densities and to the various kinds of polarized
densities (helicity, transversity, etc.). The transformations of the densities under rotations
and parity imply that there is no mixing between the different kinds of polarized density.
That is, one copy of (8.11) applies to the unpolarized densities, a second copy, with different
renormalization factors, applies to the helicity densities, and a third copy, with yet different
renormalization factors, applies to the transversity densities.

8.3.4 Regions giving UV divergences

An ordinary UV divergence (such as is canceled by renormalization of the Lagrangian)
comes from regions where all the components of momenta in a subgraph get large. It might
appear that the divergences in parton densities are different because they involve large
values only for the minus and transverse components of loop momentum, as we saw in a
calculational example. The momentum components are power-counted as (k+, k−, kT) ∼
(P+,�2/P+,�) where �→∞. However, this appearance that the divergence is of a
new kind is misleading. We see this in light-front perturbation theory. Plus momenta are
restricted to fractions of the external momenta, and even ordinary UV divergences also arise
from large minus and transverse momenta, again with the power-counting (P+,�2/P+,�).
An example is given by the self-energy graph that we calculated at (7.13).

The apparent difference arises because of a different choice of contour deformation: a
Wick rotation of energy integrals in the usual case, and a contour integral in k− for the
light-front case. Of course, in a parton density with its integral over k−, the light-front view
is natural.

So the large kT divergences in parton densities are actually genuine UV divergences to
which we can apply normal methods of renormalization.

Further analysis proceeds by examining the momentum regions that give the UV diver-
gence. We use the formalism in which the operators defining the parton density are time-
ordered and the graphs are uncut. We take it for granted that renormalization has been
applied in the Lagrangian, so that all UV divergences in self-energies and vertex correc-
tions, etc., are canceled by counterterms. The remaining divergences involve loop momen-
tum integrals that include the vertices that define the parton densities. Thus we represent
the regions giving divergences by diagrams such as Fig. 8.5(a). In the upper part, labeled
“UV”, the minus and transverse components of all momenta get large, with plus momenta
obeying their normal restrictions (in particular not to be bigger than P+). In the lower part,
labeled “collinear”, the momenta stay finite. The collinear part includes the connecting
lines of momentum l, while the UV part includes the lines of momentum k that go to the
parton density vertices. In addition to being far off-shell, the momenta in the UV part have
large negative rapidity relative to the target.
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Fig. 8.5. (a) Regions giving UV divergence for pdf in renormalizable non-gauge theory or
in a gauge theory (in light-cone gauge, A+ = 0). The lines joining the UV and collinear
subgraphs can be of any type, e.g., flavor of quark, antiquark or (transverse) gluon. (b) In
a gauge theory arbitrary gluon connections between the collinear and UV subgraphs also
give divergences.

We now do power-counting to determine the strength of the divergence and to determine
what external lines are allowed for the UV part. For this we use the appropriate general-
ization of the rules for ordinary UV divergences given that we treat the components of UV
momenta as having sizes (P+,�2/P+,�). By observing that such a momentum configu-
ration can be obtained by a boost from a frame in which all the components of UV momenta
are of order �, we readily see that the power-counting works just like the power-counting
for hard scattering in DIS: Ch. 5. In the rest frame of a UV momentum, the collinear lines
are indeed collinear to the fast-moving target. The basic degree of divergence for a graph
with two lines connecting the UV and collinear subgraphs is logarithmic. We saw this
in an example, and the property extends to higher-order graphs for the UV subgraph. The
reason is that this subgraph is dimensionless, and so the power-counting of a UV divergence
follows dimensional analysis in a renormalizable theory.

The estimate of the power can equally well be done in a fixed frame. In that case the key
point in relating dimensional analysis to the size of the divergence of the integral is that in
Lorentz-invariant quantities, a minus momentum k−, which has two powers of �, always
appears multiplied by a plus momentum k+, which has zero powers of �; thus the power
of � is the dimension of k+k−.

Therefore adding external collinear lines to the UV subgraph generally reduces its degree
of divergence, and therefore gives convergence. The one exception, just as in our discussion
of hard scattering in Ch. 5, is in a gauge theory when there are gluon lines with a minus
index in the UV subgraph and a plus index at the attached gluon line. Thus in addition to
regions of the form Fig. 8.5(a), we also have divergences with extra gluons joining the UV
and collinear subgraphs, Fig. 8.5(b).

For this chapter we restrict our attention to a non-gauge theory, for which the catalog of
divergent regions is Fig. 8.5(a). (This set of leading regions also applies to a gauge theory
in A+ = 0 gauge. But this chapter’s treatment of renormalization does not genuinely apply,
because of problems with divergences associated with the 1/k+ singularities in the gluon
propagator.)

The details of constructing a renormalized parton density follow very closely the con-
struction of matrix elements of renormalized local operators in conventional renormalization
theory (e.g., Collins, 1984).
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8.3.5 Momentum dependence of counterterms

There is one new feature, which concerns the dependence of the counterterms on external
momenta. In conventional operator renormalization, when there is a logarithmic divergence,
the counterterm can be chosen to be independent of momentum and mass. One general
method of proof is to differentiate graphs with respect to the external momenta and/or
masses. This reduces the degree of divergence, and thus for a logarithmic divergence shows
that after differentiation there is no overall divergence, and therefore no counterterm is
needed. There can be subdivergences in multiloop graphs, but these are canceled by their
own counterterms; the overall divergence is what determines the need for a counterterm for
a whole graph. In general, the counterterms are polynomials in momentum and mass with
the degree of the polynomial equal to the degree of divergence.

We now apply the differentiation argument to the UV divergences in parton densities.
The examples in Sec. 6.11 provide illustrations of the general principles. We will now show
that differentiating with respect to a mass, or an external minus or transverse momentum,
does reduce the degree of divergence. But differentiating with respect to an external plus
momentum leaves the degree of divergence unchanged. Thus the divergence is allowed to be
a function of plus momenta. This gives the convolution form in (8.11) for the renormalization
of parton densities, rather than the multiplicative form that applies to local operators.

Differentiating a graph with respect to an external momentum gives a sum over terms
where particular propagator (or numerator) factors are differentiated. So we consider a
generic propagator, carrying an internal momentum k and an external momentum P :

1

(P − k)2 −M2
= 1

2(P+ − k+)(P− − k−)− (PT − kT)2 −M2
. (8.12)

The external momentum may be off-shell and may have non-zero transverse momentum.
The UV divergence concerns the situation where kT and k− go to infinity with k+ fixed.
There are three cases:

1. Differentiation of (8.12) with respect to P+ reduces the dimension by one, but introduces
a factor of a minus momentum:

d

dP+
1

(P − k)2 −M2
= −2(P− − k−)

[2(P+ − k+)(P− − k−)− (PT − kT)2 −M2]2
. (8.13)

In power-counting for the degree of divergence, the factor k− in the numerator is treated
as k2

T rather than as the single power kT that matches its dimension. Thus the degree of
divergence is unaffected by differentiating with respect to P+.

This is a general result: in Lorentz-invariant quantities, a plus momentum always
appears multiplied by a minus momentum. Thus the unchanged degree of divergences
is effectively a consequence of invariance under boosts in the z direction.

2. Differentiation with respect to a mass M or transverse momentum PT brings no extra
factor; this reduces the degree of divergence by one unit, just as with local operators.

3. Differentiation with respect to an external minus momentum P− gives an extra reduction
of the degree of divergence, by two units instead of one unit.
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Fig. 8.6. Ladder decomposition of graphs for a bare parton density in terms of two-particle
irreducible subgraphs.

When we use MS renormalization, the counterterms are just the divergent pole parts, so
the coefficients of the poles obey the above rules for lack of dependence on minus momenta,
transverse momenta and masses. In a general renormalization scheme, it is permitted to
perform a further finite renormalization which does depend on these momentum components
and masses. We choose not to.

We now summarize the form of the divergence in a parton density as∫
dl+

l+
H (l+, k+)

∫
dl− d2−2ε lT L(l, P ), (8.14)

where H denotes the divergence of a UV subgraph. Since the divergence is independent
of l− and lT, the integral over these variables can be confined to the collinear subgraph,
corresponding to the rules for a parton density, in fact. But the UV and collinear parts are
linked by an integral over l+.

Now parton densities are invariant under boosts in the z direction. Generally we will
arrange for the factors in formulae such as (8.14) to be boost invariant. Notice that this is
the case for the measure dl+ /l+ of the convolution. Then the UV divergence factor H must
be a function, not of k+ and l+ separately, but only of their ratio. This gives the kinematic
dependence of the renormalization factor Zjj ′ : it is a function of the ratio between the
fractional momentum ξ of the renormalized parton density and the fractional momentum
of the bare parton density.

