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1. Introduction

If X is a smooth complete variety of dimensierover the complex field, there

is a natural mapC H" (X)gego — Alb (X) from the Chow group of 0-cycles of
degree 0 (modulo rational equivalence) to the Albanese varieX). ¢f is known

that this is surjective, and has a ‘large’ kerneHif (X, Q"X/C) # 0 for some > 2.

A famous result of Roitman [R] asserts that " (X)gego — Alb (X) is always

an isomorphism on torsion subgroups. Our aim in this paper is to generalize this
theorem to reduced projective varieties with arbitrary singularities.

We begin with some background. L&t be any reduced projective variety of
dimensionn overC. Let Xsing (the singular locus) denote the set of pointe X
such that the module of Kahler differentialy, . is not a free module of rank;
thus Xsing includes pointse through whichX has a component of dimensienn.
ForY C X a closed subvariety containingsing, Levine and Weibel [LW] have
defined the relative Chow (cohomology) group of O-cya&d” (X, Y) to be the
guotient of the free Abelian group on pointsXf— Y modulo a suitable notion of
rational equivalence (given by the subgroup of cycles of the fofig whereC is
a ‘Cartier curve’ on(X, Y) and f a rational function orC which is a unit at points
of C NY). If Y has codimensiop: 2, the relations may also be given by sums of
cycles(f)c, whereC is any curve which does not megt If X is integral andy
has codimension: 2, Levine [L3] and Collino [Co] have shown that Roitman’s
theorem holds foC H" (X, Y), if we take AIbX to be the Albanese variety of any
resolution of singularities oX.
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In this paper, we will takeC H" (X) to be the grougC H" (X, Xsing) as defined
in [LW] (see also [L2]).

In arecent paper [BPW], the authors show tha¥ i a projective surface, then
the Albanese variety oX, nowdefinedto be the group

H3(X,0)

2(X) :=
I F2H3(X,C)+imH3X,Z)’

is in fact a semi-Abelian variety (herg? denotes the subspace for the Hodge
filtration of the mixed Hodge structure). They construct a natural homomorphism
C H*(X)——Z®%", whereX hast irreducible components of dimension 2; the kernel
is denoted b;CHZ(X)dego They then construct a homomorphiﬂwz(X)degoa
J2(X), using simplicial techniques and Chern classes with values in Deligne co-
homology. The main theorem of [BPW] is that this map is an isomorphism on
torsion subgroups. Their proof is technically quite complicated, and uses partic-
ular features of the two-dimensional case, like the relationship Withwhich
implies (via excision, double-relativ€-groups, etc.) a formula for the Chow group
in terms of that of its normalization, and a quotient$X; groups of possibly
nonreduced curves.

This motivates our main result.

THEOREM 1.1. Let X be a reduced projective variety ov€rof dimensiom.
(a) Define

H2nfl(X, (C)
FnHZn—l(X’ (C) + imHZn—l(X, Z) '

J'(X) =

ThenJ"(X) is the group of closed points of a semi-Abelian variety dller
(which we again denote h¥*(X)). The associatioiX — J"(X) is a contrav-
ariant functor fromn-dimensional projective varieties ov€rto semi-Abelian
varieties ovelC.

(b) There is a degree mageg,: CH"(X) — Z%', where X has irreducible
components of dimension Let C H" (X)q4egodenote the kernel afegy. Then
there is a surjective Abel-Jacobi mag/y: CH" (X)gego — J"(X). If U =
Xo — Xsing; WhereXj is anyn-dimensional component &f, andxg € U is a
base point, then the map— AJ([x] — [xo]), defined on closed points of,
is induced by a morphisti — J"(X).

(c) If Y ¢ X is a reduced subscheme of dimensionwhich fits into a chain of
subscheme¥ =Y, C V,.1 C --- C Y, = X, such thatY; is a reduced
Cartier divisor onY; 1 for each;j < n, then there is a commutative diagram

CHm(Y)dego_' CH”(X)dego

ATy AT},

J"(Y) J"(X)
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(whereCH™(Y) — CH"(X) is induced by the obvious map 6rcycles de-
termined by the inclusioi C X). The map/™(Y) — J"(X) is independent
of the particular chain{Y,,, Y,,.1, ...} chosen.

(d) (Lefschetz theorem) If in (c) abovE,is a general complete intersection of
very ample divisors itX, thenJ™(Y) — J"(X) is an isomorphism idlimY =
m > 2, and is surjective onv-torsion for eachn, if m = 1 (in particular,
JYHY)——>J"(X) in this case).

(e) (Roitman theorem) The mapJ/y is an isomorphism on torsion subgroups.

Here part (d) is obtained as a corollary of the following version of the Lef-
schetz Hyperplane Theorem, valid for singular projective varieties, which may be
of independent interest (see Section 4.1 below). Part (a) (‘without base points’),
formulated for cohomology witl-coefficients, has been obtained earlier [GNPP];
we thank the referee for providing us this reference. The rather technical statement
made in (b) is needed in the proof of the Roitman Theorem (part (e) of the Main
Theorem). Following the referee’s suggestions, the two separate ‘Lefschetz Theor-
ems’ stated in an earlier version of our paper are now combined.

LEFSCHETZ THEOREM

(a) Let X be a reduced projective variety ovérof dimensiorm and letY be a
general hyperplane section. Then the the Gysin nfagY, Z(j)) —
H*2(X,Z(j + 1)) is an isomorphism foi < dimY and surjective fori =
dimY.

