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1. Introduction

If X is a smooth complete variety of dimensionn over the complex fieldC, there
is a natural mapCHn(X)deg 0 → Alb (X) from the Chow group of 0-cycles of
degree 0 (modulo rational equivalence) to the Albanese variety ofX. It is known
that this is surjective, and has a ‘large’ kernel ifH 0(X,�i

X/C) 6= 0 for somei > 2.
A famous result of Roitman [R] asserts thatCHn(X)deg 0→ Alb (X) is always
an isomorphism on torsion subgroups. Our aim in this paper is to generalize this
theorem to reduced projective varieties with arbitrary singularities.

We begin with some background. LetX be any reduced projective variety of
dimensionn overC. LetXsing (the singular locus) denote the set of pointsx ∈ X
such that the module of Kähler differentials�1

Ox,X/C is not a free module of rankn;
thusXsing includes pointsx through whichX has a component of dimension< n.
For Y ⊂ X a closed subvariety containingXsing, Levine and Weibel [LW] have
defined the relative Chow (cohomology) group of 0-cyclesCHn(X, Y ) to be the
quotient of the free Abelian group on points ofX − Y modulo a suitable notion of
rational equivalence (given by the subgroup of cycles of the form(f )C whereC is
a ‘Cartier curve’ on(X, Y ) andf a rational function onC which is a unit at points
of C ∩ Y ). If Y has codimension> 2, the relations may also be given by sums of
cycles(f )C, whereC is any curve which does not meetY . If X is integral andY
has codimension> 2, Levine [L3] and Collino [Co] have shown that Roitman’s
theorem holds forCHn(X, Y ), if we take AlbX to be the Albanese variety of any
resolution of singularities ofX.
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214 J. BISWAS AND V. SRINIVAS

In this paper, we will takeCHn(X) to be the groupCHn(X,Xsing) as defined
in [LW] (see also [L2]).

In a recent paper [BPW], the authors show that ifX is a projective surface, then
the Albanese variety ofX, nowdefinedto be the group

J 2(X) := H 3(X,C)
F 2H 3(X,C)+ imH 3(X,Z)

,

is in fact a semi-Abelian variety (hereF 2 denotes the subspace for the Hodge
filtration of the mixed Hodge structure). They construct a natural homomorphism
CH 2(X)→→Z⊕t , whereX hast irreducible components of dimension 2; the kernel
is denoted byCH 2(X)deg 0. They then construct a homomorphismCH 2(X)deg 0→
J 2(X), using simplicial techniques and Chern classes with values in Deligne co-
homology. The main theorem of [BPW] is that this map is an isomorphism on
torsion subgroups. Their proof is technically quite complicated, and uses partic-
ular features of the two-dimensional case, like the relationship withK2, which
implies (via excision, double-relativeK-groups, etc.) a formula for the Chow group
in terms of that of its normalization, and a quotient ofSK1 groups of possibly
nonreduced curves.

This motivates our main result.

THEOREM 1.1. LetX be a reduced projective variety overC of dimensionn.

(a) Define

J n(X) := H 2n−1(X,C)
F nH 2n−1(X,C)+ imH 2n−1(X,Z)

.

ThenJ n(X) is the group of closed points of a semi-Abelian variety overC
(which we again denote byJ n(X)). The associationX 7→ J n(X) is a contrav-
ariant functor fromn-dimensional projective varieties overC to semi-Abelian
varieties overC.

(b) There is a degree mapdegX:CHn(X) → Z⊕t , whereX has t irreducible
components of dimensionn. LetCHn(X)deg 0 denote the kernel ofdegX. Then
there is a surjective Abel–Jacobi mapAJnX:CHn(X)deg 0→ J n(X). If U =
X0 − Xsing, whereX0 is anyn-dimensional component ofX, andx0 ∈ U is a
base point, then the mapx 7→ AJnX([x] − [x0]), defined on closed points ofU ,
is induced by a morphismU → J n(X).

(c) If Y ⊂ X is a reduced subscheme of dimensionm which fits into a chain of
subschemesY = Ym ⊂ Ym+1 ⊂ · · · ⊂ Yn = X, such thatYj is a reduced
Cartier divisor onYj+1 for eachj < n, then there is a commutative diagram

CHm(Y )deg 0
- CHn(X)deg 0

Jm(Y )

AJmY
?

- J n(X)

AJnX
?
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(whereCHm(Y ) → CHn(X) is induced by the obvious map on0-cycles de-
termined by the inclusionY ⊂ X). The mapJm(Y )→ J n(X) is independent
of the particular chain{Ym, Ym+1, . . .} chosen.

(d) (Lefschetz theorem) If in (c) above,Y is a general complete intersection of
very ample divisors inX, thenJm(Y )→ J n(X) is an isomorphism ifdimY =
m > 2, and is surjective onN-torsion for eachN , if m = 1 (in particular,
J 1(Y )→→J n(X) in this case).

(e) (Roitman theorem) The mapAJnX is an isomorphism on torsion subgroups.

Here part (d) is obtained as a corollary of the following version of the Lef-
schetz Hyperplane Theorem, valid for singular projective varieties, which may be
of independent interest (see Section 4.1 below). Part (a) (‘without base points’),
formulated for cohomology withC-coefficients, has been obtained earlier [GNPP];
we thank the referee for providing us this reference. The rather technical statement
made in (b) is needed in the proof of the Roitman Theorem (part (e) of the Main
Theorem). Following the referee’s suggestions, the two separate ‘Lefschetz Theor-
ems’ stated in an earlier version of our paper are now combined.

LEFSCHETZ THEOREM

(a) LetX be a reduced projective variety overC of dimensionn and letY be a
general hyperplane section. Then the the Gysin mapHi(Y,Z(j)) →
Hi+2(X,Z(j + 1)) is an isomorphism fori < dimY and surjective fori =
dimY .

(b) Let X be as above,π : X̃ → X the normalization, andA ⊂ X a closed
subvariety such that ifU = X − A and V = X̃ − π−1(A), the following
are satisfied:

(i) V is nonsingular of dimensionn,
(ii) V → U is the normalization ofU,
(iii) if W = π−1(Using), thenUsing andW are nonsingular of dimensionn− 1

andW → Using is an analytic covering space.

LetC ⊂ X be a reduced curve such that

(i′) C is a local complete intersection inX.
(ii ′) C ∩Xsing is reduced, and supported at smooth points ofXsing.
(iii ′) C ∩ (X −Xsing) has only plane curve singularities.
(iv′) C ∩ A = ∅.
LetY be a general hypersurface section ofX of sufficiently large degree, and
which containsC. Then the Gysin mapHi(Y,Z(j))→ Hi+2(X,Z(j + 1)) is
an isomorphism fori < dimY and surjective fori = dimY .
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Thus, there are 3 main results in the paper: the construction of the Abel–Jacobi
map on rational equivalence classes for arbitrary dimensional varieties, and the
proofs of the Lefschetz theorem (withZ-coefficients, and with base conditions)
and the Roitman theorem. We comment further on the proofs.

The Abel–Jacobi map is constructed on the level of 0-cycles using Deligne’s
1-motives [D] (or equivalently, extension classes for mixed Hodge structures [C]).
To show that rational equivalence is preserved, we use a moving lemma for Cartier
curves, together with functoriality properties of mixed Hodge structures with re-
spect to point blow-ups, pullbacks and Gysin maps. The discussion of the functori-
ality for the Gysin maps uses M. Saito’s theory [MS] of Mixed Hodge Modules,
to give a clean exposition, though ad hoc (messy) arguments of a more elementary
type are possible in the cases at hand.

The proof of the Roitman Theorem is motivated by Bloch’s proof of Roitman’s
theorem for smooth varieties, as outlined in his book [B]. The proof is in 2 stages.
First, one proves the result for surfaces; this is the main result of [BPW] (we have
another proof of this case, which does not use Deligne–Beilinson cohomology;
this has been omitted for reasons of space). The second step is a reduction of the
general case to that of surfaces, using the moving lemma for Cartier curves, point
blow-ups and the Lefschetz Theorem (the version with base conditions).

The Lefschetz Theorem is proved using a result of Verdier [V], that any morph-
ism of varieties is locally trivial (in the complex topology) over some Zariski open
subset of the target. We remark that this differs from the technique of [GNPP] (that
of hyperrésolutions cubiques).