8.3.6 Ladder graphs and renormalization

In this section, we will prove the renormalization theorem for parton densities, and we will
see how the subtractive counterterm formalism is set up. The methodology (Collins, 1998a)
is inspired by Curci, Furmanski, and Petronzio (1980).

The issue that makes the discussion quite non-trivial is that the characterization of UV
divergences just given is somewhat incomplete. It assumed that we could assign the estimate
(P+,�2/P+,�) uniformly to all the different momenta in the UV subgraph. But in fact
there can be a variety of sizes.

Notation

A given graph for a bare parton density can have many decompositions of the form of
Fig. 8.5(a). Given that they all have the two subgraphs connected by two lines, a convenient
way to enumerate all possibilities is to perform a ladder decomposition, as in Fig. 8.6.
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K
= + + + + · · ·

Fig. 8.7. Examples of topologies of graphs for the ladder rung K in Fig. 8.6. The lines and
vertices are of any type allowed by the theory. The shortness of the lines at the lower end
indicates that these propagators are amputated.

Each of the objects B and K is a sum over two-particle irreducible (2PI) graphs multiplied
by full propagators for the upper two lines. Typical examples of graphs for K are shown
in Fig. 8.7. They are connected and have two upper external lines and two lower external
lines. Propagators with all possible corrections are used for the upper lines, but the lower
lines are amputated. The two-particle irreducibility of the core part of K means that its top
cannot be disconnected from the bottom by cutting only two lines; at least three lines must
be cut. The base of the ladder, B, similarly has two propagators on its upper side times
a 2PI amplitude, but it is now connected to the target state, including a bound state wave
function if needed. The types of the lines can be any that is allowed in the theory.

We therefore represent the bare parton density for a parton of type j as a sum over ladder
graphs with different numbers of rungs:

f(0) j = ZjV (j )
∞∑

n=0

KnB

= ZjV (j )
1

1−K
B. (8.15)

The products are in the sense of a convolution, i.e., an integral over the momentum of the
loop joining the factors, and sums over the flavor, color and spin indices, just as in (8.2).

At the top of the ladder we have the vertex defining the parton density, and in (8.15) we
denote it by the factor V . A complete notation is cumbersome:

V (ξP+, j, s; k, j1, c, c
′, α, α′) = δ(ξP+ − k+)sα,α′δjj1δcc′ , (8.16)

which is set up to be used in the convolution notation, as in (8.2). The color and spin indices
on the two attached parton lines are (c, α) and (c′, α′). There is a common flavor index j1

for the two lines. We let sα,α′ be the matrix with which the vertex couples the spin indices,
e.g., γ+/2 for an unpolarized quark density.

We require that both of K and B are Green functions of renormalized fields, so that
they are UV finite. Since we define the bare parton density by an expectation value of bare
operators, we inserted in (8.15) a factor of the wave function renormalization Zj for the
field for parton j .

The rung factor is

K(k1, j1, c1, c
′
1, α1, α

′
1; k2, j2, c2, c

′
2, α2, α

′
2). (8.17)

Here, k1 is the momentum of each of the upper lines, and j1 is the flavor, while (c1, α1) and
(c′1, α

′
1) are color and spin indices for the upper lines. The other variables are for the lower

lines. There is also dependence on the coupling etc which is not indicated. Similarly for the
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base of the ladder we write

B(k, j1, c1, c
′
1, α1, α

′
1; P, S). (8.18)

Note that if the target is an elementary particle, as in our calculational examples in Sec. 6.11,
then the base factor B will be just a delta function, e.g.,

B(k, j1, c, c
′, α, α′; P, S) = (2π )4−2εδ(4−2ε)(l − P )δj1,target

× spin density matrix. (Elementary target) (8.19)

Just as in (8.4), the two lines joining neighboring rungs (V , K , or B) have equal flavors. But
we have allowed unequal values for the spin and color indices. But then we observe that V

times any number of Ks is color singlet, and so gives a coefficient times a unit matrix in
color space. Hence we only use K and B in combinations with a diagonal sum over colors
at their upper end, and so we write, for example,∑

c1

K(k1, j1, c1, c1, α1, α
′
1; k2, j2, c2, c

′
2, α2, α

′
2) = K(k1, j1, α1, α

′
1; k2, j2, α2, α

′
2) δc2,c

′
2
.

(8.20)

In the mathematical manipulations that follow, K is to be thought of as a matrix, with
two composite indices, V as a row vector, and B as a column vector.

Divergences, subtractions, renormalization

We now define a renormalized parton density by the standard procedure of subtracting
counterterms for each subgraph with an overall UV divergence. We first remove the wave-
function renormalization factor Zj . Then we consider the UV divergences in one term
V KnB. Each possible divergent subgraph in Fig. 8.5(a) is associated with a subgraph
consisting of V and some number N1 > 0 of the nearest rungs.

A zero-rung graph V B therefore has no UV divergences. A one-rung graph V KB has
one divergence, in the V K subgraph. We can cancel the divergence in V K by subtracting,

for example, its pole part at ε = 0, V K
←−P , to give a finite result V K(1−←−P )B. The left

arrow in
←−P signifies that the pole part is taken of everything to its left. The significance

of the pole part is that it is independent of the external l− and lT of V K , since this is

a property of the elementary UV divergence derived above. Thus V K
←−P is of the form

of a vertex for a parton density at momentum fraction l+/P+ times a function of ξP+

and l+. This will enable us to obtain multiplicative renormalization after we sum over all
graphs and UV-divergent subgraphs. Naturally, the pole part may be replaced by any other
operation that achieves the same effect, of canceling the divergence with a counterterm that
is a coefficient times a vertex for a parton density.

From now on we will define
←−P to denote whatever such definition we choose to use, and

the choice defines the renormalization scheme for the parton density. The standard choice
is the MS scheme, Sec. 3.2.6, with its extra factor Sε for each loop in a counterterm; see
(3.16) and (3.18).

For a two-rung ladder, V KKB, we first cancel the divergence in the V K subgraph, to

get V K(1−←−P )KB. The remaining divergence is in the two-rung part, and to cancel it we
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can subtract V K(1−←−P )K
←−P B. Here the second pole part is the pole part of everything to

its left, i.e., the pole part of V K(1−←−P )K . After these subtractions the UV-finite result is

V K(1−←−P )K(1−←−P )B. It is straightforward to extend this result to bigger ladders: we

simply insert a factor 1−←−P to the right of every factor of K .
We now convert this into a form that we use to demonstrate multiplicative renormaliz-

ability:

fj = V (j )
[
1+K(1−←−P )+K(1−←−P )K(1−←−P )+ . . .

]
B

= V (j )
∞∑

n=0

[
K(1−←−P )

]n

B

= V (j )
∞∑

n=0

KnB − V (j )
∞∑

n=1

n∑
n1=1

[
K(1−←−P )

]n1−1
K
←−P Kn−n1B

= V (j )
∞∑

n=0

KnB − V (j )
∞∑

n1=1

[
K(1−←−P )

]n1−1
K
←−P

∞∑
n2=0

Kn2B

= V (j )
1

1−K
B − V (j )

∞∑
n=0

[
K(1−←−P )

]n

K
←−P 1

1−K
B. (8.21)

To get from the second to the third line, we expanded all the products and classified the

result by where the rightmost
←−P is. There is one term with no

←−P factors at all. The last line
is in fact of the form of a coefficient convoluted with the bare parton density, (8.11). To see

this, we first observe that the term V (j )
1

1−K
B is of the desired form, giving a contribution

Z−1
j δjj ′δ(z− 1) (8.22)

to Zjj ′ . Now a renormalization pole part is a coefficient times a vertex for a parton density.

So the last term in (8.21) is a pole part times the
1

1−K
B factor in the bare parton density.

Thus we also get something of the form of the right-hand side of (8.11). In fact we can
write the renormalization coefficient as

Zjj ′V (j ′) = 1

Zj ′

[
δjj ′δ(z− 1)− V (j )

∞∑
n=0

[K(1−←−P )]nK
←−P (j ′)

]
, (8.23)

where the (j ′) argument of the last
←−P indicates that we restrict to graphs whose rightmost

line pair has flavor j ′.
This completes the proof of the renormalization theorem for parton densities, at least

when the theory has no gauge fields. The proof also applies in a gauge theory (e.g., QCD) in
A+ = 0 gauge, if we assume that the non-trivial complications in this gauge do not matter.