(b) Let X be as above;r:f — X the normalizaLion, andA C X a closed
subvariety such that it/ = X — AandV = X — 7~ 1(A), the following
are satisfied:

(i) V is nonsingular of dimension,
(i) V — U is the normalization ot/,
(i) if W = n*l(Using), thenUsing and W are nonsingular of dimensiom — 1
and W — Usingis an analytic covering space.

LetC c X be areduced curve such that

(i") C is alocal complete intersection iX.

(i) C N Xsingis reduced, and supported at smooth pointX gfg.
(iii") C N (X — Xsing) has only plane curve singularities.
vy CNA=9.

LetY be a general hypersurface sectionXfof sufficiently large degree, and
which containsC. Then the Gysin maf‘ (Y, Z(j)) — Ht?(X,Z(j + 1)) is
an isomorphism for < dimY and surjective foi = dimY.
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Thus, there are 3 main results in the paper: the construction of the Abel-Jacobi
map on rational equivalence classes for arbitrary dimensional varieties, and the
proofs of the Lefschetz theorem (with-coefficients, and with base conditions)
and the Roitman theorem. We comment further on the proofs.

The Abel-Jacobi map is constructed on the level of 0-cycles using Deligne’s
1-motives [D] (or equivalently, extension classes for mixed Hodge structures [C]).
To show that rational equivalence is preserved, we use a moving lemma for Cartier
curves, together with functoriality properties of mixed Hodge structures with re-
spect to point blow-ups, pullbacks and Gysin maps. The discussion of the functori-
ality for the Gysin maps uses M. Saito’s theory [MS] of Mixed Hodge Modules,
to give a clean exposition, though ad hoc (messy) arguments of a more elementary
type are possible in the cases at hand.

The proof of the Roitman Theorem is motivated by Bloch’s proof of Roitman’s
theorem for smooth varieties, as outlined in his book [B]. The proof is in 2 stages.
First, one proves the result for surfaces; this is the main result of [BPW] (we have
another proof of this case, which does not use Deligne-Beilinson cohomology;
this has been omitted for reasons of space). The second step is a reduction of the
general case to that of surfaces, using the moving lemma for Cartier curves, point
blow-ups and the Lefschetz Theorem (the version with base conditions).

The Lefschetz Theorem is proved using a result of Verdier [V], that any morph-
ism of varieties is locally trivial (in the complex topology) over some Zariski open
subset of the target. We remark that this differs from the technique of [GNPP] (that
of hyperrésolutions cubiqups

We believe that our proof should generalize to yield Roitman’s theorem over
fields of positive characteristic, for torsion relatively prime to the characteristic, at
least if we assume resolution of singularities (this was one reason for giving a new
proof for the surface case as well). This is because, though we have extensively
made use of the complex topology in our presentation, we have maostly only used
either ‘topological’ or ‘motivic’ arguments while doing so. We hope to return to
this later.

In (b) of the Main Theorem above, we can understand the algebricity of the map
U — J"(X) from two points of view. The first way is to deduce it from a general,
purely algebraic description of the 1-motive associated (following Deligne [D])
to H>~Y(Y, Z(n)), for anyn-dimensional (possibly noncomplete) varigtyover
C, and in particular, an algebraic construction of the semi-Abelian vasigty).

This will be proved elsewhere [BS]; we mention this here, however, to further

bring out the analogy with the Albanese variety of a smooth complete variety. This
approach is also related to Serre’s construction [Se] (see [Me] for an exposition)
of a generalized Albanese variety for a noncomplete smooth variety, applied to
components oK — Xging.

We will sketch below a second proof of algebricity which reduces it to the case
of curves, where it is known.
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2. Cartier Curves

We first recall the definition o€ H"(X) = CH" (X, Xsing) from [LW] (see also
[L2]). A Cartier curveon X is a subschemé C X such that

(i) C is pure of dimension lie. C has no 0-dimensional irreducible compon-

ents);

(i) no component ofC is contained iNXing,

(iii) if x € C N Xsing then the ideal o€ in O, x is generated by a regular sequence
(of n — 1 elements).

(iv) C N (X — Xsing) has no embedded pointise(, is Cohen—Macaulay), and any
component’ of C which is disjoint fromXsing appears irC with multiplicity
1 (i.e, if n € C’is the generic point, the@, ¢ is reduced).

In particular, ifn = 2, thenC is an effective Cartier divisor oX (but not con-
versely). Note that in (iii), ifc € C N Xsing, then dim@, x = n, since no irreducible
component ofC is contained in any component &fof dimension< n.

If C is a Cartier curve oX, with generic pointsyy, ..., n,, S = (C N Xsjng) U
{n1, ..., n,}, andOs ¢ is the semilocal ring o of the pointsS, then there is a
natural map on unit groupk: 05 - — ®;_,0;. .. DefineR(C, X) = imagedc.
Note that this depends on the péit, X).

Remark.In [LW], the discussion of rational functions on page 108 seems to
suggest that is injective; this will not be true, unlesgs  is Cohen—Macaulay.
However this point does not affect the rest of the discussion there. In the Defini-
tion 1.2 of a Cartier curve, they do not include the condition (iv) above, but their
Lemma 1.3 shows that for the purposes of the Chow group, it suffices to restrict
ourselves to such curves (i.e., no additional elementB”ifX) are obtained by
allowing the more general Cartier curves which do not satisfy (iv)).