We believe that our proof should generalize to yield Roitman’s theorem over
fields of positive characteristic, for torsion relatively prime to the characteristic, at
least if we assume resolution of singularities (this was one reason for giving a new
proof for the surface case as well). This is because, though we have extensively
made use of the complex topology in our presentation, we have mostly only used
either ‘topological’ or ‘motivic’ arguments while doing so. We hope to return to
this later.

In (b) of the Main Theorem above, we can understand the algebricity of the map
U → J n(X) from two points of view. The first way is to deduce it from a general,
purely algebraic description of the 1-motive associated (following Deligne [D])
to H 2n−1(Y,Z(n)), for anyn-dimensional (possibly noncomplete) varietyY over
C, and in particular, an algebraic construction of the semi-Abelian varietyJ n(X).
This will be proved elsewhere [BS]; we mention this here, however, to further
bring out the analogy with the Albanese variety of a smooth complete variety. This
approach is also related to Serre’s construction [Se] (see [Me] for an exposition)
of a generalized Albanese variety for a noncomplete smooth variety, applied to
components ofX −Xsing.

We will sketch below a second proof of algebricity which reduces it to the case
of curves, where it is known.
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2. Cartier Curves

We first recall the definition ofCHn(X) = CHn(X,Xsing) from [LW] (see also
[L2]). A Cartier curveonX is a subschemeC ⊂ X such that

(i) C is pure of dimension 1 (i.e., C has no 0-dimensional irreducible compon-
ents);

(ii) no component ofC is contained inXsing;
(iii) if x ∈ C ∩Xsing, then the ideal ofC in Ox,X is generated by a regular sequence

(of n− 1 elements).
(iv) C ∩ (X − Xsing) has no embedded points (i.e., is Cohen–Macaulay), and any

componentC ′ of C which is disjoint fromXsing appears inC with multiplicity
1 (i.e., if η ∈ C ′ is the generic point, thenOη,C is reduced).

In particular, ifn = 2, thenC is an effective Cartier divisor onX (but not con-
versely). Note that in (iii), ifx ∈ C∩Xsing, then dimOx,X = n, since no irreducible
component ofC is contained in any component ofX of dimension< n.

If C is a Cartier curve onX, with generic pointsη1, . . . , ηr , S = (C ∩ Xsing) ∪
{η1, . . . , ηr}, andOS,C is the semilocal ring onC of the pointsS, then there is a
natural map on unit groupsθC: O∗S,C → ⊕ri=1O

∗
ηi,C
. DefineR(C,X) = imageθC .

Note that this depends on the pair(C,X).

Remark. In [LW], the discussion of rational functions on page 108 seems to
suggest thatθC is injective; this will not be true, unlessOS,C is Cohen–Macaulay.
However this point does not affect the rest of the discussion there. In the Defini-
tion 1.2 of a Cartier curve, they do not include the condition (iv) above, but their
Lemma 1.3 shows that for the purposes of the Chow group, it suffices to restrict
ourselves to such curves (i.e., no additional elements inRn(X) are obtained by
allowing the more general Cartier curves which do not satisfy (iv)).

We now define the divisor(f )C of an elementf ∈ R(C,X), for any Cartier
curveC. LetCi denote the maximal Cohen–Macaulay subscheme ofC supported
on the irreducible component with generic pointηi . ThenOηi,C = Oηi,Ci , and for
anyx ∈ Ci, the mapOx,Ci → Oηi,Ci is the inclusion of a one-dimensional Cohen–
Macaulay local ring into its total quotient ring. Iffi is the component inOηi,Ci of
f ∈ R(C,X), then for any closed pointx ∈ Ci, we can writefi = ax/bx where
ax, bx ∈ Ox,Ci are nonzero divisors; now let

(fi)Ci =
∑
x∈Ci

(
`(Ox,Ci/axOx,Ci )− `(Ox,Ci/bxOx,Ci )

) · [x],
which is a 0-cycle supported onCi (sincefi is a unit for all but finitely manyx).
Finally, set

(f )C =
∑
i

(fi)Ci .
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(This definition of(f )C is easily seen to be equivalent to Definition 2 of [LW].)

DEFINITION. TheChow group of 0-cyclesCHn(X) = CHn(X,Xsing) is defined
to be the quotientCHn(X) = Zn(X)/Rn(X), whereZn(X) is the free Abelian
group on (closed) points ofX − Xsing, andRn(X) is the subgroup generated by
cycles(f )C for all Cartier curvesC in X, and allf ∈ R(C,X).

Levine ([L2], Lemma 1.4) has shown that ifX is integral, thenRn(X) is also the
group generated by cycles(f )C whereC ranges overintegral Cartier curves inX,
andf ∈ R(C,X). His proof shows that ifX is reduced, thenRn(X) is generated
by (f )C for reduced Cartier curvesC. The following is a useful technical lemma
refining Levine’s assertion. Ifδ = ∑m

i=1 niPi , let supp(δ) = {P1, . . . , Pm} ⊂ X.
We will use versions of Bertini’s theorem in the proof below, and later in the paper;
a general Bertini theorem which implies whatever we need is Satz 5.2 of [F].

LEMMA 2.1. LetX be a reduced, quasi-projective variety, and letδ ∈ Rn(X). Let
A ⊂ Xsing be a closed subset of codimension> 2 in X, andD ⊂ X be a reduced
effective divisor. LetD1 be the union of components ofD which are contained
in Xsing. Then we can find a reduced (possibly reducible) Cartier curveC, and
f ∈ R(C,X), such that(f )C = δ, and such that(i) C ∩ D is 0-dimensional(ii)
C ∩D1 is a reduced 0-dimensional scheme, and(iii) C ∩ A = ∅.

Proof. We first sketch Levine’s argument, and then indicate how it needs to be
modified; we use his notation to help the reader make the comparison with his
proof. We find it most convenient to do this as a sublemma.

SUBLEMMA 1. LetX be a reduced, quasi-projective variety,A ⊂ Xsing a closed
subset of codimension> 2 in X, andD a reduced divisor inX. LetD1 be the
union of the components ofD which are contained inXsing. Letγ = (f )Z for some
Cartier curveZ andf ∈ R(Z,X). Then there exists a reduced Cartier curveC on
X, and an elementg ∈ R(C,X), such that

(a) γ = (g)C
(b) C ∩ A = φ, andC ∩D is finite, andC ∩D1 is finite and reduced.

Proof. First note that sinceZ is a Cartier curve onX, the general complete
intersection surfaceT ⊂ X containingZ is reduced. We will remove fromT any 0-
dimensional irreducible components; this does not changeT in a neighbourhood of
Z; also, the modifiedT is still a local complete intersection inX. ClearlyT ∩Xsing

has dimension6 1, T ∩ D is a reduced divisor inT , andT ∩ A is a finite set (it
may be empty).

For any such general surfaceT containingZ, following Levine, takeL to be a
high power of a given very ample line bundle. Then chooses∞ ands0 to be general
sections of the line bundlesL andL⊗N respectively, for some large enoughN ,
such that ifC0 = (s0), C∞ = (s∞) are the respective divisors of zeroes, then the
following conditions are satisfied:
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(i) C∞ contains a given finite setS of points ofT − Xsing. The finite setS has
the following structure: first choose a general effective divisorZ′ such that
Z+Z′ is a very ample Cartier divisor onT , then chooseZ∞ a general effective
Cartier divisor linearly equivalent toZ+Z′; now takeS to be the union of the
nonregular locus off onZ with (Z∩Z′)∪ ((Z ∪ Z′) ∩ Z∞). We only need to
use below thatS is the union of the nonregular locus off (onZ), the set where
Z is not a Cartier divisor inT (i.e., whereZ is not a local complete intersection
in X), and a set ‘in general position’ in a suitable sense. (Note that at any point
x ∈ Z whereZ is not a Cartier divisor inT , we havex ∈ Z ∩Z′, sinceZ+Z′
is a Cartier divisor by choice.)

(ii) Let h be the rational function onZ∪Z′∪Z∞ which isf onZ, and 1 onZ′∪Z∞.
By construction, the nonregular locus ofh onZ ∪ Z′ ∪ Z∞ is contained inS.
Hence there exists a sufficiently largeN > 0 such thats′ = s⊗N∞ |Z∪Z′∪Z∞ ·h
is a regular section ofL⊗N |Z∪Z′∪Z∞ ; let s0 be a general regular section ofL⊗N
which lifts s′.