For performing calculations, it is useful that the proof also applies to off-shell Green
functions of the parton vertex operator, with the actual on-shell parton densities being
obtained by applying LSZ reduction.
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Nature of subtractive approach

The starting point of (8.21) was a modification of the definition of a parton density where
all UV divergences were subtracted out. Then this was converted to a form that exhibited
multiplicative renormalization of bare parton densities.

Now methods using subtractions are fundamental to all aspects of perturbative QCD,
as we will see. So in the next few paragraphs I give further insights into the subtrac-
tive approach, with renormalization of parton densities giving an example of a general
methodology.

Let us focus attention on the third line in (8.21). It starts with a sum over all graphs for
the parton density partitioned by the number n of rungs; a generic term is V KnB. Note
that K and B themselves are sums of graphs of the appropriate irreducibility properties.
Possible ways of getting UV divergences are enumerated by partitioning the product of
rungs into two factors:

[V Kn1 ] [Kn−n1B], (8.24)

where n1 can range from 1 to n. Applying this to a single graphical structure, we have n

ways of doing the partition. For each partition, there is a divergence where the momenta
in the left part of (8.24) get large while the momenta in the right-hand part stay finite. The
left factor corresponds to the upper part of Fig. 8.5(a).

An initial idea for removing the divergence is simply to subtract the UV pole part of the
subdiagram V Kn1 . We can notate the subtraction diagrammatically as

− K
n 1

K
n−n 1 B

, (8.25)

where the box denotes the taking of the pole part, as in MS renormalization.1 Such subtrac-
tions do not actually remove the divergences correctly, for two related reasons. The first
is the possibility of subdivergences: if n1 > 1, the Kn1−1 factor has a pole from subdiver-
gences, where only some of the rungs inside the box are in a UV region. The second is
that of double counting: there can be further UV divergences when not only the momenta
inside the box are UV, but also some momenta further down are also UV, which situation
occurs if n1 < n.

Both problems are solved by applying the pole-part operation only after subtractions

have been made for subdivergences. In the third line of (8.21), this is done by the (1−←−P )
factors inside the V Kn1 part.

To see this as a prevention of double counting, we imagine constructing the counterterms
one by one, starting with the smallest, n1 = 1. Let Cn1 (V KnB) be the counterterm for the
n1-rung graph. It is made by applying minus the pole part to the original graph together

1 Or the corresponding operation in some other renormalization scheme.
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with the counterterms for smaller numbers of rungs:

Cn1 (V KnB) = −
⎡
⎣V Kn1 +

n1−1∑
n′1=1

Cn′1 (V Kn1 )

⎤
⎦←−P Kn−n1B. (8.26)

The internal counterterms Cn′1 remove subdivergences. As for double counting, consider
the sum over n1:

∑n
n1=1 Cn1 (V KnB). For the overall UV divergence in a particular V Kn1 ,

there will be contributions both from the original graph and from the counterterms for
subdivergences in the set of terms V Kn1 +∑n1−1

n′1=1 Cn′1 (V Kn1 ). The use of (8.26) to define
Cn1 deals with this problem.

Equation (8.26) is an example of the Bogoliubov operation in renormalization theory,
and it provides a recursive definition of the counterterm. The recursion starts at n1 = 1
where there are no subdivergences:

C1(V KnB) = − V K
←−P Kn−1B. (8.27)

It is not too hard to prove by induction that

Cn1 (V KnB) = −[V K(1−←−P )]n1−1K
←−P Kn−n1B, (8.28)

which gives the counterterms in the third line of (8.21).
An illustration of the box notation for counterterms is the case n = 2:

P
B

K

K

−

P
B

K

K

−

⎛
⎜⎜⎜⎜⎜⎜⎝

P
B

K

K
−

P
B

K

K

⎞
⎟⎟⎟⎟⎟⎟⎠

= V K2B − V K
←−P KB − V K2 − V K

←−PK
←−P B

= V K(1 −←−P ) K(1 −←−P ) B.

(8.29)

8.4 Renormalization group, and DGLAP equation

Renormalized quantities depend on the renormalization scale μ. When we apply the factor-
ization theorem we will enable the effective use of perturbative theory in the hard scattering
by setting μ to be of order Q. Therefore to make predictions, we need to transform parton

https://doi.org/10.1017/9781009401845.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.008


262 Factorization for DIS, mostly in simple field theories

densities between different values of μ, for which we need their renormalization-group
(RG) equations.

These are obtained by applying d/d ln μ to (8.11) and using the RG invariance of
the unrenormalized parton density. The resulting equation are known as the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations2 (Altarelli and Parisi, 1977; Gribov
and Lipatov, 1972; Dokshitzer, 1977). They have the form

d

d ln μ
fj/H (ξ ; μ) = 2

∑
j ′

∫
dz

z
Pjj ′ (z, g)fj ′/H (ξ/z; μ), (8.30)

where, with its standard normalization, the (finite at ε = 0) DGLAP evolution kernel Pjj ′

obeys

d

d ln μ
Zjk(z, g, ε) = 2

∑
j ′

∫
dz′

z′
Pjj ′ (z

′, g, ε)Zj ′k(z/z′, g, ε), (8.31)

i.e., essentially

P = 1

2

d

d ln μ
ln Z, (8.32)

with algebra (multiplication in particular) for Z being interpreted in the sense of convolu-
tions on z, and in the sense of matrices on the partonic indices. Recall that the RG derivative
when applied to such counterterms is just the beta function for a coupling times a derivative
with respect to the coupling, and then summed over couplings. In the model Yukawa theory,
this is

1

2

d

d ln μ
Zjk =

(
−ε

g2

16π2
+ S−1

ε βg2

)
∂Zjk

∂g2/(16π2)
+
(
−ε

λ

16π2
+ S−1

ε βλ

)
∂Zjk

∂λ/(16π2)
.

(8.33)

Here βg2
def= 1

2 dg2 / d ln μ, etc., with the normalizations like those of Sec. 3.5.2. Each β is a
function of Sελ and Sεg

2, but not of ε separately (in the MS scheme). In QCD there would
only be the βg2 term.

8.5 Moments and Mellin transform

The connection to the renormalization of local operators can be exhibited by taking an
integral with a power of ξ . We define

f̃j/H (J ) =
∫ 1+

0
dξ ξJ−1fj/H (ξ ), (8.34)

Z̃jj ′(J ) =
∫ 1+

0
dz zJ−1Zjj ′ (z), (8.35)

2 The original derivations were rather different to the strict RG one presented here.
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and similarly for the unrenormalized parton densities and the DGLAP kernels. Then (8.11)
gives a matrix-multiplication form for the moments:

f̃j/H (J ) =
∑
j ′

Z̃jj ′ (J )f̃(0) j ′/H (J ). (8.36)

The DGLAP equation similarly becomes

d

d ln μ
f̃j/H (J ; μ) =

∑
j ′

2P̃jj ′ (J ; g)f̃j ′/H (J ; μ). (8.37)

If J is allowed to range over general (complex) values, then we have constructed the
Mellin transform of the parton density and shown that renormalization looks particularly
simple for the Mellin transform. The Mellin transformation can be inverted to recover the
parton densities in ξ space. In numerical calculations, it can be an advantage of the Mellin-
transformed formulation that equations like (8.37) involve matrix multiplication rather than
convolutions.

If J is restricted to non-negative integer value, and the combinations of parton and
antiparton densities are used that correspond to local operators, as in (6.109), then we have
the formula for renormalization of the local operators used in the OPE for DIS.

8.6 Sum rules for parton densities and DGLAP kernels, including in QCD

In Secs. 6.9.5 and 6.9.6, we derived number and momentum sum rules in a theory where
no renormalization of parton densities was needed. We now extend the treatment to a
renormalizable theory. The derivation will also apply to QCD, but only after we show that
the renormalization theorems also apply to QCD.

Before renormalization we have bare parton densities in the UV-regulated theory. For a
bare quark density, we derived a number sum rule in (6.92); the derivation applies also in
QCD, since the Wilson line now needed between the quark and antiquark fields becomes
unity when the fields are at the same position. The derivation must be applied to the bare
parton densities in order to get the correctly normalized Noether current. In contrast, for
the derivation of the momentum sum rule in QCD, the Wilson line requires a slight change
in the derivation. Because of the extra factor ξ in the integrand of the sum rule (6.93), a
derivative is needed with respect to the position of one of the fields in the quark density def-
initions. The derivative applies to both the field and the Wilson line, and the result is to give
a covariant derivative of the quark field, and so to give the correct quark term in the energy
momentum tensor. The gluon term also comes out correctly. After that the derivation is as
before.