We now define the divisoff)c of an elementf € R(C, X), for any Cartier
curveC. Let C; denote the maximal Cohen—Macaulay subschem@ sdipported
on the irreducible component with generic poipt Then®,, ¢ = O,, ¢,, and for
anyx € C;, the map9, ¢, = O,, ¢, is the inclusion of a one-dimensional Cohen—
Macaulay local ring into its total quotient ring. Jf is the component i®,, ¢, of
f € R(C, X), then for any closed point € C;, we can writef; = a, /b, where
ax, by € Oy ¢, are nonzero divisors; now let

(fi)C; = Z (Z(Ox,C;/ax(gx,Ci) - Z((g)c,Ci/b)c(gx,C,-)) : [X],

xeC,-

which is a 0-cycle supported afi (since f; is a unit for all but finitely many).
Finally, set

He = (-
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(This definition of( f)¢ is easily seen to be equivalent to Definition 2 of [LW].)

DEFINITION. TheChow group of 0-cycle§ H"(X) = CH" (X, Xsing) is defined
to be the quotienCH"(X) = Z"(X)/R"(X), where Z"(X) is the free Abelian
group on (closed) points of — Xgng, and R"(X) is the subgroup generated by
cycles(f)c for all Cartier curve< in X, and all f € R(C, X).

Levine ([L2], Lemma 1.4) has shown thatifis integral, thenkR" (X) is also the
group generated by cyclé€g) . whereC ranges oveintegral Cartier curves inx,
and f € R(C, X). His proof shows that i is reduced, thelR"(X) is generated
by (f)¢ for reduced Cartier curveS. The following is a useful technical lemma
refining Levine’s assertion. § = """, n; P;, let supp(8) = {P1, ..., P,} C X.

We will use versions of Bertini's theorem in the proof below, and later in the paper;
a general Bertini theorem which implies whatever we need is Satz 5.2 of [F].

LEMMA 2.1. LetX be areduced, quasi-projective variety, anddet R"(X). Let
A C Xsing be a closed subset of codimensipr2 in X, and D C X be a reduced
effective divisor. LetD; be the union of components &f which are contained
in Xsing. Then we can find a reduced (possibly reducible) Cartier curyend
f € R(C, X), such that(f)c = §, and such thati) C N D is 0-dimensionalii)
C N D, is a reduced 0-dimensional scheme, &gl C N A = @.

Proof. We first sketch Levine’s argument, and then indicate how it needs to be
modified; we use his notation to help the reader make the comparison with his
proof. We find it most convenient to do this as a sublemma.

SUBLEMMA 1. Let X be a reduced, quasi-projective variety,C Xsnga closed
subset of codimension 2 in X, and D a reduced divisor inX. Let D; be the
union of the components &f which are contained itXing. Lety = (f)z for some
Cartier curveZ and f € R(Z, X). Then there exists a reduced Cartier cu@en
X, and an elemeng € R(C, X), such that

@y =(c
(b) C N A = ¢,andC N D is finite, andC N D is finite and reduced.

Proof. First note that since& is a Cartier curve orX, the general complete
intersection surfac® C X containingZ is reduced. We will remove frorfi any 0O-
dimensional irreducible components; this does not chdhigea neighbourhood of
Z, also, the modified" is still a local complete intersection K. ClearlyT N Xsing
has dimensior< 1, T N D is a reduced divisor i, andT N A is a finite set (it
may be empty).

For any such general surfagecontainingZ, following Levine, takeL to be a
high power of a given very ample line bundle. Then chags@ndsy to be general
sections of the line bundles and L®" respectively, for some large enough
such that ifCo = (s0), Coo = (55) are the respective divisors of zeroes, then the
following conditions are satisfied:
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(i) C contains a given finite seit of points of T — Xing. The finite setS has
the following structure: first choose a general effective divigbrsuch that
Z+Z'is avery ample Cartier divisor dh, then choos& ., a general effective
Cartier divisor linearly equivalent t@ + Z’; now takeS to be the union of the
nonregular locus of on Z with (ZNZ')U((Z U Z') N Z,). We only need to
use below thas is the union of the nonregular locus ¢f(on Z), the set where
Z is not a Cartier divisor ifT (i.e., whereZ is not a local complete intersection
in X), and a set ‘in general position’ in a suitable sense. (Note that at any point
x € Z whereZ is not a Cartier divisor irT', we havex € ZNZ’, sinceZ + Z’
is a Cartier divisor by choice.)

(i) Let & be the rational function 0BUZ'UZ,, whichisfonZ,and 1onZ'UZ,.
By construction, the nonregular locus/obn Z U Z’ U Z, is contained inS.
Hence there exists a sufficiently large > 0 such that’ = s&V |zuzuz., -k
is a regular section af®" |,z ; let so be a general regular section bfY
which lifts s’.

Let Cy, C., be the curves obtained by removing the O-dimensional compon-
ents ofCo, Cw. Levine shows that for suitable functiogg € R(Cy, X), g €
R(CL,, X), we have an equation between 0-cygles: (f); = (8o)cy + (ggo"’)céo.

Levine notes tha€y, C., are reduced, and without common components, from
Bertini’s theorem (sinc& is a reduced surfacé, is sufficiently ample ofT", andsy,

Ss are sufficiently general sections). Actually, Levine works in the situation where
X is irreducible, so tha€y, Co, are also irreducible, and €&y = Cj, C» = CL..
However, his argument gives the stated conclusions.

Sinces,, andsg are general (subject to the conditions mentioned above), it is

easy to see that that, andso may be chosen so that

(1) CoNCx Xsing = ¢;
(2) (CoUCx) N A = ¢, and(CoU Cx) N (T N D) is a O-dimensional scheme
(3) (CoU Cx) N Dy is areduced 0-dimensional scheme.

(recallT N A is a finite subset ofing, While T N D is a reduced curve iff). The
only subtlety here is in (3): the point is thdtis a local complete intersection in
T at all points ofT" N Xing, and in particular at points &f N D1, and alsof is a
unit at these points. Hence the finite Sedf ‘base points’ considered earlier can
be taken to be disjoint fron;. Now (3) follows from Bertini's theorem.