Let C ′0, C
′∞ be the curves obtained by removing the 0-dimensional compon-

ents ofC0, C∞. Levine shows that for suitable functionsg0 ∈ R(C ′0, X), g∞ ∈
R(C ′∞, X), we have an equation between 0-cyclesγ = (f )Z = (g0)C ′0+ (g−N∞ )C ′∞.

Levine notes thatC ′0, C
′∞ are reduced, and without common components, from

Bertini’s theorem (sinceT is a reduced surface,L is sufficiently ample onT , ands0,
s∞ are sufficiently general sections). Actually, Levine works in the situation where
X is irreducible, so thatC0, C∞ are also irreducible, and soC0 = C ′0, C∞ = C ′∞.
However, his argument gives the stated conclusions.

Sinces∞ ands0 are general (subject to the conditions mentioned above), it is
easy to see that thats∞ ands0 may be chosen so that

(1) C0 ∩ C∞ ∩Xsing= φ;
(2) (C0 ∪ C∞) ∩A = φ, and(C0 ∪ C∞) ∩ (T ∩D) is a 0-dimensional scheme
(3) (C0 ∪ C∞) ∩D1 is a reduced 0-dimensional scheme.

(recallT ∩ A is a finite subset ofTsing, while T ∩D is a reduced curve inT ). The
only subtlety here is in (3): the point is thatZ is a local complete intersection in
T at all points ofT ∩ Xsing, and in particular at points ofT ∩ D1, and alsof is a
unit at these points. Hence the finite setS of ‘base points’ considered earlier can
be taken to be disjoint fromD1. Now (3) follows from Bertini’s theorem.

Since by construction,C ′0,C ′∞ are reduced Cartier curves onX with no common
irreducible component, and sinceC ′0 ∩C ′∞ ∩Xsing= φ, their unionC = C ′0 ∪C ′∞
is also a Cartier curve, andR(C,X) = R(C ′0, X) ⊕ R(C ′∞, X). Hence ifg is the
function defined byg |C ′0= g0, g |C ′∞= g−N∞ , theng ∈R(C,X) and(g)C = γ . 2

Now givenanyδ ∈ Rn(X) as in the statement of the lemma, we claim that we
may writeδ = (f )Z for some reduced Cartier curveZ and somef ∈ R(Z,X).
Indeed, first writeδ = ∑r

i=1(fi)Zi for suitable Cartier curvesZi and elements
fi ∈ R(Zi,X). We argue by induction onr; the caser = 1 is covered by the
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sublemma. Applying the sublemma toγ1 = (f1)Z1 (andA = D = φ), we may
assume without loss of generality thatZ1 is reduced; now apply the sublemma to
γ2 = (f2)Z2 andA = (Z1 ∩ Xsing), and any suitableD ⊃ Z1. Hence we may
assume thatZ2 is also reduced,Z1 andZ2 have no common components, and
Z1 ∩ Z2 ∩ Xsing = φ. But thenZ1 ∪ Z2 is also a reduced Cartier curve onX, and
R(Z1 ∪ Z2, X) = R(Z1, X)⊕ R(Z2, X). Hence we have an expression forδ as a
sum of divisors of functions onr − 1 Cartier curves.

Now finally apply the sublemma once more, to replace the given reduced Cartier
curveZ and functionf by another such pair, where in additionZ ∩A = ∅,Z ∩D
is finite, andZ∩D1 is a reduced 0-dimensional scheme, for the original choices of
A andD. 2

3. The Semi-Abelian VarietyJn(X)

In this section, our goal is to study the properties ofJ n(X), and in particular, to
prove parts (a), (c) of the Main Theorem, and the algebricity assertion in (b). The
surjectivity assertion in (b) will be proved in the next section.

We begin with (a), which is implicit in Deligne’s paper [D]. LetX be a reduced
projective scheme of dimensionn overC, and

J n(X) := H 2n−1(X,C)
F nH 2n−1(X,C)+ imH 2n−1(X,Z)

.

We find it more convenient to work with the (equivalent) definition

J n(X) := H 2n−1(X,C(n))
F 0H 2n−1(X,C(n))+ imH 2n−1(X,Z(n))

.

By [D] (8.2.4)(ii),H 2n−1(X,Z(n))/(torsion) is a torsion-free mixedZ-Hodge struc-
ture whose nonzero Hodge numbershp,q have(p, q) in the set

H = {(−1,−1), (−1,0), (0,−1)}.
Further, the pureQ-Hodge structure Gr−1

W H
2n−1(X,Q(n)) is polarizable, since (by

[D], (8.2.5)) it is a Tate twist of a mixedQ-Hodge substructure ofH 2n−1(X̃,Q),
whereX̃ is a resolution of singularities ofX. By [D], (10.1.3), there is an equival-
ence of categories between torsion-free mixedZ-Hodge structuresM with Hodge
numbers inH such that Gr−1

W (M ⊗ Q) is polarizable, and the category of semi-
abelian varieties overC (and algebraic homomorphisms between them). Since
X 7→ H 2n−1(X,Z(n))/(torsion) is a contravariant functor on the category ofn-
dimensional projective varieties, (a) is proved. ThusJ n(X) is the group of closed
points of a semi-abelian variety overC, which we also denote byJ n(X).

Next, we construct the ‘Abel–Jacobi map’AJnX:CHn(X)deg 0→ J n(X). Let
X1, . . . , Xt be then-dimensional irreducible components ofX, and letX0 be the
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union of the irreducible components of dimension< n (note thatX0 ⊂ Xsing). If
δ ∈ Zn(X) is a 0-cycle supported onX − Xsing, then we can uniquely writeδ =∑t

i=1 δi with δi supported onXi −∪j 6=iXj . Define degXi (δ) = degδi , where ‘deg’
denotes the usual degree of a 0-cycle (i.e., deg(

∑
j nj [xj ] =

∑
j nj ). Then we

have a (surjective) degree homomorphism degX:Zn(X)→→Z⊕t , defined by[δ] 7→
(degX1

(δ), . . . ,degXt (δ)).
As is easily seen, another description of the degree homomorphism is as fol-

lows: if S = suppδ, then there is a map

H 2n
S (X,Z(n))→ H 2n(X,Z(n)) ∼= ⊕ti=0H

2n(Xi,Z(n)) ∼= Z⊕t ,
sinceH 2n(X0,Z(n)) = 0, andH 2n(Xi,Z(n)) ∼= Z for 1 6 i 6 t . Then the image
of the cohomology class ofδ in H 2n

S (X,Z(n)) (which is the free Abelian group on
the points in supp(δ)) is just degX(δ) ∈ Z⊕t .

We claim that the degree map induces a well-defined homomorphism degX:
CHn(X) → Z⊕t . For this, we must show that ifC is a Cartier curve, andf ∈
R(C,X), then degXi ((f )C) = 0 for eachi. If C1, . . . , Cr are the irreducible com-
ponents ofC, let fj be the restriction off toCj , so that(f )C =∑(fj )Cj . Notice
that at any point ofCj ∩Xi ∩Xk with k 6= i, which is necessarily a singular point
of X, we havefj ∈ image(O∗x,Cj → O∗ηj ,Cj ) (where the generic point ofCj is ηj );
hence for allj , we see that(fj )Cj has support disjoint fromXi ∩Xk for all i 6= k.

Now fix any componentXi of X. SupposeCj ⊂ Xi for j 6 s, andCj 6⊂ Xi
for j>s; then for δ = (f )C, we see from the preceeding paragraph thatδi =∑

j6s(fj )Cj . Hence deg(δi) =∑j6s deg(fj )Cj = 0.
We defineCHn(X)deg 0= ker(degX:CHn(X)→ Z⊕t ).
Let δ be a zero cycle onX of degree 0 (i.e., degXi (δ) = 0 for all irreducible

componentsXi of X), and let supp(δ) = S ⊂ X − Xsing. Consider the long exact
sequence of cohomology groups

· · · → Hi
S(X,Z(n))→ Hi(X,Z(n))

→ Hi(X − S,Z(n))→ Hi+1
S (X,Z(n))→ · · · .