Each of these derivations applies to a particular moment of parton densities and results
in a target matrix element of a Noether current, whose value we know exactly and which
is finite. We now need to show that the sum rules also apply to renormalized densities and
to obtain corresponding constraints on the renormalization coefficients. We first take the
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inverse transformation to (8.36):

f̃(0) i/H (J ) =
∑

j

Z̃−1
ij (J )f̃j/H (J ), (8.38)

where Z−1 is the matrix inverse of Z. The number sum rule for a quark q is that f̃(0) q/H (1)−
f̃(0) q/H (1) is the number of this type of quark in the target H . Since this is finite, the
corresponding renormalization coefficients are also finite: Z̃−1

qj (1)− Z̃−1
qj (1). Let us use the

MS scheme, in which case finiteness only happens if the counterterms are zero, leaving
the lowest-order terms. Thus we get the following sum rules for the first moments of the
renormalization coefficients:

Z̃−1
qj (1)− Z̃−1

qj (1) = δqj − δqj , (8.39a)

Z̃qj (1)− Z̃qj (1) = δqj − δqj , (8.39b)

where the second line follows using the definition of the inverse matrix Z−1Z = I . From
(8.39b) and the sum rule for the bare parton densities follows the corresponding sum rule for
the renormalized densities. Hence (6.91) applies to both bare and renormalized densities,
provided the MS scheme is used.

The same argument applies to the momentum sum rule. It also leads to a sum rule for
the renormalization coefficients:∑

j

Z̃−1
jj ′ (2) =

∑
j

Z̃jj ′ (2) = 1, (8.40)

where the sum is over all flavors of parton: quarks, antiquarks, and gluon.
Combining the sum rules for Z with the definition of the DGLAP kernels (8.31) gives

sum rules for the kernels:

P̃qj (1)− P̃qj (1) = 0, (8.41)∑
j

P̃jj ′ (2) = 0. (8.42)

These sum rules have important testable consequences for the evolution of parton densities;
they also provide useful checks on calculations.

8.7 Renormalization calculations: model theory

In this section we show how to calculate the renormalization of parton densities in the
model Yukawa theory used earlier, to illustrate the principles without any confusion by the
complications that arise in QCD.

8.7.1 Renormalization of the theory

The Lagrangian of the theory with renormalization for the interactions was given in (6.103).
We use dimensional regularization and the MS scheme. We will express all quantities in
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8.7 Renormalization calculations: model theory 265

terms of renormalized couplings g, etc. As usual, to keep the dimension of the coupling
fixed, we write the bare couplings in terms of the renormalized couplings with the unit
of mass as g0 = μεg(1+ counterterms), etc. We will use a counterterm approach, as in
Sec. 3.2. Thus we write the Lagrangian as the sum of a free Lagrangian that gives the free
propagators, a basic set of interactions, with renormalized couplings, and a counterterm
Lagrangian.

Of the renormalization factors in the Lagrangian, the ones that we will need in our
calculations are for the self-energy, for which completely standard calculations give

Z2 − 1 = − g2Sε

32π2ε
+ . . . , Z2M0 −M = g2SεM

16π2ε
+ . . . , (8.43)

where the dots indicate terms of yet higher order.

8.7.2 Unintegrated density

First we examine unintegrated, i.e., transverse-momentum-dependent, parton densities. The
bare densities in the UV-regulated theory are, e.g.,

f(0) q/H (ξ, kT) =
∫

dw− d2wT

(2π )3
e−iξP+w−+ikT·wT〈P |ψ0(0, w−,wT)

γ+

2
ψ0(0) |P 〉. (8.44)

These have an immediate probability interpretation.
Since there are no extra divergences beyond those renormalized in the Lagrangian, the

renormalized unintegrated quark density is obtained simply by using renormalized fields:

fq/H (ξ, kT; μ) = Z−1
2 f(0) q/H (ξ, kT). (8.45)

To get its RG equation, we observe that the bare parton density is a matrix element of
bare fields with physical states, and hence is RG invariant. Taking a total derivative of the
renormalized density with respect to the renormalization scale μ gives the RG equation of
the renormalized density:

d

d ln μ
fq/H (ξ, kT; μ) = −2γ2fq/H (ξ, kT; μ). (8.46)

Here γ2 is the anomalous dimension associated with the fermion field:

γ2 = 1

2

d ln Z2

d ln μ
= − g2Sε

32π2
+ . . . , (8.47)

which has a finite limit at ε = 0.

8.7.3 Integrated density

For renormalization of the integrated densities, we use a counterterm approach with
subtractions applied in Green functions of renormalized fields. Therefore we first write
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(8.11) as

fj/H (ξ ) =
∑

j

∫
dz

z
[Zj ′(g, ε)Zjj ′(z, g, ε)] [Z−1

j ′ f(0) j ′/H (ξ/z)]. (8.48)

Here the factor Z−1
j ′ f(0) j ′/H is the parton density with renormalized rather than bare fields

used in its definition. Thus it is calculated using the standard Feynman rules for the theory
and for the parton density; counterterms from the Lagrangian are used as needed. In
compensation for the Z−1

j ′ factor the Zjj ′ factor is combined with a factor of Zj ′ .
The renormalization factor gives UV-finite parton densities independently of the target

state H . For calculations of Zjj ′ , it is therefore convenient to choose the state to correspond
to any of the elementary fields of the theory (as opposed to a bound state). To obtain the
perturbation expansion of Zjj ′ from Feynman graphs, we expand (8.48) in powers of the
renormalized couplings, and identify the necessary counterterms. We use the following
expansions:

fj/H (ξ ) =
∞∑

n=0

(
g2

16π2

)n

f
[n]
j/H (ξ )+ . . . , (8.49a)

f(0) j/H (ξ ) =
∞∑

n=0

(
g2

16π2

)n

f
[n]
(0) j/H (ξ )+ . . . , (8.49b)

Zjj ′ (z, g, ε) =
∞∑

n=0

(
g2

16π2

)n

Z
[n]
jj ′ (z, g, ε)+ . . . (8.49c)

To avoid complicated formulae, we have written only the terms with the Yukawa coupling
g, and the dots indicate terms involving the other couplings. The lowest-order term in Z is
unity in the sense of a matrix in parton type and of a convolution in z:

Z
[0]
jj ′ (z) = δjj ′δ(z− 1). (8.50)

When the target is elementary, the lowest-order renormalized and bare parton densities are
simply

f
[0]
j/j ′ (ξ ) = f

[0]
(0) j/j ′(ξ ) = δ(ξ − 1)δjj ′ . (8.51)

Note the notational distinction between “[0]” in a superscript to denote “lowest order”, and
“(0)” to denote “bare” (normally in a subscript). Note also a shift of notation from Sec. 6.11:
there we did not treat renormalization, so the expansion parameter was actually the bare
coupling; now the expansion parameter is strictly the finite renormalized coupling.

The key equation for calculations of the renormalization factor is the n-loop expansion
of the renormalization equation (8.48):

f
[n]
j/k(ξ ) =

n∑
n′=0

∑
j ′

∫
dz

z
Z

[n′]
jj ′ (z, g, ε) f

[n−n′]
(0) j ′/k(ξ/z). (8.52)
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8.7.4 One-loop renormalization calculations in model theory

Quark in quark

The one-loop case of (8.52) for the density of a quark in a quark is

f
[1]
q/q (ξ ) =

∑
j

∫
dz

z

[
(Z2Zqj )[0](z, g, ε) (Z−1

2 f(0) j/q)[1](ξ/z)

+ (Z2Zqj )[1](z, g, ε)(Z−1
2 f(0) j/q)[0](ξ/z)

]
= (Z−1

2 f(0) q/q)[1](ξ )+ (Z2Zqq )[1](ξ, g, ε). (8.53)

We carried out the calculations of the bare version of f [1] in Sec. 6.11, and we now read
off the necessary modifications to renormalize the parton densities.

Virtual correction to quark in quark

The one-loop virtual correction to the parton density Fig. 6.10(a) is to be modified by
adding wave function and mass renormalization counterterms to the self-energy, so that we
replace (6.114) by

g2

16π2
f

[1,V ]
q/q (ξ ) = −δ(ξ − 1)

g2

16π2

×
∫ 1

0
dx

{
x ln

[
μ2

m2x +M2(1− x)2

]
+ 2M2x(1− x2)

m2x +M2(1− x)2

}
, (8.54)

in the limit that the UV regulator is removed, ε = 0. Since this is finite by itself, no delta
function contribution to Z2Zqq is needed: the UV divergence in the self-energy is removed
by a counterterm from the interaction, and so does not affect renormalization of the parton
density.