Since by constructior;, C. are reduced Cartier curves &nwith no common
irreducible component, and sin€g N C., N Xsing = ¢, their unionC = C{U C.,
is also a Cartier curve, ankl(C, X) = R(C{, X) ® R(C.,, X). Hence ifg is the
function defined by |c;= go. g Ic;,= g N, thenge R(C,X)and(g)c =y. O

Now givenanys € R"(X) as in the statement of the lemma, we claim that we
may write§ = (f)z for some reduced Cartier curve and somef € R(Z, X).
Indeed, first write = > '_,(f;)z for suitable Cartier curveZ; and elements
fi € R(Z;, X). We argue by induction on; the caser = 1 is covered by the
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sublemma. Applying the sublemma 9 = (f1)z, (andA = D = ¢), we may
assume without loss of generality thét is reduced; now apply the sublemma to
Y2 = (f2)z, and A = (Z1 N Xsing), @and any suitabled > Z;. Hence we may
assume that, is also reducedZ; and Z, have no common components, and
Z1 N Zy N Xsing = ¢. ButthenZ, U Z5 is also a reduced Cartier curve an and
R(Z1U Z5, X) = R(Z1, X) ® R(Z,, X). Hence we have an expression foas a
sum of divisors of functions on— 1 Cartier curves.

Now finally apply the sublemma once more, to replace the given reduced Cartier
curveZ and functionf by another such pair, where in additigdn A =@, ZN D
is finite, andZ N D is a reduced 0-dimensional scheme, for the original choices of
AandD. a

3. The Semi-Abelian Variety J" (X)

In this section, our goal is to study the properties/6tX), and in particular, to
prove parts (a), (c) of the Main Theorem, and the algebricity assertion in (b). The
surjectivity assertion in (b) will be proved in the next section.

We begin with (a), which is implicit in Deligne’s paper [D]. L&t be a reduced
projective scheme of dimensienoverC, and

H2n—l(X’ (C)
FrH2-1(X, C) +im H»X(X,7)"

J'(X) =

We find it more convenient to work with the (equivalent) definition

H> (X, C(n))
FOH?=1(X C(n)) +im H>=1(X, Z(n))

J'(X) =

By [D] (8.2.4)(ii), H*'~1(X, Z(n))/(torsion is a torsion-free mixe@-Hodge struc-
ture whose nonzero Hodge numbérs? have(p, ¢) in the set

H={(-1,-1),(-10), (0, -1)}.

Further, the pur&-Hodge structure Cﬁ‘,lHZ"‘l(X, Q(n)) is polarizable, since (by
[D], (8.2.5)) it is a Tate twist of a mixed-Hodge substructure afi?'~*(X, Q),
whereX is a resolution of singularities of. By [D], (10.1.3), there is an equival-
ence of categories between torsion-free mi¥edodge structured/ with Hodge
numbers inH such that Gi,'(M ® Q) is polarizable, and the category of semi-
abelian varieties ove€ (and algebraic homomorphisms between them). Since
X — H? XX, Z(n))/(torsion is a contravariant functor on the categoryref
dimensional projective varieties, (a) is proved. ThtigX) is the group of closed
points of a semi-abelian variety ov€; which we also denote hy" (X).

Next, we construct the ‘Abel-Jacobi mapJ/y: CH"(X)dego — J"(X). Let
X1, ..., X, be then-dimensional irreducible components X¥f and letXy be the

https://doi.org/10.1023/A:1001793226084 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001793226084

ROITMAN’'S THEOREM FOR SINGULAR PROJECTIVE VARIETIES 221

union of the irreducible components of dimensiam (note thatXo C Xsing). If
8 € Z"(X) is a 0-cycle supported oK — Xsing, then we can uniquely writé =
2;1 8; with &; supported orX; — U;; X ;. Define deg. (§) = degé;, where ‘deg’
denotes the usual degree of a O-cydle.(deg}_; n;[x;] = >, n;). Then we
have a (surjective) degree homomorphism,deff' (X)—>Z%, defined by{s] —
(degy, (9), ..., degy, (8)).
As is easily seen, another description of the degree homomorphism is as fol-
lows: if S = suppé, then there is a map

HZ'(X,Z(n)) — H*(X, Z(n)) = &'_ H*(X;, Z(n)) = 7%,

sinceH?'(Xo, Z(n)) = 0, andH?'(X;, Z(n)) = Z for 1 < i < t. Then the image
of the cohomology class d@fin HSZ"(X, Z(n)) (which is the free Abelian group on
the points in supy)) is just deg, (§) € Z%".

We claim that the degree map induces a well-defined homomorphisgt deg
CH"(X) — Z%'. For this, we must show that  is a Cartier curve, angt
R(C, X), then deg. ((f)¢) = 0 for eachi. If Cy, ..., C, are the irreducible com-
ponents ofC, let f; be the restriction off to C;, so that(f)c = Y (fj)c,. Notice
that at any point of®; N X; N X, with k # i, which is necessarily a singular point
of X, we havef; € image(@j_ycj — O;j,cj) (where the generic point a; is n;);
hence for allj, we see that f;)c, has support disjoint fronX; N X; for all i # k.

Now fix any componenk; of X. SupposeC; C X, for j < s, andC; ¢ X;
for j>s; then foré = (f)c, we see from the preceeding paragraph that
> i<s(fi)c;- Hence de@;) = >, ded fj)c, = O.

We defineC H" (X )qego = ker(degy: CH"(X) — Z%").