The groups occurring in this sequence carry natural mixedZ-Hodge structures,
such that the maps in the sequence are morphisms of mixed Hodge structures ([D],
(6.3), and (8.3.9) applied to the inclusionX − S ↪→ X).

For anyx ∈ X − Xsing, we have an isomorphismH 2n
x (X,Z(n)) ∼= Z as mixed

Hodge structures, andH 2n−1
S (X,Z(n)) = 0. HenceH 2n

S (X,Z(n)) ∼= Z[S], the free
abelian group onS, regarded as a pure Hodge structure (of type (0,0)), and we have
an exact sequence of mixed Hodge structures

0 → H 2n−1(X,Z(n))→ H 2n−1(X − S,Z(n))
→ H 2n

S (X,Z(n))→ H 2n(X,Z(n))→ 0. (1)

In particular,δ yields a map of mixed Hodge structuresZ · [δ] → H 2n
S (X,Z(n)).

Now H 2n(X,Z(n)) ∼= ⊕ti=1H
2n(Xi,Z(n)) ∼= Z⊕t . Sinceδ has degree 0, we see
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that the compositeZ · [δ] → H 2n
S (X,Z(n)) → H 2n(X,Z(n)) = Z⊕t is trivial.

Hence from the exact sequence (1) we obtain a pull-back exact sequence of mixed
Hodge structures

0→ H 2n−1(X,Z(n))→ M → Z · [δ] → 0. (2)

Hence M/(torsion) is a mixed Z-Hodge structure with Hodge numbers
from the set{(−1,−1), (−1,0), (0,−1), (0,0)}, such that Gr−1(M ⊗ Q) =
Gr−1(H 2n−1(X,Q(n))) is polarizable. By [D], (10.1.3), we see thatM/(torsion)
determines a 1-motive overC, yielding a homomorphism[M]∗:Z → J n(X). We
defineAJnX(δ) = [M]∗(1); this is often called theextension classof the mixed
Hodge structureM in (2); see [C], for example.

One can give a more concrete description ofAJnX(δ) as follows: considering the
Hodge numbers involved, we see that

H 2n−1(X,C(n))
F 0H 2n−1(X,C(n))

∼= M ⊗ C
F 0M ⊗ C;

if α:Z→ M is a splitting of the exact sequence (2), then

imα(1) ∈ M ⊗ C
F 0M ⊗ C

∼= H 2n−1(X,C(n))
F 0H 2n1−(X,C(n))

depends on the choice of the splittingα, but the image ofα(1) in the quotient

J n(X) = H 2n−1(X,C(n))
F 0H 2n−1(X,C(n))+ imH 2n−1(X,Z(n))

is independent of the splittingα. One checks easily (see [D], diagram on page 56)
thatAJnX(δ) = im (α(1)) ∈ J n(X). This description ofAJn(X) amounts to the
‘classical’ definition of the Abel–Jacobi map via integrals.

It is easy to see that the above construction yields a homomorphism
AJnX:Zn(X)deg 0→ J n(X) (this is obvious from the second description ofAJnX,
for example). We claim thatAJnX(R

n(X)) = 0, so that we have a well-defined
homomorphismAJnX:CHn(X)deg 0→ J n(X). To see this, we first show that ifC
is a reduced Cartier curve inX, then there is a commutative diagram

Z1(C)deg 0
AJ 1

C- J 1(C)

Zn(X)deg 0

i

?
AJnX- J n(X)

?
j

This will involve the construction of a certainGysin map. LetX be a (reduced)
variety,Y ⊂ X an effective Cartier divisor, andZ ⊂ Y a subvariety. Then we will
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construct Gysin mapsHi
Z(Y,Z(r))→ Hi+2

Z (X,Z(r + 1)) for any i > 0, and any
integerr, which will be morphisms of mixed Hodge structures (the mixed Hodge
structures exist as a result of [D], (8.3.9)).

SinceY is an effective Cartier divisor onX, it has a cohomology class[Y ] ∈
H 2
Y (X,Z(1)) (one way to define this is to notice thatY has a class inH 1

Y (X,O
∗
X),

and to use the boundary mapH 1
Y (X,O

∗
X) → H 2

Y (X,Z(1)) in the exponential
sequence). Define the Gysin map above to be the cup product with the class of
Y ,

Hi
Z(Y,Z(r))

∪[Y ]−→ Hi+2
Z (X,Z(r + 1)).

This cup product map may be defined by replacingY by an open tubular neigh-
bourhoodU in X, which has a retractionρ:U → Y , such that the pair(Y, Z) is a
strong deformation retract of(U, ρ−1(Z)) (such a tubular neighbourhood exists
sinceX has a triangulation withY as a subcomplex, for example); this yields
an isomorphismHi

Z(Y,Z(r)) ∼= Hi
ρ−1(Z)

(U,Z(r)). We then use the excision iso-
morphismsH ∗Z(X,Z(n)) ∼= H ∗Z(U,Z(n)). Thus the cup product takes values in
Hi+2
Y∩ρ−1(Z)

(U,Z(r + 1)) = Hi+2
Z (X,Z(r + 1)).

LEMMA 3.1. Under the above conditions, the Gysin map

Hi
Z(Y,Z(r))

∪[Y ]−→ Hi+2
Z (X,Z(r + 1)).

is a morphism of mixed Hodge structures. Equivalently,

Hi
Z(Y,Q(r))

∪[Y ]−→ Hi+2
Z (X,Q(r + 1))

is a morphism ofQ-mixed Hodge structures.
Proof. This can be quickly deduced as a formal consequence of M. Saito’s

theory of Mixed Hodge Modules [MS], by giving a sheaf-theoretic construction
of the cup-product. We outline the argument. We make use of some (more or less
standard) notation. For anyC-schemeT , let πT : T → SpecC be the structure
morphism, and letQT = (πT )∗Q for anyC-schemeT ; we writeRf∗, Rf! for the
total derived images off∗, f! (and their liftings to Mixed Hodge Modules), andRf !
for the right adjoint toRf!. We usef ∗ for the left adjoint toRf∗, sincef ∗ is exact.
We useD(MHM(T )) to denote the derived category of Mixed Hodge Modules
onT in the sense of [MS].

Now let i1:Y → X, i2:Z→ Y be the inclusions, and leti = i1 ◦ i2:Z→ X be
the composite. The (rational) cohomology class ofY in H 2

Y (X,Q(1)) corresponds
to a morphism of mixed Hodge structuresQ → H 2

Y (X,Q(1)). The Gysin map in
the lemma is obtained from the cup-product pairings of Mixed Hodge structures
(actually, from the special casej = 2, s = 1)

Hi
Z(Y,Q(r))⊗Hj

Y (X,Q(s))→ H
i+j
Z (X,Q(r + s)).
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These in turn (sinceRij∗ = Rij ! for j = 1,2) result from a pairing in
D(MHM(X))

Ri!Ri!2i
∗
1QX

L⊗Ri1!Ri!1QX → Ri!Ri!QX,

which we now construct.
There is a natural isomorphism (projection formula)

Ri!Ri!2i
∗
1QX

L⊗Ri1!Ri!1QX ∼= Ri!
(
Ri!2i

∗
1QX

L⊗i∗Ri1!Ri!1QX
)
;

this isomorphism is valid on applying Saito’s functor Rat, since it holds in the de-
rived category of sheaves of Abelian groups (see [KS], Prop. 2.6.6), and hence also
holds inD(MHM(X)), because Rat is faithful. Hence by adjunction, it suffices to
construct a pairing inD(MHM(Z))

Ri!2i
∗
1QX

L⊗i∗Ri1!Ri!1QX → Ri!QX.

Now i∗Ri1! = i∗2i
∗
1Ri1! = i∗2i

∗
1Ri1∗, and so, using the natural transformation

i∗1Ri1∗ → (identity)Y , there is a canonical morphism

Ri!2i
∗
1QX

L⊗i∗Ri1!Ri!1QX → Ri!2i
∗
1QX

L⊗i∗2Ri!1QX,
and we are reduced to constructing a pairing

Ri!2i
∗
1QX

L⊗i∗2Ri!1QX → Ri!QX = Ri!2Ri!1QX.
By adjunction, this is equivalent to a pairing inD(MHM(Y ))

Ri2!
(
Ri!2i

∗
1QX

L⊗i∗2Ri!1QX
)
→ Ri!1QX.