Real correction to quark in quark

For the real emission term, we need

g2

16π2
(Z2Z)[1]

qq (z, g, ε) = − g2Sε

16π2ε
(1− z) (8.55)

to cancel the UV divergence in (6.117), with the result that the real-emission contribution
for the renormalized density ε = 0 is

g2

16π2
f

[1,R]
q/q (ξ ) = g2

16π2

{
(1− ξ ) ln

[
μ2

ξm2 + (1− ξ )2M2

]
+ ξ (1− ξ )(4M2 −m2)

ξm2 + (1− ξ )2M2

}
.

(8.56)
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Renormalization of quark in quark

The renormalization coefficient times Z2 is therefore

(Z2Z)qq (z, g, ε) = δ(z− 1) − g2Sε

16π2ε
(1− z)+ . . . , (8.57)

so that

Zqq (z, g, ε) = δ(z− 1) + g2Sε

16π2ε

[
1
2δ(1− z)− 1+ z

]+ . . . (8.58)

It is easily verified at order g2 that this obeys the sum rule
∫ 1+

0 dz Zqq (z) = 1, as is
necessary so that the number sum rule is obeyed. From (8.31) and (8.33) then follows the
one-loop qq term in the DGLAP kernel:

Pqq (z) = g2

16π2

[− 1
2δ(1− z)+ 1− z

]+ . . . (8.59)

Scalar in quark

Similarly we can renormalize the first off-diagonal term, in the distribution of a scalar
parton in a quark from (6.118). The renormalization coefficient and the DGLAP kernel
are

Zφq(z) = − g2Sε

16π2ε
z+ . . . , (8.60)

Pφq(z) = g2

16π2
z+ . . . , (8.61)

with a corresponding renormalized value for fφ/q .

Verification of sum rules

It is readily checked that the quark number and momentum sum rules are obeyed at this
order: ∫ 1+

0
dz
[
Pqq (z)− Pqq(z)

] = 0, (8.62)

∫ 1+

0
dz z

[
Pqq (z)+ Pφq(z)+ Pqq(z)

] = 0. (8.63)

Note that these sum rules are written in their complete form, including a term for evolution
of a quark to an antiquark Pqq . Of course this last term is zero at one-loop order; the lowest
order in which the q → q occurs is order g4, from the graphs of Fig. 8.8.

Support properties

The continuum terms in all the above calculations of Zjj ′ and Pjj ′ should be considered to
have an implicit theta function to restrict z to lie between zero and one: θ (0 ≤ z ≤ 1).
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(a) (b) (c)

Fig. 8.8. Lowest-order graphs, order g4, for evolution of quark to antiquark.

8.8 Successive approximation method

I now outline an approach that creates a factorization formula like (8.5) as a series of
successive approximations, with the parton model as the first term. This will motivate the
technical proof, and will suggest a route for generalization in more complicated situations.

The parton model for the hadronic tensor Wμν for electromagnetic DIS was derived from
the handbag diagram as an approximation valid in the momentum region where the struck
quark is collinear to the target. We call this the leading-order (LO) approximation to the
Wμν , notated in Fig. 6.4(b). The graph and region continue to exist in the complete theory.
Of course, the approximation breaks down when the transverse momentum or virtuality of
the struck quark gets large, and there are graphs other than the handbag diagram. Let us
regard the complete Wμν as the LO approximation plus a remainder:

Wμν = Wμν
(LO) + Wμν −Wμν

(LO)

=
P

k

q

+

⎛
⎜⎝P

q
−

P
k

q
⎞
⎟⎠ . (8.64)

The hooks on the quark line of momentum k in the first term denote a parton-model
approximator. This means that k− and kT are replaced by zero in the part of the diagram
above the hook, and that projectors onto the leading power of the Dirac algebra are inserted.
The result is a good approximation in the collinear region. We define the approximator to
include an integral over all k, thereby obtaining a parton density, exactly as we defined
it. Although not explicitly notated, we define the parton density to be renormalized, so
that the LO approximation is finite. The unrestricted integral over k and the associated
renormalization are the only changes from the parton approximator defined in Sec. 8.2.2.

We now analyze the remainder term, in parentheses. The most general leading-power
contributions still have the form summarized in Fig. 8.2(a). However, if we take the hard-
scattering subgraph to be lowest order, i.e., to be the top rung only, then in the parenthesized
term in (8.64) this lowest-order case no longer gives a leading-power contribution, precisely
because the subtraction cancels the relevant region.
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P
l

q

+ h.c.

P
l

q

)d()c(

Fig. 8.9. Topologies of graphs needed for NLO approximation. The hermitian conjugate of
graph (c) is also needed. UV counterterms are added to (c) and (d), as appropriate for the
interaction and the current.

Not

P

q

−

P

k

q

l

Fig. 8.10. Graphs like this with self-energy correc-
tions are in in the handbag category, and are not
used in Fig. 8.9.

Fig. 8.11. Subtraction graph.

For the leading approximation to the remainder term, we examine graphs of the form
of Fig. 8.9. At the bottom, we have a complete parton-target amplitude, and at the top, we
have a one-loop quantity. We are concerned with the case that the top loop is hard and the
lower bubble is target-collinear. There is a sum over the flavors of the lines of the graphs.
Notice that graph (a) is also among those included in the basic handbag diagram. Since
the lower bubble represents an infinite sum over all graphs with the given external lines,
it continues to represent the same quantity as in the handbag diagram. We do not include
the case that there is a self-energy on the vertical parton lines, as in Fig. 8.10: these are
included in the handbag category, for this part of the argument. To obtain the contribution
to the parenthesized term in (8.64), we must subtract the parton-model approximation to
graph (a), as symbolized in Fig. 8.11.

The graphs of Fig. 8.9 all have leading-power contributions when the momentum l of
the line from the lower bubble to the upper one-loop subgraph, is collinear to the target.
Contributions when l is larger will be dealt with in even higher-order corrections to the
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hard scattering. The first graph (a) also has a leading-power contribution when the line k

is target-collinear. But the subtraction, Fig. 8.11, cancels this contribution (to the leading
power of kT/Q). Thus the upper one-loop subgraph in all cases is dominated by large loop
momenta.

We therefore apply a parton-model approximation on the line l, and obtain the following
form for the NLO contribution to the structure tensor:

W μν
(NLO) =

P

q

l

+ etc. +

+

P

k

q

l

−

P

k

q

l

(8.65)

The lower part again is a parton density, which we define to be renormalized. The definition
of the approximator is that, in the upper part of the graph, l is replaced by just its plus
component: l �→ (l+, 0, 0T), with appropriate Dirac-algebra projectors. Thus the upper
factor is essentially the one-loop approximation for DIS on an on-shell parton of longitudinal
momentum l+. But there is a subtraction, to remove whatever was already taken care of
at LO.

Further improvements can be made simply by iterating the procedure. In place of (8.64)
we use

Wμν = W
μν
(LO) +W

μν
(NLO) +

(
Wμν −W

μν
(LO) −W

μν
(NLO)

)
, (8.66)

from which we obtain a further parton-model-like correction by analyzing the parenthesized
term. This is the next-to-next-to-leading order (NNLO) approximation to DIS. Repeating
the above procedure leads to a series of successive approximations that in fact correspond
to an expansion in powers of αs(Q).

8.9 Derivation of factorization by ladder method

We now make a complete derivation (Collins, 1998a) of factorization by using a decompo-
sition in terms of 2PI subgraphs just as we did in Sec. 8.3.6 to discuss renormalization of
parton densities.

8.9.1 Ladder expansion

The ladder decomposition is shown in Fig. 8.12, where B at the base of the ladders and
K for the rungs are the same as in Fig. 8.6. There are two new features. The first is that
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q
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B
P
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A

q
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q

K + · · ·

Fig. 8.12. Ladder decomposition of graphs for DIS. Each shaded bubble is 2PI in the vertical
channel, except that K and B include the two full propagators on their upper side.

A

q
=

q
+

q

+

+
q

+ h.c. +
q

+ · · ·

Fig. 8.13. Examples of topologies of graphs for the top A of ladder graphs for DIS in
Fig. 8.12. The lines and vertices are of any type allowed by the theory. The shortness of the
lines at the lower end indicates that these propagators are defined to be amputated.

because each current has two partonic lines we can have completely 2PI graphs. Their
sum we denote by D, and these graphs are power-suppressed in Q because they have no
decomposition of the generalized ladder form. The second new feature is that at the upper
end of the ladder graphs we have, not a vertex for a parton density, but the sum A of 2PI
graphs with two currents. Its expansion up to one-loop order is shown in Fig. 8.13.