Let § be a zero cycle oX of degree Oi(e., degy, (6) = O for all irreducible
componentsX; of X), and let supgé) = S C X — Xsing. Consider the long exact
sequence of cohomology groups

- = Hy(X,Z(n) — H'(X, Z(n))
— H(X —S,Zn)) - H(X, Z(n)) — ---
The groups occurring in this sequence carry natural mixddodge structures,
such that the maps in the sequence are morphisms of mixed Hodge structures ([D],
(6.3), and (8.3.9) applied to the inclusiah— S <— X).

For anyx € X — Xsing, We have an isomorphisiH 2" (X, Z(n)) = Z as mixed
Hodge structures, anlZ" (X, Z(n)) = 0. HenceH?2" (X, Z(n)) = Z[S], the free
abelian group oi§, regarded as a pure Hodge structure (of type (0,0)), and we have
an exact sequence of mixed Hodge structures

0 > H¥NX,Zn) — H* XX — S, Zn))
— H?(X,Z(n)) - H*(X, Z(n)) — 0. (1)

In particular,s yields a map of mixed Hodge structurgs [§] — HZ2'(X, Z(n)).
Now H?* (X, Z(n)) = &'_ H*(X;, Z(n)) = Z%'. Sinces has degree 0, we see
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that the composité - [§] — HSZ"(X, Z(n)) — H?*(X,Z(n)) = Z% is trivial.
Hence from the exact sequence (1) we obtain a pull-back exact sequence of mixed
Hodge structures

0— H* XX, Zn)) > M — Z-[8] - 0. (2)

Hence M/(torsion is a mixed Z-Hodge structure with Hodge numbers
from the set{(—1, —1), (-1, 0), (0, —1), (0, 0)}, such that Gri(M ® Q) =
Gr—1(H?~Y(X, Q(n))) is polarizable. By [D], (10.1.3), we see th&t/(torsion)
determines a 1-motive ovét, yielding a homomorphisiM1,:Z — J"(X). We
defineAJ¢(8) = [M].(1); this is often called thextension classf the mixed
Hodge structuré/ in (2); see [C], for example.

One can give a more concrete descriptiomdf; (§) as follows: considering the
Hodge numbers involved, we see that

H” YX,C(n) . M®C
FOH?-Y(X C(n)) FM®C’

if «:Z — M is a splitting of the exact sequence (2), then

M®C _ H*'X,Cn)
FOM ® C~ FOH21-(X,C(n))

ima(l) €

depends on the choice of the splittiagbut the image of (1) in the quotient

H?>Y(X,C(n))

Jn(X) = F0H2/1—1(X’ (C(n)) + im H2n—l(X’ Z(”))

is independent of the splitting. One checks easily (see [D], diagram on page 56)
that AJy(§) = im(«x(1)) € J"(X). This description ofAJ"(X) amounts to the
‘classical’ definition of the Abel-Jacobi map via integrals.

It is easy to see that the above construction yields a homomorphism
AJy:Z"(X)dego — J"(X) (this is obvious from the second descriptionAfy,
for example). We claim that J¢(R"(X)) = 0, so that we have a well-defined
homomorphismAJ¢: CH" (X)gego — J"(X). To see this, we first show thatdf
is a reduced Cartier curve i, then there is a commutative diagram

AJL
ZHC)gego—=— J*(C)

AJﬂ

Zn(x)dego—x> Jn(X)

This will involve the construction of a certaf@ysin mapLet X be a (reduced)
variety,Y C X an effective Cartier divisor, and C Y a subvariety. Then we will
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construct Gysin map#l. (Y, Z(r)) — HL™?(X, Z(r + 1)) for anyi > 0, and any
integerr, which will be morphisms of mixed Hodge structures (the mixed Hodge
structures exist as a result of [D], (8.3.9)).

SinceY is an effective Cartier divisor o, it has a cohomology clag¥] e
H2(X, Z(1)) (one way to define this is to notice thEthas a class iH1(X, 0%),
and to use the boundary mapl(X, ©3) — HZ(X,Z(1)) in the exponential
sequence). Define the Gysin map above to be the cup product with the class of
Y,

HL(Y, Z(r)) 25 HE2(X, 2(r + 1)).

This cup product map may be defined by replacih@py an open tubular neigh-
bourhoodU in X, which has a retractiop: U — Y, such that the paitY, Z) is a
strong deformation retract a/, p=1(Z)) (such a tubular neighbourhood exists
since X has a triangulation witl¥ as a subcomplex, for example); this yields
an isomorphismH . (Y, Z(r)) = H;_l(z)(U, Z(r)). We then use the excision iso-
morphismsH (X, Z(n)) = HZ(U, Z(n)). Thus the cup product takes values in
Hy2 WU LG+ 1) = HF (X, 20 + 1).

LEMMA 3.1. Under the above conditions, the Gysin map

HL(Y, Z(r)) 25 HE2(X, 20r + 1)).

is a morphism of mixed Hodge structures. Equivalently,

HL(Y, Q) 25 HL2(X, QG + 1)

is a morphism of)-mixed Hodge structures.

Proof. This can be quickly deduced as a formal consequence of M. Saito’s
theory of Mixed Hodge Modules [MS], by giving a sheaf-theoretic construction
of the cup-product. We outline the argument. We make use of some (more or less
standard) notation. For arg-schemeT, let z7: T — SpecC be the structure
morphism, and leQ; = (z7)*Q for any C-schemeT'; we write Rf,, Rf, for the
total derived images of,, f: (and their liftings to Mixed Hodge Modules), aiy"
for the right adjoint taR f,. We usef* for the left adjoint toR f,, since f* is exact.

We useD (M HM (T)) to denote the derived category of Mixed Hodge Modules
onT in the sense of [MS].