Again we have a projection formula

Ri2!
(
Ri!2i

∗
1QX

L⊗i∗2Ri!1QX
)
∼= Ri2!Ri!2i∗1QX

L⊗Ri!1QX,

and, using the natural tranformationRi2!Ri!2→ (identity)Y , a canonical morphism

Ri2!Ri!2i
∗
1QX

L⊗Ri!1QX → i∗1QX
L⊗Ri!1QX.

So we are further reduced to constructing a pairing inD(MHM(Y ))

i∗1QX
L⊗Ri!1QX → Ri!1QX.
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Sincei∗1QX = QY , there is in fact a canonical isomorphism

i∗1QX
L⊗Ri!1QX ∼= Ri!1QX.

This gives the desired pairing. 2
In particular, takingZ = Y yields a mapHi(Y,Z(r)) → Hi+2

Y (X,Z(r + 1)).
Composing using the map (‘forget the supports’)Hi+2

Y (X,Z(r + 1)) →
Hi+2(X,Z(r+1)), we obtain a morphism of mixed Hodge structuresHi(Y,Z(r))→
Hi+2(X,Z(r + 1)) which we also call a Gysin map.

LEMMA 3.2. LetX be a reduced projective variety of dimensionn overC, and
let Y ⊂ X be anm-dimensional reduced subscheme, which fits into a chainY =
Ym ⊂ Ym+1 ⊂ · · · ⊂ Yn = X such that eachYj is a reduced Cartier divisor on
Yj+1. ThenY ∩Xsing⊂ Ysing, and there is a commutative diagram

Zm(Y )deg 0
AJmY- Jm(Y )

Zn(X)deg 0

i

?
AJnX- J n(X),

?
j

wherei is the map on 0-cycles induced by the inclusionY −Ysing⊂ X−Xsing, and
j is a homomorphism of semi-Abelian varieties induced by a morphism of mixed
Hodge structuresH 2m−1(Y,Z(m))→ H 2n−1(X,Z(n)).

Proof. It clearly suffices to prove the lemma whenY is a reduced Cartier divisor
in X. Using the Gysin mapH 2n−3(Y,Z(n − 1)) → H 2n−1(X,Z(n)), we obtain a
homomorphism of semi-Abelian varietiesJ n−1(Y )→ J n(X).

Let δ ∈ Zn−1(Y )deg 0. It suffices to show that the 2 mapsZn−1(Y )deg 0→ J n(X),
occurring in the diagram above, have the same value onδ.

Let S = supp(δ). There is a commutative diagram with exact rows

H 2n−3(Y,Z) - H 2n−3(Y − S,Z) - H 2n−2
S (Y,Z)

H 2n−1(X,Z)
?

- H 2n−1(X − S,Z)
?

- H 2n
S (X,Z),
?

where the vertical maps are Gysin maps. The commutativity of the diagram follows
from the functoriality of the cup product, and the compatibility of cup products
with the boundary map in the exact sequences of pairs and triples (see, for example,
Spanier [S], Ch. 5, Sect. 6, No. 12). This implies that, ifMY , MX are the mixed
Hodge structures associated toδ which are used to defineAJn−1

Y (δ) andAJnX(δ)
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respectively, then we have a commutative diagram of mixed Hodge structures with
exact rows

0 - H 2n−3(Y,Z(n− 1)) - MY
- Z[δ] - 0

0 - H 2n−1(X,Z(n))

Gysin
?

- MX

?
- Z[δ]

wwwww
- 0.

Hence we have a morphism of 1-motivesMY → MX, i.e., a commutative diagram

Z (MY )∗- J n−1(Y )

Z

wwwwww
(MX)∗- J n(X)

?

This implies that the two mapsAJnX ◦ i and j ◦ AJn−1
Y have the same value

on δ. 2
Remark. In the above lemma, the mapJm(Y )→ J n(X) is clearly unique, once

we know thatAJmY :Zm(Y )deg 0→ Jm(Y ) is surjective. Thus the mapJm(Y ) →
J n(X) will not depend on the chain{Ym, Ym+1, . . .}. We prove the surjectivity of
AJ in the next section, as a consequence of Lemma 3.7.

We also need another functoriality property ofAJ .

LEMMA 3.3. Let f :X → Y be a morphism betweenn-dimensional varieties,
and δ ∈ Zn(Y ) a 0-cycle of degree 0 onY such thatf ∗(δ) ∈ Zn(X) (heref ∗(δ)
is the inverse image ofδ as a cycle). ThendegX f

∗(δ) = 0. If f ∗: J n(Y ) →
J n(X) is the morphism induced byf ∗:H 2n−1(Y,Z(n)) → H 2n−1(X,Z(n)), then
AJnX(f

∗(δ)) = f ∗AJnY (δ).
Proof. If S = supp(δ), then we have a diagram of mixed Hodge structures with

exact rows

0 - H2n−1(Y,Z(n)) - H2n−1(Y − S,Z(n)) - H2n
S (Y,Z(n)) - H2n(Y,Z(n))

0 - H2n−1(X,Z(n))

f ∗

?
- H2n−1(X − f−1(S),Z(n))

f ∗

?
- H2n

f−1(S)
(X,Z(n))
?
f ∗

- H2n(X,Z(n))
?
f ∗

This immediately implies the lemma. 2
LEMMA 3.4. LetX be projective of dimensionn, and letf :Y → X be the blow
up of a smooth pointx ∈ X.

(i) The cycle-theoretic direct image mapf∗:Zn(Y ) → Zn(X) induces an iso-
morphismf∗:CHn(Y )→ CHn(X).
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(ii) There is a commutative diagram

Zn(Y )deg 0
AJnY- J n(Y )

Zn(X)deg 0

f∗
?

AJnX- J n(X)

∼=
6
f ∗

wheref∗ is induced by the cycle-theoretic direct image, and is surjective, and
f ∗ is an isomorphism.

Proof. That f ∗: J n(X) → J n(Y ) is an isomorphism follows from the cor-
responding isomorphism on integral cohomologyH 2n−1(X,Z) → H 2n−1(Y,Z),
which in turn follows from the formula for the cohomology of a blow up of a
smooth point. The cycle theoretic direct image, defined on generators byf∗[P ] =
[f (P )] for any pointP ∈ Y −Ysing, is clearly a surjective homomorphism. Sincef
is the blow up of a smooth point,f induces a one-to-one correspondence between
the sets ofn-dimensional components ofX andY , so that we may view degX and
degY as homomorphism taking values in the same Abelian groupZ⊕t . With this
convention, we verify at once that degX ◦f∗ = degY . Hence there is an induced
surjectionf∗:Zn(Y )deg 0→ Zn(X)deg 0.

If C is any Cartier curve onX, its strict transformC ′ is a Cartier curve onY ,
such thatf∗:R(C ′)→ R(C) is an isomorphism. Hence there is a well-defined, sur-
jective homomorphismf∗:CHn(Y )→ CHn(X), and ker(CHn(Y )→ CHn(X))

is generated by 0-cycles (necessarily of degree 0, since the degree maps forZn(X)

andZn(Y ) are compatible) which are supported on the exceptional divisor off .
But any 0-cycle of degree 0 supported on the exceptional divisor (∼= Pn−1) is clearly
in Rn(Y ). Hencef∗:CHn(Y )→ CHn(X) is an isomorphism.

So it remains to prove the commutativity of the square in (ii). For this, it suffices
to prove that ifP,Q ∈ Y are smooth points, thenf ∗ ◦ AJnX([f (P )] − [f (Q)]) =
AJnY ([P ] − [Q]). If f (P ) = f (Q), then we claim both sides are 0. For the right
side, this is because any two points in the exceptional divisor lie on a lineL ∼= P1

contained inY −Ysing; now apply Lemma 3.2 to the inclusionL ↪→ Y , and use the
fact thatJ 1(L) = 0.