Therefore we write a structure function (or the hadronic tensor Wμν) as

W = A
1

1−K
B +D, (8.67)

with exactly the same notation as in (8.15). The factor connected to the current has the
functional dependence A = A(q; k, j, c, c′, α, α′), where k is the momentum of the parton
on the lower side of A, j is its flavor, and c, c′, α and α′ are indices for the color and spin
of the parton, c and α on the left, and c′ and α′ on the right of the final-state cut.

8.9.2 Application of parton-model approximator

The proof of factorization generalizes to all orders the method of successive approximation
of Sec. 8.8. Its implementation is by an algebraic method using the parton approximator
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←−
T defined in (8.7) and (8.8), and the pole-part extractor

←−P used in Sec. 8.3 in the
renormalization of parton densities.

To explain the algebraic method, I first apply it to low-order terms in the method
of successive approximation, but applying it to the ladder sum (8.67). The first term is
obtained by applying the parton approximator at the lower end of A:

WELO = A
←−
T |V 1

1−K(1−←−P )
B. (8.68)

The parton approximator is applied to the complete top rung of the ladder, i.e., to A, rather
than just to the lowest-order rung. So to label the resulting approximation, I use “ELO” for
“extended leading order” rather than just “LO”. Unlike the use of the parton approximator
in Sec. 8.2, there are no longer any restrictions on the internal momentum of any of the
factors. But the parton densities are renormalized. This is accomplished by replacing the

1/(1−K) factor by 1/(1−K(1−←−P )) as already derived for the renormalization of parton
densities. To use this definition, we require that the pole-part operation is only applied within

the parton density, i.e., only between the | symbol and the
←−P symbol. The reason for the

emphasizing this is that the hard part A
←−
T | can have (finite) dependence on the UV regulator,

which should not affect the pole-part operation; the pole-part operation is concerned only
with defining the parton density, i.e., only with the objects to the right of the | symbol.

The WELO term correctly treats the region where the parton below the A bubble is
collinear. So in the remainder W −WELO, this region is suppressed. Therefore the region
giving the first leading contribution to W −WELO is where the hard subgraph consists of
both A and one neighboring rung K . To obtain the associated contribution, we exhibit this
first rung by writing the 1/(1−K) factor as

1

1−K
= 1+K

1

1−K
. (8.69)

Then the contribution in question is

WENLO =
[
AK − A

←−
T |V K(1−←−P )

]←−
T |V 1

1−K(1−←−P )
B

=
[
A(1−←−T |V )K + c.t.

]←−
T |V 1

1−K(1−←−P )
B. (8.70)

This is of the form of an ENLO coefficient convoluted with a complete renormalized parton
density. The factor of 1−←−T |V between A and the first rung K suppresses the collinear
region for the connecting momentum. A UV counterterm removes the UV divergence that
is thereby introduced.

8.9.3 General case

The organization of the full proof is first to construct what we call the remainder, in which
all leading behavior is subtracted out, and then to show that this remainder is the difference
between the exact hadronic tensor W and a factorized form.
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Remainder

The remainder is defined by the insertion of a 1−←−T |V factor between each rung in (8.67):

r =
∞∑

n=0

A (1−←−T |V )
[
K(1−←−T |V )

]n

B +D

= A
1

1− (1−←−T |V )K
(1−←−T |V ) B +D

= A (1−←−T |V )
1

1−K(1−←−T |V )
B +D. (8.71)

We now show that this is power suppressed. We also show that there are no extra UV
divergences, unlike the case in (8.68) and (8.70), so that no UV subtractions need to be
applied.

Before inserting 1−←−T |V , we recall that leading-power contributions come from
regions symbolized in Fig. 8.2(a). Thus inserting

←−
T |V between the hard and collinear

subgraphs gives a good approximation in this region. Hence, inserting a factor 1−←−T |V
gives a power suppression. In the general case, where we extend the loop-momentum inte-
grations out of the core of the region, the factor 1−←−T |V gives a suppression which we
can represent as (

highest virtuality in collinear

lowest virtuality in hard

)p

. (8.72)

Furthermore, in the rung A, closest to the virtual photon, we have virtualities of order
Q2, while in the rung B, closest to the target, we have virtualities of order M2. Within
a given rung, the leading-power contribution comes where all the lines have comparable
virtualities, since leading-power contributions with regions of very different virtualities
involve the structure of Fig. 8.2(a), with subgraphs connected by just two lines. Given
that in (8.71) we have a factor 1−←−T |V between every 2PI rung, there is a suppression
whenever there is a strong decrease of virtuality in going from one rung to its neigh-
bor to the right. Thus we find the ladder part of (8.71) has an overall suppression of
order (

M

Q

)p

, (8.73)

when it is compared to the structure function itself. The 2PI term D is power-suppressed
by itself, and thus the whole of r is power-suppressed, as appropriate for what we wish to
consider as a remainder.

This suppression of course gets degraded as one goes to higher order for the rungs,
since the lines within K can have somewhat different virtualities. The larger a graph we
have for K , the wider the range of virtualities we can have without meeting a significant
suppression.
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A potential problem arises because
←−
T removes kinematic restrictions and thereby allows

UV divergences to be induced, just as in the lowest-order approximation, (8.68). However,
the UV divergences arise from the same kind of two-particle reducible structures as the
leading regions, and the 1−←−T |V factors in r are just as effective at canceling the UV-
divergence regions as they are at canceling leading-power contributions. Thus in fact r is
finite and power suppressed. The UV divergences, with their attendant renormalization,
only need to be treated when we expand the products.

Factorized form for W − r

I now show that W − r factorizes. To present the algebra cleanly, I will first present the
proof without renormalization of the parton densities, in the UV-regulated theory.

From (8.67) and (8.71), we find

W − r = A

[
1

1−K
− 1

1− (1−←−T |V )K
(1−←−T |V )

]
B

= A
1

1− (1−←−T |V )K

[
1− (1−←−T |V )K − (1−←−T |V )(1−K)

] 1

1−K
B

= A
1

1− (1−←−T |V )K

←−
T | V 1

1−K
B. (8.74)

This proof looks like straightforward linear algebra. In fact, there is a subtlety that
←−
T is

defined to set masses to zero on its left. The quotient 1/[1− (1−←−T |V )K] is fundamentally
defined as the infinite sum

∑∞
n=0[(1−←−T |V )K]n, and the manipulations in (8.74) apply to

this definition just as they do in ordinary linear algebra.
The last factor on the last line, V [1/(1−K)]B is exactly a bare parton density, so we

see that W − r is of the form of some coefficient convoluted with a parton density. This is
a form of factorization, so we write

W =
∑

j

∫ 1+

x−

dξ

ξ
CB,j (Q/μ, ξ/x)fB,j (ξ ; μ)

+ terms with polarized parton densities+ power-suppressed

= CB ⊗ fB + polarized terms+ p.s.c. (8.75)

Here, “p.s.c.” denotes “power-suppressed correction”, and we have defined a parton density
by

fB,j (ξ ) = V
1

1−K
B, (8.76)

when the parton at V has flavor j and k+ = ξP+. For simplicity, we only indicate explic-
itly the term with unpolarized densities; the polarized terms are similar in structure. The
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coefficient function is

CB,j (Q/μ, ξ/x) = A
1

1− (1−←−T |V )K

←−
T . (8.77)

We use the “⊗” notation to indicate a convolution in ξ and a sum over parton flavor, defined
by the structure on the first line of (8.75).

We have one remaining complication, that of UV divergences. There are divergences
in the parton density factor and in the coefficient function. Of course, these divergences
cancel, since the left-hand side of (8.74) is finite, as we have already proved. As a first step,
let us apply a UV regulator, e.g., dimensional regularization. We have defined all the rung
factors as Green functions with renormalized fields. Thus the parton density fB,j (ξ ) used
in the above equations is a factor 1/Zj times the bare parton density defined in terms of
bare fields.

We now reorganize the (8.74) in terms of UV-finite quantities. From earlier work we
know that the renormalized parton density is the convolution of a renormalization factor
with the parton density fB

f = G⊗ fB. (8.78)

So we simply define the renormalized coefficient function to be

C = CB ⊗G−1, (8.79)

where the inverse in G−1 is in the sense of convolutions over ξ and matrix multiplica-
tion for parton flavor. Then, trivially CB ⊗ fB = C ⊗ f , and the factorization theorem
becomes

Wμν = Cμν ⊗ f + p.s.c.