Now leti1: Y — X, i»: Z — Y be the inclusions, and lét= i, 0i>: Z — X be
the composite. The (rational) cohomology clas§’oh HZ(X, Q(1)) corresponds
to a morphism of mixed Hodge structur@s— HZ(X, Q(1)). The Gysin map in
the lemma is obtained from the cup-product pairings of Mixed Hodge structures
(actually, from the special cage=2,s = 1)

HL(Y, Q(r) ® HJ (X, Q(s)) = H;7 (X, Q(r + 9)).
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These in turn (sinceRi;, = Ri; for j = 1,2) result from a pairing in
DMHM(X))

L
Ri\Ri%i Qy®RiyRi\Qy — Ri,Ri'Qy,

which we now construct.
There is a natural isomorphism (projection formula)

! L !. L . . .
Ri\Ri5i;Qy®RiyRi\Qy = Ri, <Ri'2f1"<@x®z*RzlngiQX) ;

this isomorphism is valid on applying Saito’s functor Rat, since it holds in the de-
rived category of sheaves of Abelian groups (see [KS], Prop. 2.6.6), and hence also
holds inD (M H M (X)), because Rat is faithful. Hence by adjunction, it suffices to
construct a pairing il (M HM (Z))

L
Ri%i;Qy®i*RiyRi}Qy — Ri'Qy.

Now i*Riyy = i3ijRiy = ijij Ri1,, and so, using the natural transformation
i} Riy, — (identity)y, there is a canonical morphism

L L
Riyi;Qy®i*RiyRijQy — RisiiQy®isRiiQy,
and we are reduced to constructing a pairing
. L . . . . .
Ri5iiQx®i5Ri;Qx — Ri'Qx = Ri,Ri;Qy.
By adjunction, this is equivalent to a pairingdd(M HM(Y))
. e L o .\
Riy (Rlzll(@x@)lszle) — Ri;Qy.
Again we have a projection formula
. ek ]L.* .| ~ . ek L .|
Riy | Ri5ijQx®i;Ri;Qx | = RinRi5i;Qx®Ri;Qy,
and, using the natural tranformatidih'z,Ri!2 — (identity)y, a canonical morphism
. ek L . . x L .|
RinRii;Qx®Ri;Qx — i1Qx®Ri;Qy.

So we are further reduced to constructing a pairingicV H M (Y))

L
iIQy®RiiQy — RijQy.
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Sincei;Qx = Qy, there is in fact a canonical isomorphism

L | ~ .
This gives the desired pairing. O

In particular, takingZ = Y yields a mapH'(Y, Z(r)) — H"(X, Z(r + 1)).
Composing using the map (‘forget the supportﬂ,’}*z(x, Z(r + 1) —
H*2(X, Z(r+1)), we obtain a morphism of mixed Hodge structuregY, Z(r)) —
H*2(X, Z(r + 1)) which we also call a Gysin map.

LEMMA 3.2. Let X be a reduced projective variety of dimensioover C, and
letY C X be anm-dimensional reduced subscheme, which fits into a cliaia
Y, C Yyp1 C --- C Y, = X such that eacl¥; is a reduced Cartier divisor on
Y;i1. ThenY N Xsing C Ysing, @and there is a commutative diagram

m

m AJY m
VA (Y)dego—’ J"(Y)

Zn(X)dego—X’ Jn(X),

wherei is the map on O-cycles induced by the inclusior Ysing C X — Xsing and
j is a homomorphism of semi-Abelian varieties induced by a morphism of mixed
Hodge structures??"~1(Y, Z(m)) — H* XX, Z(n)).

Proof. It clearly suffices to prove the lemma whgris a reduced Cartier divisor
in X. Using the Gysin magf?'—3(Y, Z(n — 1)) — H* XX, Z(n)), we obtain a
homomorphism of semi-Abelian varietigé=1(Y) — J"(X).

Lets € Z"1(Y)gego It suffices to show that the 2 ma@é (¥ )gego — J"(X),
occurring in the diagram above, have the same valug on

Let S = supp(8). There is a commutative diagram with exact rows

H*3(Y,7) — H*3(Y — S,Z) — HZ (Y, 7)

H>*YX,Z) — H*" XX - 8,7) — H?(X,Z),

where the vertical maps are Gysin maps. The commutativity of the diagram follows
from the functoriality of the cup product, and the compatibility of cup products
with the boundary map in the exact sequences of pairs and triples (see, for example,
Spanier [S], Ch. 5, Sect. 6, No. 12). This implies thatMif, My are the mixed
Hodge structures associatedstavhich are used to definAJ;‘l((S) and AJg(8)

https://doi.org/10.1023/A:1001793226084 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001793226084

226 J. BISWAS AND V. SRINIVAS

respectively, then we have a commutative diagram of mixed Hodge structures with
exact rows

0 H?3(Y, Z(n — 1)) My Z[8] 0
Gysint { H
0 H? Y (X, Z(n)) My 78] 0.

Hence we have a morphism of 1-motives — My, i.e., a commutative diagram

Z (MY)* Jn—l(Y)

| ]

Z (MX)* Jn(X)

This implies that the two mapdJg o i and j o AJ;’*l have the same value
ons. O

Remark. In the above lemma, the may' (Y) — J"(X) is clearly unique, once
we know thatAJy': Z™ (Y )gego — J™(Y) is surjective. Thus the map™(Y) —
J"(X) will not depend on the chaifY,,, Y,,.1, ...}. We prove the surjectivity of
AJ in the next section, as a consequence of Lemma 3.7.

We also need another functoriality propertyAf .