Hence we may assumef (P ) 6= f (Q). We have an isomorphism of mixed
Hodge structures

H 2n−1(X − {f (P ), f (Q)},Z) ∼= H 2n−1(Y − f −1({f (P ), f (Q)}),Z),
and a morphism of mixed Hodge structures

ψ :H 2n−1(Y − {P,Q},Z)→ H 2n−1(Y − f −1({f (P ), f (Q)}),Z).
So we will be done if we prove thatψ is an isomorphism. This is obvious if
neither off (P ), f (Q) is the pointx blown up. If f (P ) = x, on the other hand
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(as we may assume), andE is the exceptional divisor off , then the natural map
η:H 2n

{P }(Y,Z)→ H 2n
E (Y,Z) is an isomorphism, since it fits into an exact sequence

H 2n−1
E−{P }(Y − {P },Z)→ H 2n

{P }(Y,Z)→ H 2n
E (Y,Z)→ H 2n

E−{P }(Y − {P },Z),

where the extreme terms are 0 (Thom isomorphism, andE ∼= Pn−1). Sinceη is an
isomorphism, it follows easily thatψ is one as well, by an easy diagram chase.2
LEMMA 3.5. AJnX:Zn(X)deg 0→ J n(X) factors throughCHn(X)deg 0.

Proof. We first consider the casen = 1. Now we must show that iff ∈
R(X,X), andδ = (f )X, thenAJ 1

X(δ) = 0. From the definition ofR(X,X), we
may regardf as a morphismf :X → P1, such thatf ∗([0] − [∞]) = (f )X as
cycles. SinceJ 1(P1) = 0, the preceeding lemma finishes the proof.

Now we consider the general case. By Lemma 2.1, we are reduced to showing
that if C ⊂ X is a reduced Cartier curve,f ∈ R(C,X), and δ = (f )C, then
AJnX(δ) = 0.

From Lemma 3.2, there is a commutative diagram

Z1(C)deg 0
AJ 1

C- J 1(C)

Zn(X)deg 0

?
AJnX- J n(X)

?

If R(C,X) = R(C,C), we would be done, by the casen = 1 already considered.
However, ifC has singular points which are smooth points ofX, then in general
R(C,C)⊆/ R(C,X). We then proceed as follows.

Let C̃ → C be the partial normalization ofC, such that

(i) π : C̃ → C is an isomorphism over a neighbourhood ofC ∩Xsing, and
(ii) π−1(C −Xsing) is smooth.

These conditions uniquely definẽC. SinceC̃ → C is an isomorphism over the
smooth locus ofC, we may regardZ1(C) as a subgroup ofZ1(C̃). Since smooth
points of C̃ map to smooth points ofX, there is a natural mapπ∗:Z1(C̃) →
Zn(X), yielding Z1(C̃)deg 0 → Zn(X)deg 0, such thatZ1(C) → Zn(X) factors
throughZ1(C̃). From the definitions (see Sect. 1), we verify easily thatR(C̃, C̃) =
R(C,X) (where we have used thatC, C̃ have the same generic points), and for any
g ∈ R(C,X), we have(g)C = π∗((g)C̃). In particular, takingg = f , we have that
δ = π∗((f )C̃), where by the casen = 1, we know thatAJ 1

C̃
((f )C̃) = 0 ∈ J 1(C̃).

Let S ⊂ C be the finite subset wherẽC → C is not an isomorphism. By the
embedded resolution of singularities for curves, we can find a projective morphism
h: X̃→ X, which is a composition of blow-ups at smooth points lying over points
of S, such that the strict transform ofC in X̃ is C̃ (that is,h−1(C − S) = C̃). Now
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for the givenf ∈ R(C̃, C̃) = R(C̃, X̃), if we set δ̃ = (f )C̃ , then we have that
(i) h∗(̃δ) = δ, and (ii)AJ 1

C̃
(̃δ) = 0 ∈ J 1(C̃). HenceAJn

X̃
(̃δ) = 0 ∈ J n(X̃), by

Lemma 3.2. By Lemma 3.4, we deduce that

AJnX(δ) = AJnX(h∗(̃δ)) = 0 ∈ J n(X). 2
COROLLARY 3.6. With the hypotheses of Lemma3.4, there is a commutative
diagram

CHn(Y )
AJnY- J n(Y )

CHn(X)

f∗
?
∼=

AJnX- J n(X)

∼=
6
f ∗

whose vertical arrows are isomorphisms.

We sum up our progress at this stage: we have constructedAJnX:CHn(X)deg 0→
J n(X), and proved its functoriality for the Gysin maps associated to inclusions of
suitable reduced subvarietiesY ⊂ X. This proves (c) of the Main Theorem (modulo
the surjectivity ofAJmY , as remarked above after Lemma 3.2). We have also proved
the invariance of the Chow group andJ n under blow ups of smooth points.

We now further analyze the mapAJ 1
C for a curveC.

LEMMA 3.7. Let C be a reduced curve. ThenCH 1(C) ∼= PicC. Further,
AJ 1

C :CH 1(C)deg 0 → J 1(C) is surjective, and is an isomorphism on torsion
subgroups. IfC is seminormal, thenAJ 1

C is an isomorphism.
Proof.It is easy to see from the definitions thatCH 1(C) is naturally isomorphic

to the group of linear equivalence classes of Cartier divisors onC, which (as is
well known) is naturally isomorphic to PicC. Under the isomorphismCH 1(C)→
PicC, the class of a pointx ∈ C−Csing is associated to the invertible sheafOC(x).

If f : C̃ → C is the semi-normalization, thenf is bijective on points, and on
the singular loci, sof ∗:H 1(C,Z(1)) → H 1(C̃,Z(1)) andf ∗: J 1(C) → J 1(C̃),
as well asf ∗:Z1(C)→ Z1(C̃), are isomorphisms. On the other hand,CH 1(C) ∼=
PicC, CH 1(C̃) ∼= PicC̃, and f ∗:Z1(C) → Z1(C̃) inducesf ∗:CH 1(C) →
CH 1(C̃), which corresponds to the mapf ∗: PicC → PicC̃ obtained by pulling
back line bundles.

We claim, from the formulasH 1(C,O∗C) = PicC andH 1(C̃,O ∗̃
C
) = PicC̃,

that f ∗: PicC → PicC̃ is surjective, and is an isomorphism on torsion. To see
this, consider the exact sheaf sequence 0→ O∗C → O ∗̃

C
→ F → 0, whereF is

a finite direct sum of skyscraper sheaves whose stalks are of the formR̃∗/R∗ for
a one-dimensional local ringR and its semi-normalizatioñR (which is also one-
dimensional local with the same residue field, so thatR̃∗/R∗ ∼= R̃/R is aC-vector
space via the logarithm map). The exact cohomology sequence of this sequence
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of sheaves yields an exact sequence 0→ H 0(C,F ) → PicC → PicC̃ → 0
sinceH 0(C,O∗C) = H 0(C̃,O∗

C̃
) = (C∗)⊕r wherer is the number of connected

components ofC.
Clearly, by (an easy case of) Lemma 3.3, the mapAJ 1

C :CH 1(C)deg 0 →
J 1(C) = J 1(C̃) factors through the surjectionCH 1(C)deg 0→→CH 1(C̃)deg 0.

So we are reduced to proving that for seminormalC, the mapAJ 1
C is an iso-

morphism. But this is just the content of [D] (10.3.8), in the light of (10.1.3).2

We end this section with a proof of the algebricity of the mapU → J n(X), x 7→
AJnX([x] − [x0]) (wherex0 ∈ U is a base point). As remarked in the introduction,
the ‘correct’ approach (in our opinion) is to deduce it from a general algebraic
construction of the 1-motive associated toH 2n−1(Y,Z(n)), for anyn-dimensional
complex varietyY . This will be done in more detail in [BS].

We now sketch another proof thatU → J n(X) is a morphism, using the fact
that whenX is a seminormal curve, this is known to be a morphism, since in
that case, it is the natural map from the smooth points of a singular curve (with
appropriate base points) to its generalized Jacobian variety (by Lemma 3.7). This
implies (by Lemma 3.7 again) that when dimX = 1, the mapU → J 1(X) is a
morphism. Hence in general, the mapU → J n(X), which is clearly holomorphic,
is an algebraic morphism when restricted to any curve inU . Since (as seen above),
the compositeU → J n(X) → J n(X̃) is the (restriction toU of the) Albanese
mapping ofX̃, it is an algebraic morphism; hence we must show that any holo-
morphic section of the algebraic principal torus-bundlef ∗J n(X) |U→ U , which
restricts to an algebraic section on any curve, is in fact an algebraic section.