=
∑

j

∫ 1+

x−

dξ

ξ
C

μν
j (Q/μ, ξ, x)fj (ξ ; μ)+ polarized terms+ p.s.c. (8.80)

8.10 Factorization formula for structure functions

In this section, we will convert the general structure of factorization, (8.80), into several
forms directly suitable for practical calculations, to be carried out in Ch. 9. The formulae
are also true in QCD, although their proof needs the enhancements to be given in Ch. 11.
So the treatment will be presented with reference to its QCD applications.

8.10.1 Factorization for hadronic tensor

Polarization dependence appears in the trace over spin indices between the parton density
and the hard-scattering factor. Exactly as in the parton model, Sec. 6.1, polarization can be
allowed for by introducing a helicity density matrix ρj (ξ ) for the parton initiating the hard
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scattering. Then factorization of the hadronic tensor has the form:

Wμν =
∑

j

∫ 1+

x−

dξ

ξ
Tr C

μν
j (q, ξP ; αs, μ) ρj (ξ ; μ) fj (ξ ; μ) + p.s.c.

= Cμν ⊗ ρf + p.s.c. (8.81)

With a slight change of notation, the hard-scattering coefficient, C
μν
j , has acquired helicity

indices, and is traced with the partonic helicity density matrix. It is to be thought of as
giving DIS on a parton target of flavor j and fractional longitudinal momentum ξ . There
is a sum over all parton flavors j and an integral over all kinematically accessible ξ . A
convenient notation for the integral over ξ , the sum over j and the trace with ρ is the
convolution symbol ⊗ in the last line.

As explained in Sec. 6.5, the combination of ρjfj can be written in terms of the
unpolarized densities fj and asymmetry densities �fj and δTfj for helicity and transversity,
for the case of a spin- 1

2 target. (A generalization is needed for higher spin targets like the
deuteron.)

We express C
μν
j in terms of scalar coefficient functions F̂ij by relations like those for

the regular structure functions, (2.20), except for the use of the momentum of the struck
(massless) parton instead of the momentum of the target hadron:

Tr C
μν
j ρj =

(−gμν + qμqν/q2
)

F̂1j (x/ξ,Q2)

+ (ξP̂ μ − qμξP̂ · q/q2)(ξ P̂ ν − qνξ P̂ · q/q2)

ξP̂ · q F̂2j (x/ξ,Q2)

+ iεμναβ qαSj,β

P̂ · q ĝ1j (x,Q2)+ F3 term+ extra gluon term. (8.82)

Here P̂ = (P+, 0, 0T) is a massless projection of the target momentum, so that k̂
def= ξP̂ is

the momentum of the struck parton, in the approximation that is used in the hard scattering.
An exact transcription of (2.20) would also include a ĝ2 structure function associated with
transverse quark spin. We omit it since ĝ2 is zero to all orders of perturbation theory
(Sec. 8.10.5). Therefore we need only the longitudinal polarization of the parton, and we
assign it a spin vector Sj,μ = λj k̂μ, where λj is the parton’s helicity. This is used with the
ĝ1 structure function.

In QCD, the gluon has spin 1, and when the hadronic target has spin greater than 1
2 ,

there is a possible term in the gluon’s density matrix that flips helicity by two units: see
Artru and Mekhfi (1990) and problem 7.11. This results in the “extra gluon term” in (8.82).
I have left it as a (probably academic) exercise, to sort out the details (problem 8.3).

8.10.2 Factorization for structure functions

To get factorization formulae for the structure functions, we insert (8.82) in the factorization
formula (8.81). Then we use the results from Sec. 6.5 that a parton in an unpolarized target
is itself unpolarized and that its helicity is proportional to the target helicity. These results
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were derived in a simple model theory, but they depend only on symmetry properties of the
theory, and are therefore generally true. Hence

F1 =
∑

j

∫ 1+

x−

dξ

ξ
F̂1j (Q/μ, x/ξ ; αs) fj (ξ ; μ)+ p.s.c., (8.83a)

F2 =
∑

j

∫ 1+

x−
dξ F̂2j (Q/μ, x/ξ ; αs) fj (ξ ; μ)+ p.s.c., (8.83b)

g1 =
∑

j

∫ 1+

x−

dξ

ξ
ĝ1j (Q/μ, x/ξ ; αs) �fj (ξ ; μ)+ p.s.c. (8.83c)

The second formula also applies to the longitudinal structure function FL
def= F2 − 2xF1.

Notice that:

• F1 and F2 only involve the unpolarized number densities;
• g1 only involves the helicity asymmetry density;
• in the formula for F2 the integration measure is dξ instead of dξ /ξ ;
• the coefficients are functions of x/ξ , rather than ξ and x separately;
• the transversity density δT fj does not appear;
• the structure function g2 does not have a formula. As we will see, its contribution to Wμν

is power suppressed, and therefore its leading-power approximation is zero.

The first two items depend on the parity invariance of the theory. In a parity non-invariant
theory, it would be possible, for example, for partons to be polarized even when the parent
hadron is unpolarized. We now give derivations of the other items.

8.10.3 Integration measure for F2

The changed integration measure for F2 is associated with its transformation under boosts
of the target momentum. In the hadronic tensor (2.20), it multiplies the tensor (P μ −
qμP · q/q2)(P ν − qνP · q/q2)/P · q, which is linear in P . Now the coefficient function
depends only on the momenta ξP̂ and q, but not on P̂ or ξ separately. Then in the
part associated with the F2 structure function, there appears the tensor (ξP̂ μ − qμξP̂ ·
q/q2)(ξP̂ ν − qνξ P̂ · q/q2)/ξP̂ · q, which scales linearly with ξ . To obtain the correctly
normalized structure function F2, we extract the factor ξ , which cancels the 1/ξ in the
integration measure in (8.80). (There is further slight mismatch between the tensors, by a
factor 1+ x2M2/Q2, which is irrelevant to leading power in Q.)

8.10.4 Functional dependence of partonic structure functions

Both the hadronic tensor Wμν and its hard-scattering counterpart C
μν
j are dimensionless.

Each of the partonic structure functions in (8.82) is also dimensionless, and the tensors
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multiplying them are independent of Q2. Power-counting in a renormalizable theory there-
fore shows that order-by-order in perturbation theory all these quantities behave like Q0

times logarithms of Q.
Each of the partonic structure functions in (8.82) is a Lorentz scalar, so the only kinematic

variables it depends on are the invariants constructed out of its external momenta, i.e., Q2

and ξP̂ · q = ξQ2/(2x). The structure functions are also dimensionless. Therefore their
independent arguments can be taken as Q/μ and x/ξ .

8.10.5 Transverse polarization

For the polarized structure functions, we first examine their scaling properties. In the Breit
frame, the proton is highly boosted, so we count its momentum P as of order Q. When it
has a longitudinal polarization λ, the spin vector S scales approximately as P , so that S is of
order Q also. The tensor iεμναβqαSβ/P · q associated with g1 therefore scales as the zeroth
power of Q, just like the tensors associated with F1 and F2. But the tensor multiplying g2

has the longitudinal part subtracted, in the Sβ − PβS · q/P · q factor; it is suppressed in
fact by order M2/Q2 for longitudinal polarization. Thus to leading power, for longitudinal
polarization, we have a contribution to g1 times its tensor, and this is proportional to the
longitudinal polarization λ of the target. Correspondingly, the factorization formula (8.83c)
for g1 uses the helicity parton density �f .

There remains the case of transverse spin, and associated with it the transversity distribu-
tions δTf . First we observe that the transverse components of the spin vector are invariant
under boosts in the z direction. For this case, the tensors multiplying both of g1 and g2 are
of order M/Q.

Now the only way transverse-spin dependence enters into the factorization (8.80) is
through the transversity density, and thus through a transverse polarization for quarks
entering the hard scattering and the coefficient function. But we set masses to zero in
the hard scattering, and as we now show, there is then exactly zero contribution from
transverse quark polarization. (As shown in Sec. 7.5.5, rotation invariance prohibits a gluon
distribution that is transverse-spin dependent.)

In the case of the lowest-order calculation, in Sec. 6.1.4, the reason for the zero contribu-
tion of transverse spin is quite elementary. In the parton-model hard scattering (6.19), spin
dependence arises from the factor /̂k(1− γ5λj − γ5b

i
jTγ i). The transverse-spin dependent

term, with bjT, gives a trace of an odd number of elementary Dirac matrices which is always
zero. (Recall that γ5 = iγ 0γ 1γ 2γ 3 so that it counts as four elementary Dirac matrices.)