LEMMA 3.3. Let f: X — Y be a morphism betweendimensional varieties,
ands € Z"(Y) a 0-cycle of degree 0 oK such thatf*(8) € Z"(X) (here f*(8)
is the inverse image of as a cycle). Themeg, f*(§) = O. If f*:J"(Y) —
J"(X) is the morphism induced bg*: H>'~Y(Y, Z(n)) — H* (X, Z(n)), then
AJy(f*(8)) = frAJy(3).

Proof. If S = supp(8), then we have a diagram of mixed Hodge structures with
exact rows

0 HZ 7YY, Z(n)) ——— HZ 7YY = S, Z(n)) —— HZ'(Y,Z(n)) —— HZ'(Y,Z(n)

r* r* \f * l.f’*

0 HP' X Zn) —— HP' TN = ) Zn) —— H2y (XL Z(n) ——> HP(X.Z(n)

This immediately implies the lemma. O
LEMMA 3.4. Let X be projective of dimensiom, and letf:Y — X be the blow
up of a smooth point € X.

(i) The cycle-theoretic direct image maf: Z"(Y) — Z"(X) induces an iso-
morphismf,: CH"(Y) - CH"(X).
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(i) There is a commutative diagram

n

n Aldy n
Z (Y)dego—> J'(Y)

g
A n

J
Zn(x)dego—x> Jn(X)

where f, is induced by the cycle-theoretic direct image, and is surjective, and
f* is an isomorphism.

Proof. That f*: J*(X) — J"(Y) is an isomorphism follows from the cor-
responding isomorphism on integral cohomoldgy' (X, Z) — H*~ (Y, 7Z),
which in turn follows from the formula for the cohomology of a blow up of a
smooth point. The cycle theoretic direct image, defined on generatofg By =
[f(P)] for any pointP € Y — Ysing, is clearly a surjective homomorphism. Sinte
is the blow up of a smooth poinf, induces a one-to-one correspondence between
the sets ofi-dimensional components &f andY, so that we may view dggand
deg, as homomorphism taking values in the same Abelian g6t With this
convention, we verify at once that degf. = deg,. Hence there is an induced
surjectionf,: Z" (Y)dego— Z"(X)dego

If C is any Cartier curve oiX, its strict transformC’ is a Cartier curve ofy,
such thatf,: R(C’) — R(C) is anisomorphism. Hence there is a well-defined, sur-
jective homomorphisny,: CH"(Y) — CH"(X), and ke(CH"(Y) — CH" (X))
is generated by 0-cycles (necessarily of degree 0, since the degree map&xXor
and Z"(Y) are compatible) which are supported on the exceptional divisgt. of
But any 0-cycle of degree 0 supported on the exceptional divisd@”( 1) is clearly
in R"(Y). Hencef,: CH"(Y) — CH"(X) is an isomorphism.

So it remains to prove the commutativity of the square in (ii). For this, it suffices
to prove that ifP, Q € Y are smooth points, thefi* o AJY([f(P)] = [f(Q)]) =
AJJ([P]—[QD. If f(P) = f(Q), then we claim both sides are 0. For the right
side, this is because any two points in the exceptional divisor lie on d lixeP*
contained inY’ — Ysing; NOW apply Lemma 3.2 to the inclusidn— Y, and use the
fact that/'(L) = 0.

Hence we may assumg(P) # f(Q). We have an isomorphism of mixed
Hodge structures

H* N X —{f(P), f(Q)},Z) = H* XY — f1{f(P), fF(Q))), T),

and a morphism of mixed Hodge structures

v H" WY —{P, 0}, Z) — H* (Y — fX{f(P), F(Q))), Z).

So we will be done if we prove that is an isomorphism. This is obvious if
neither of f (P), f(Q) is the pointx blown up. If f(P) = x, on the other hand
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(as we may assume), aritlis the exceptional divisor of, then the natural map
{P}(Y Z) — HZ'(Y, Z) is an isomorphism, since it fits into an exact sequence

HE' 3 (Y —{P},Z) > HZ}\(Y.Z) > HZ'(Y.Z) — HF" (Y — {P}, Z),

where the extreme terms are 0 (Thom isomorphism, &3g P"~1). Sincey is an
isomorphism, it follows easily that is one as well, by an easy diagram chase.

LEMMA 3.5. AJ}:Z"(X)dego— J"(X) factors throughC H" (X)gego

Proof. We first consider the case = 1. Now we must show that iff €
R(X, X), ands = (f)x, thenAJ$(8) = 0. From the definition ofR(X, X), we
may regardf as a morphismy: X — P!, such thatf*([0] — [c0]) = (f)x as
cycles. Since/1(PY) = 0, the preceeding lemma finishes the proof.

Now we consider the general case. By Lemma 2.1, we are reduced to showing
that if C C X is a reduced Cartier curve, € R(C, X), andé = (f)c, then
ATL(S) =

From Lemma 3.2, there is a commutative diagram

AJL
ZH(C)dego—— JH(C)

.

J
Zn(X)deQO"——X" Jn(X)

If R(C, X) = R(C, C), we would be done, by the cagse= 1 already considered.
However, if C has singular points which are smooth pointsXgfthen in general
R(C,C)SR(C, X). We then proceed as follows.

LetC — C be the partial normalization &, such that

@A) m: C — Cisan isomorphism over a neighbourhood®f Xsing, and
(i) 7#71(C — Xsing) is smooth.