The algebraic torus bundlef ∗J n(X) |U→ U is Zariski locally trivial, since
J n(X) → J n(X̃) is. We then reduce to showing that ifV is a nonsingular affine
variety (an open subset ofU in our case), andh:V → C is a holomorphic function
which restricts to an algebraic (regular) function on every curve inV , thenh is a
regular function onV .

By Noether normalization and the standard argument with elementary symmet-
ric functions, we are further reduced to proving the same assertion for the case
V = Cn. Now the holomorphic functionh has a globally convergent power series
expansion; since for almost all substitutions of values ofn−1 variables,h becomes
a polynomial in the last variable, the Baire category theorem implies easily thath

is a polynomial. (R. R. Simha has pointed out to us that this argument goes back to
work of E. E. Levi (see [Si], (1.1))).

4. Lefschetz Theorem

In this section we prove a Lefschetz Theorem, which implies part (d) of our
main theorem,i.e., if Y is a general complete intersection of very ample divisors
inX, thenJm(Y )→ J n(X) is an isomorphism if dimY = m > 2, and is surjective
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on N-torsion for eachN , if m = 1 (in particular, J 1(Y )→→J n(X) in this
case).

Note that in view of Lemma 3.7, this also implies the surjectivity statement
in (b) of the Main Theorem; the surjectivity in turn implies that in Lemma 3.2,
the mapj : Jm(Y ) → J n(X) is independent of the chain{Y = Ym, Ym+1, . . .} of
reduced subvarieties ofX.

It is enough by induction to prove the above statement forY a general hyper-
plane section ofX. Recall (proof of Lemma 3.2) that the mapJ n−1(Y )→ J n(X)

is induced by the Gysin mapH 2n−3(Y,Z(n− 1)) → H 2n−1(X,Z(n)). This last
map is a composite of the maps

H 2n−3(Y,Z(n− 1))→ H 2n−1
Y (X,Z(n))→ H 2n−1(X,Z(n)),

where the first map is obtained by cupping with the class ofY in H 2
Y (X,Z(1)).

The second map is the usual map from cohomology with supports to cohomology
without supports.

More generally, we have the following variant of the Lefschetz Hyperplane
Theorem, valid for projective varieties with arbitrary singularities.

THEOREM 4.1.

(a) Let X be a reduced projective variety overC of dimensionn and let Y
be a general hyperplane section. Then the the Gysin mapHi(Y,Z(j)) →
Hi+2(X,Z(j + 1)) is an isomorphism fori<dimY and surjective fori =
dimY .

(b) Let X be as above,π : X̃ → X the normalization, andA ⊂ X a closed
subvariety such that ifU = X − A and V = X̃ − π−1(A), the following
are satisfied:

(i) V is nonsingular of dimensionn
(ii) V → U is the normalisation ofU
(iii) if W = π−1(Using), thenUsing andW are nonsingular of dimensionn− 1

andW → Using is an analytic covering space.

LetC ⊂ X be a reduced curve such that

(i′) C is a local complete intersection inX
(ii ′) C ∩Xsing is reduced, and supported at smooth points ofXsing

(iii ′) C ∩ (X −Xsing) has only plane curve singularities
(iv′) C ∩ A = ∅.
LetY be a general hypersurface section ofX of sufficiently large degree, and
which containsC. Then the Gysin mapHi(Y,Z(j))→ Hi+2(X,Z(j + 1)) is
an isomorphism fori < dimY and surjective fori = dimY .

Proof. We first prove (a), and then indicate how the proof is to be modified in
order to obtain (b).
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Let P be the variety of all hyperplanes in the ambient projective space. Let

Y = {(x, v) ∈ X × P | x ∈ Yv} ⊆ X × P

be the incidence locus. HereYv denotes the hyperplane section ofX corresponding
to the pointv ∈ P. We have a diagram,

Y ⊂ - X × P
QQQQQπ s +��

��
�

P

By Corollary (5.1) of Verdier[V],π is locally trivial (for the complex topology)
over a Zariski open, dense setU ⊂ P. Choose any pointv ∈ U and letY = Yv
be the corresponding hyperplane section. Letx ∈ Yv be any point. Choose a line
P1 ⊂ P such thatv ∈ P1 but x 6∈ Yw for somew ∈ P1. Then this pencil of
hyperplanes does not havex as a base point andYP1 := π−1(P1) → P1 is the
blow up ofX along the base locus of this pencil. Sincev ∈ U , the local triviality
of π implies that there exists a fundamental system of neighbourhoodsV of x (on
the blow-up ofX along the base locus of the above pencil), such that there are
homeomorphisms of pairs(V , V ∩ Yv) ∼= (Yv ∩ V ) × (D2,0) whereD2 is the
disc (i.e.,D2 ∼= {z ∈ C | |z| 6 1}), and 0 ∈ D2 is the origin. Further, the
homeomorphisms are compatible with restriction (ifW ⊂ V are neighbourhoods
in the fundamental system, the homeomorphism forV restricts to that forW ).

Sincex is not a base point of the linear systemYP1 → P1, it follows that there
exists a fundamental system of neighbourhoods ofx in X itself such that there are
homeomorphisms(V , V ∩ Yv) ∼= (V ∩ Yv)× (D2,0), compatible with restriction.

We deduce that any pointx on a general hyperplane sectionY = Yv of X has
a fundamental system of neighbourhoodsV of x in X, such that(V , V ∩ Yv) ∼=
(Yv ∩ V )× (D2,0).

Let H r
Y (X)(j + 1) be the sheaf onX associated to the presheaf

V 7→ Hr
V∩Y (V ,Z(j + 1)),

whereV ⊆ X is open. We claim that

(i) H r
Y (X)(n) = 0 for r 6= 2, and

(ii) H2
Y (X)(j + 1) ∼= Z(j)Y .

This is because, using the Kunneth decomposition for any givenx and for any
V 3 x as above,

Hr
Y∩V (V ,Z(j + 1)) ∼= Hr

Y∩V ((Y ∩ V )×D2,Z(j + 1))

∼= Hr−2(Y ∩ V,Z(j))⊗H 2(D2, S1,Z(1)) ∼= Hr−2(Y ∩ V,Z(j)).
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Since any algebraic variety can be triangulated, so that any point on it has a basis
of neighbourhoods consisting of contractible sets, we see thatH r

Y (X)(j + 1) is
zero forr 6= 2. There exists a map of sheavesZ(j)Y → H2

Y (X)(j + 1) using the
cohomology class ofY inH 2

Y (X,Z(1)). The above analysis gives that this map is an
isomorphism on stalks, i.e., we have a sheaf isomorphismH2

Y (X)(j+1) ∼= Z(j)Y .
This proves (i) and (ii) as claimed.

We have a spectral sequence

E
p,q

2 = Hp(Y,Hq

Y (X)(j + 1))⇒ H
p+q
Y (X,Z(j + 1)).

SinceHq

Y (X)(j + 1) = 0 for q 6= 2 andH2
Y (X)(j + 1) ∼= Z(j)Y , we easily

deduce thatEi,22 = Hi(Y,Z(j)) → Hi+2
Y (X,Z(j + 1)) is an isomorphism. This

isomorphism is just the cup product with the class ofY .
The Gysin mapHi(Y,Z(j))→ Hi+2(X,Z(j + 1)) is the composite

Hi(Y,Z(j))→ Hi+2
Y (X,Z(j + 1))

α→ Hi+2(X,Z(j + 1)),

whereα forms part of the long exact sequence of cohomology groups
. . .→ Hi+1(X−Y,Z(j+1))→ Hi+2

Y (X,Z(j+1))
α→ Hi+2(X,Z(j+1))→

Hi+2(X − Y,Z(j + 1))→ . . .

SinceX − Y is affine, the first and the last terms vanish by the Weak Lefschetz
theorem wheni < dimY and the last term vanishes by the same result even ifi =
dimY . Hence the Gysin map is an isomorphism fori < dimY and is surjective for
i = dimY .

Proof of (b). LetP be the projective space parametrizing all divisors (hypersur-
face sections ofX) in the linear system| Y |, which containC. We have, as before,
the following diagram

Y ⊂ - X × P
QQQQQp s +��

��
�

P

SinceY is general, we may assume it corresponds to a point ofP lying in the
Zariski open set given by Corollary 5.1 of [V], applied to the morphismp: Y→ P.

Consider as before the spectral sequence

E
p,q

2 = Hp(Y,H
q

Y (X)(n))⇒ H
p+q
Y (X,Z(n)).