The same property generalizes to higher order. This is particularly clear in QCD. Let us
go around the quark loop in which the struck quark is involved. There is an equal number
of propagator numerators and vertices for gluons and photons. Except for the external line
factor, each vertex and propagator numerator contains one Dirac matrix, giving a total
number that is even. (This is where the masslessness of the calculation enters.) This is
modified only on the external line factor with its extra odd number of Dirac matrices. Thus
we get zero for the transverse spin dependence, as claimed.
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The presence of subtractions in the hard scattering [see (8.77)] does not affect this
argument. The subtractions involve kinematic approximants and the insertion of spinor
projection matrices PA and PB . The spinor projections each have two elementary Dirac
matrices, so that they leave unchanged the evenness or oddness of the number of Dirac
matrices.

With couplings to a scalar field, as in a Yukawa theory, there is no Dirac matrix at
the scalar vertex. Thus we can get an even number of Dirac matrices in the trace with a
transversely polarized quark provided that we have an odd number of scalar vertices on the
quark line. But for the leading power in Q, we must keep only those interactions with a
dimensionless coupling. All such couplings (in a four-dimensional theory) involve an even
number of scalar fields, as in a φ4 coupling or an interaction between a scalar field and a
gauge field. If there is an odd number of scalar vertices on the quark loop including the
external line, then some other quark loop also has an odd number of scalar vertices. This
other loop has no transverse polarization matrix, and therefore an odd number of Dirac
matrices, and therefore its Dirac trace vanishes.

The result is that in all cases the coefficient function with the transversity distribution
is zero at the leading power of Q. Now transverse-spin dependence of the hard scattering
arises from off-diagonal terms in the helicity density matrix. So the result on g2 can be
expressed by saying that in the hard scattering there is helicity conservation, i.e., there is
no interference between a left-handed quark and a right-handed quark:

L R

= 0. (8.84)

Note that helicity is defined in only at space-time dimension 4. But our derivation used only
the evenness or oddness of the number of Dirac matrices along quark lines, so the derivation
applies without an anomaly when we use dimensional regularization in calculations.

Discussion of g2 and of transverse-spin dependence in fully inclusive DIS therefore
requires us to go beyond the leading power of Q, in fact to twist-3 operator contributions
in the jargon of the subject. This is beyond the subject matter of this book. Unlike the case
for the unpolarized and helicity parton densities, DIS is not a good place to measure the
transversity density.

The whole of the above discussion assumed the target had spin 1
2 , in which case the

target’s spin state is completely specified by the spin vector Sμ. More general cases, notably
spin 1, as for a deuteron target, can be discussed. But the results are of mostly lesser interest.

8.11 Transverse-spin dependence at leading power?

An interesting line of research over the past two decades has found useful observables
that depend on transverse spin at the leading power. In this section, we give a general
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PB

PA

qL

LR

R

Fig. 8.14. At leading power, LO Drell-Yan has a double-transverse spin asymmetry from
amplitudes such as this. Both hadrons are transversely polarized.

characterization of these observables. See, e.g., Boer (2008) for a detailed review, and see
Sec. 13.16 for examples.

The whole discussion is conditioned by chirality conservation in the massless limit and
hence in the hard scattering. Chirality conservation is the correct generalization of helicity
conservation when we include antiquarks; it means the helicity of a quark and the negative
of helicity for an antiquark. Thus the vertices of gauge bosons couple a left-handed quark
to a left-handed quark or to a right-handed antiquark, but not to a right-handed quark or a
left-handed antiquark.

There are two ways of getting dependence on transverse spin. One is to find a more
general hard scattering that has off-diagonal helicity dependence. The other is to find parton-
density-like objects with more general spin dependence than ordinary parton densities.

8.11.1 Hard scattering with transverse spin

Transverse spin gives one unit of helicity flip in a parton density, and this must be matched in
the hard scattering to get a leading-power effect. To avoid violating chirality conservation,
we need a hard scattering with (at least) another pair of external quark lines, so that we
have two compensating helicity flips (Artru and Mekhfi, 1990). Such processes are needed
to measure transversity densities.

One possibility is in hadron-hadron collisions, where the hard scattering is initiated by
two partons, one out of each hadron (to be treated in detail in Ch. 14). A classic example is
the Drell-Yan process, Sec. 5.3.7, where the lowest-order hard scattering is quark-antiquark
annihilation to a virtual photon. If both initial-state hadrons are transversely polarized, then
(Ralston and Soper, 1979) we can have a leading-power double-spin asymmetry, as shown
in Fig. 8.14.

Another similar possibility is in semi-inclusive DIS, where the cross section is differential
in a final-state hadron. In Ch. 12, we will generalize factorization to include a fragmentation
function that parameterizes the conversion of an outgoing quark to a jet containing the
detected hadron(s). Then the interference diagram Fig. 6.2, which gave zero in ordinary
DIS, gets a fragmentation function inserted into it, Fig. 8.15. The fragmentation function
needs to be off-diagonal in helicity for our purposes. It could be that the outgoing hadron
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L

L

R

R

Fig. 8.15. Interference between left-handed and right-handed initial quark in DIS with the
fragmentation providing the necessary helicity flip.

has its polarization measured; a practical example (Efremov, 1978; Artru and Mekhfi,
1990) is production of the �0, whose decay allows its polarization to be measured. In
addition, since fragmentation is non-perturbative, the chiral symmetry breaking of full
QCD allows the fragmentation function to break chirality conservation while keeping
leading-power behavior (Collins, Heppelmann, and Ladinsky, 1994), provided a suitable
final-state distribution is measured.

8.11.2 Transverse-momentum-dependent densities, etc.

Finally, some reactions require the use of transverse-momentum-dependent (TMD) parton
densities (and/or fragmentation functions). As we will see in Ch. 13, a TMD number density
can have a correlation between the azimuthal angle of a parton and transverse spin of the
target. Thus at leading power, we can have dependence on the transverse spin of a target
hadron without needing transverse-spin dependence in the hard scattering.

A considerable number of variations on this idea exist, especially when fragmentation
functions are included (Boer, 2008).

Exercises

8.1 (****) In a renormalizable theory, it is natural to define the light-front creation and
annihilation operators by Fourier transformation of the renormalized fields instead of
bare fields, since it is the renormalized fields that have finite Green functions. For a
field with wave function renormalization factor Z, the commutation relations of the
creation and annihilation operators are enhanced by a factor 1/Z, which is infinite
unless the anomalous dimension of the field is zero at the UV fixed point. This messes
up the normalizations of the basis states (7.23) by an infinite amount, in the limit that
the UV cutoff is removed.

Find a good way of specifying basis states in the renormalized theory in the limit
that the UV cutoff is removed. What is the relation between these states and the
standard basis states in the cutoff theory? [Conjectures and suggestions: 1. Some of
the techniques used in treating factorization later in this book may be useful. 2. Fourier-
transforming at fixed x+ corresponds to maximal uncertainty on k−. It may help to
perform a local average over x+. 3. Useful references include: Yamawaki (1998);
Nakanishi and Yamawaki (1977); Heinzl (2003); Sec. 4 of Heinzl and Ilderton (2007);
Nakanishi and Yabuki (1977); Steinhardt (1980).]
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8.2 (****) Find the relation between parton densities and the basis found in problem 8.1.

8.3 (***) Extension of problem 6.8 to full QCD: Generalize the work in this chapter to
deal with DIS on a polarized spin-1 target like the deuteron. What is the form of the
extra gluonic term indicated in (8.82)? What is the corresponding NLO hard-scattering
coefficient corresponding to this extra term? Notes:
• Much of the necessary work on defining structure functions has been done by

Hoodbhoy, Jaffe, and Manohar (1989). But it is good to check their results. Note
that they used the OPE rather than factorization for their QCD analysis. But they
restricted their attention to the quark operators, and did not indicate what to do with
gluon operators.

• Since the gluon has spin 1, their analysis definitely needs generalization to deal with a
gluon-induced hard scattering. You will need to work out a version of their analysis
to the hard-scattering coefficient for a gluon C

μν
g . This will result in significant

changes, since there are no gluons of helicity zero. Hoodbhoy, Jaffe, and Manohar
(1989) also normalized the polarization vector Eμ of a spin-1 particle of mass M to
E2 = −M2, which is clearly a bad idea for a massless particle.

• You should find another polarized gluon density related to linear gluon polarization
(so that its operator gives a helicity flip of 2 units); see Artru and Mekhfi (1990).

• You should match the results of this problem with your solution of problem 7.11
and the results in Artru and Mekhfi (1990).

• In the light of the above, you may find better characterizations of the structure
functions on a spin-1 target.

• I do not guarantee the phenomenological importance of the results of solving this
problem.
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