As in the proof of Theorem 4.1(a), this reduces us to proving that for anyx ∈ Y ,
the stalkH i

Y (Z(n))x = 0 for i 6= 2, and thatH2
Y (n)x

∼= Z(n − 1) is generated by
the class ofY .

Since we only consider divisors inX containingC, our previous analysis about
the stalks of the sheavesH i

Y (X)(n) is valid except at points ofC. But at a point
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of x ∈ C − Xsing, C is either nonsingular or has a plane curve singularity; hence
Bertini’s theorem implies thatY is a smooth Cartier divisor onX nearx (see [B],
Chap. 5), so that the stalks again have the form claimed.

To finish the proof, we need to consider stalks at a pointx ∈ C ∩ Xsing= C ∩
Using. It suffices to show that there exists a fundamental system of neighbourhoods
N of x in U such that(N,N ∩ Y ) ∼= (N ∩ Y ) × (D2,0). SinceY is general, and
Using is nonsingular of dimensionn − 1, we may assume (Bertini’s theorem) that
Y ∩ Using is nonsingular of dimensionn− 2.

Let Ỹ = π−1(Y ). SinceW → Using is an analytic covering space,̃Y ∩ W
is a smooth Cartier divisor onW , in a neighbourhood ofπ−1(x). HenceỸ is
smooth and meetsW transversally in a neighbourhood ofπ−1(x). Let π−1(x) =
{x1, . . . , xk}.

Choose local analytic coordinate functionsz1, . . . , zn−1 ∈ OUsing,x so thatz̃i =
zi ◦ π give local analytic coordinates onW at eachxi , and Ỹ ∩ W is defined on
W by z̃1 = 0. There exists an analytic functioñzn defined in a neighbourhood of
π−1(x) in V such that̃zn = 0 definesW in V nearπ−1(x), and fori = 1, . . . , n−1
the functions̃zi extend (holomorphically) to a neighbourhood ofπ−1(x) in V such
that Ỹ is now defined locally inV by z̃1 = 0. DefineN = π({|z̃i| < ε|1 6 i 6
n}) for sufficiently smallε. Note thatπ−1(N) is the disjoint union ofε polydisc
neighbourhoods aroundxi andN is obtained by identifying these polydiscs along
z̃n = 0. It is now clear that the pair(N,N ∩ Y ) is homeomorphic to(N ∩ Y ) ×
(D2,0). Shrinkingε gives a fundamental system of such neighbourhoodsN . 2
It follows from the above discussion that, forY a general complete intersection
of very ample divisors inX with dimY = m > 2, we haveH 2m−1(Y,Z(m)) ∼=
H 2n−1(X,Z(n)), which implies a corresponding isomorphism on tensoring withC.
Since by [D], and Lemma 3.1, all the morphisms involved are morphisms of mixed
Hodge structures,F 0H 2m−1(Y,C(m)) maps ontoF 0H 2n−1(X,C(m)) under the
above isomorphism. Hence the natural mapJm(Y ) → J n(X) is an isomorphism
if m > 2. In casem = 1, the mapJ 1(Y ) → J n(X) is a surjection onN-torsion
for eachN , because the map on lattices is surjective. This proves (d) of the Main
Theorem.

5. Roitman Theorem

We now prove the Roitman theorem, i.e., part (e) of the main theorem. In the case
when dimX = 2, i.e.,X is a reduced singular surface, this is the Roitman Theorem
proved by Barbieri, Pedrini and Weibel in [BPW]. (We have a different, shorter
proof of this case which, however, we omit in order to save space.) The higher
dimensional case will be reduced to the surface case.

From now on, letX be a reduced projective variety (overC) of dimensionn > 3.
We first choose an algebraic subsetA ⊂ Xsing, as follows. LetX(n) denote

the union of then-dimensional components ofX, andX′ the union of the smaller

https://doi.org/10.1023/A:1001793226084 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001793226084


ROITMAN’S THEOREM FOR SINGULAR PROJECTIVE VARIETIES 235

dimensional components. Letπ : X̃→ X be the normalisation. Then there exists a
closed setA ⊂ X, withX′ ⊂ A, codimX(n)(A∩X(n)) > 2, such that ifU = X−A
andV = X̃ − π−1(A), the hypotheses (i)–(iii) of Theorem 4.1(b) are satisfied.

Now let δ be a 0-cycle with[δ] ∈ kCH
n(X)deg 0, andAJnX(δ) = 0. Then by

Lemma 2.1, the cyclekδ = (f )C ∈ Rn(X), whereC is a reduced Cartier curve on
X, andf ∈ R(C,X). Further, we may assumeC meetsXsing only at smooth points
of Xsing, andC ∩ Xsing is reduced. Finally, we can chooseC to be disjoint fromA
(apply Lemma 2.1, takingA in that lemma to be the above(A ∩ X(n)).) Thus with
the above notation,C ⊂ U ,C ∩Xsing= C ∩Using, andC ∩Using is a reduced finite
set of points.

Now as in [B], Chapter 5, we may make a sequence of blow-ups at smooth
pointsα:X′ → X, and find a 0-cycleδ′ onX′, such that

(1) α∗δ′ = δ
(2) for some reduced Cartier curveC ′ onX′ and somef ′ ∈ R(C ′, X′), we have

(f ′)C ′ = kδ′
(3) each irreducible component ofC ′ is smooth outsideX′sing, and anyx ∈ X′ −

X′sing lies on at most 2 irreducible components ofC ′

(4) if a point x ∈ X′ − X′sing lies on 2 irreducible components ofC ′, then both
components ofC ′ have distinct tangents atx.

By Lemma 3.4 and Corollary 3.6, the sequence of blow-ups does not change either
the Chow group orJ n; hence we may assume without loss of generality that
X,C, f themselves have the above properties (2), (3), (4). ReplacingU,A by their
inverse images inX′, we may assume (i), (ii), (iii) hold as well (replaceπ : X̃→ X

by its base change toX′, etc.). Now the (modified) curveC satisfies (i′)–(iv′) of
Theorem 4.1(b).

Applying Bertini’s theorem, we can find a reduced complete intersection surface
S of large degree inX such thatC ⊂ S, andS is smooth outsideXsing (using the
same arguments as given in [B]; the point is thatC has local embedding dimension
6 2 outsideXsing). SinceC is a Cartier curve, we can also chooseS such thatC is a
Cartier divisor onS. Now sinceδ is supported onS, we apply Roitman’s Theorem
for surfaces [BPW], as follows.

LEMMA 5.2. LetX, C andS be as above. Then the Gysin mapH 3(S,Z(2)) →
H 2n−1(X,Z(n), and the induced natural mapJ 2(S)→ J n(X), are isomorphisms.

Proof.Let Y be a general hypersurface section ofX of sufficiently high degree
containingC. ThenC is a Cartier curve onY , andY is smooth outsideXsing.

By (b) of Theorem 4.1, the Gysin mapH 2n−3(Y,Z(n− 1)) → H 2n−1(X,

Z(n)) is an isomorphism. This implies that the corresponding mapJ n−1(Y ) →
J n(X) is an isomorphism as well. The lemma then follows by induction on
n = dimX. 2
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Finally, we have the diagram

kCH
2(S)deg 0

-
kCH

n(X)deg 0

kJ
2(S)

?
-

kJ
n(X).
?

Now suppose that the chosen cycle class[δ] ∈ kCH
n(X)deg 0 is such that

AJnX(δ) = 0. Then for the Cartier curveC, the functionf ∈ R(C,X), and a
surfaceS containingC as above, we have (i)[δ] ∈ kCH

2(S), sincekδ = (f )C ,
andR(C,X) = R(C, S); (ii) AJ 2

S (δ) = 0 ∈ kJ
2(S), from the injectivity of

kJ
2(S)→ kJ

n(X) (i.e., the above lemma).
Hence[δ] = 0 in CH 2(S), by the Roitman theorem for surfaces [BPW]. This

implies[δ] = 0 inCHn(X).
Hence, we have shown that the mapkCH

n(X)deg 0→ kJ
n(X) is injective for

everyk. Since this map has already been proved to be surjective (by part (b) of the
Main Theorem), we get that it is an isomorphism. This finishes the proof of the
Roitman theorem (part (e) of the Main Theorem).
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