These conditions uniquely defir@ SinceC — C is an isomorphism over the
smooth locus of”, we may regardz}(C) as a subgroup af*(C). Since smooth
points of C map to smooth points ok, there is a natural map,: ZX(C) —
Z"(X), yielding Zl(C)dego — Z"(X)dego SuUch thatz'(C) — Z"(X) factors
throughZ*(C). From the definitions (see Sect. 1), we verify easily Ret, C) =

R(C, X) (where we have used that C have the same generic points), and for any
g € R(C, X), we have(g)c = m.((g)¢). In particular, takingg = f, we have that

8 = m.((f)&), where by the case = 1, we know tha1AJ~((f)C) =0¢ Jl(C)

Let S C C be the finite subset whe® — C is not an isomorphism. By the
embedded resolution of singularities for curves, we can find a projective morphism
h: X — X, which is a composition of blow-ups at smooth points lying over points
of S, such that the strict transform 6fin X is C (thatis,h~1(C — S) = C). Now
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for the givenf e R(C C) = R(C X), if we sets = (f)g, then we have that
Oz L(8) = 8, and (||)AJ~(8) =0c¢ Jl(C) HenceAJ"((S) =0¢ J”(X) by
Lemma 3.2. By Lemma3 4, we deduce that

AJL(8) = AT (hy(8)) =0 e J"(X). O

COROLLARY 3.6. With the hypotheses of Lemr3a, there is a commutative
diagram

n

AT
CH"(Y) —— J"(Y)

fs \ = z\ r*

Ady
CH"(X) — J"(X)
whose vertical arrows are isomorphisms.

We sum up our progress at this stage: we have constrdctédC H" (X)gego —
J"(X), and proved its functoriality for the Gysin maps associated to inclusions of
suitable reduced subvarieti®sc X. This proves (c) of the Main Theorem (modulo
the surjectivity ofAJy', as remarked above after Lemma 3.2). We have also proved
the invariance of the Chow group add under blow ups of smooth points.

We now further analyze the mapJ/? for a curveC.

LEMMA 3.7. Let C be a reduced curve. The@H(C) = PicC. Further,
AJE:CHY(C)gego — JX(C) is surjective, and is an isomorphism on torsion
subgroups. IC is seminormal, ther /2 is an isomorphism.

Proof. It is easy to see from the definitions th@t *(C) is naturally isomorphic
to the group of linear equivalence classes of Cartier divisorg pwhich (as is
well known) is naturally isomorphic to P@&. Under the isomorphist@ H1(C) —
PicC, the class of a point € C — Csingis associated to the invertible sheaf (x).

If f:C — C is the semi-normalization, theyi is bijective on points, and on
the singular loci, sof*: H*(C, Z(1)) — HY(C,Z() and f*: JX(C) — JX(C),
as well asf*: Z*(C) — Zl(C) are isomorphisms. On the other haody*(C) =
PicC, CHY(C) = PicC, and f*: Z1(C) — z%C) induces f*: CHY(C) —
CH1(5), which corresponds to the mafy: PicC — PicC obtained by pulling
back line bundles. _ _

We claim, from the formulagi*(C, 9¢) = PicC and H'(C, 0%) = PicC,
that f*: PicC — PicC is surjective, and is an isomorphism on torsion. To see
this, consider the exact sheaf sequence @} — (9% — F — 0, where¥ is
a finite direct sum of skyscraper sheaves whose stalks are of theRofRr* for
a one-dimensional local rin§ and its semi-normalizatio® (which is also one-
dimensional local with the same residue field, so #®5tR* = R/R is aC-vector
space via the logarithm map). The exact cohomology sequence of this sequence
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of sheaves yields an exact sequences0H%(C, ¥) — PicC — PicC — 0
since H(C, 0F) = HY(C,0%) = (C")®" wherer is the number of connected
components of.
Clearly, by (an easy case of) Lemma 3.3, the mmg CH? (C)dego —
JYC) = JX(C) factors through the surjecticH*(C)geqo—>>C H* (C)dego
So we are reduced to proving that for seminor@althe mapAJ¢} is an iso-
morphism. But this is just the content of [D] (10.3.8), in the light of (10.1.3)

We end this section with a proof of the algebricity of the ntap> J"(X), x —
AJ;([x] — [x0]) (Wherexg € U is a base point). As remarked in the introduction,
the ‘correct’ approach (in our opinion) is to deduce it from a general algebraic
construction of the 1-motive associatedHd" (Y, Z(n)), for anyn-dimensional
complex varietyY . This will be done in more detail in [BS].

We now sketch another proof thét — J”(X) is a morphism, using the fact
that whenX is a seminormal curve, this is known to be a morphism, since in
that case, it is the natural map from the smooth points of a singular curve (with
appropriate base points) to its generalized Jacobian variety (by Lemma 3.7). This
implies (by Lemma 3.7 again) that when dikn= 1, the mapU — J(X)is a
morphism. Hence in general, the mép— J"(X), which is clearly holomorphic,
is an algebraic morphism when restricted to any curvg ilsince (as seen above),
the composite/ — J"(X) — J"(X) is the (restriction toU of the) Albanese
mapping ofX, it is an algebraic morphism; hence we must show that any holo-
morphic section of the algebraic principal torus-bungdlte/"(X) |y, — U, which
restricts to an algebraic section on any curve, is in fact an algebraic section.

The algebraic torus bundlg*J"(X) |y— U is Zariski locally trivial, since
J'(X) — J"(X) is. We then reduce to showing thatVif is a nonsingular affine
variety (an open subset 6f in our case), anél: V. — C is a holomorphic function
which restricts to an algebraic (regular) function on every curvE jthent is a
regular function orv.

By Noether normalization and the standard argument with elementary symmet-
ric functions, we are further reduced to proving the same assertion for the case
V = C". Now the holomorphic function has a globally convergent power series
expansion; since for almost all substitutions of values-efl variabless becomes
a polynomial in the last variable, the Baire category theorem implies easily: that
is a polynomial. (R. R. Simha has pointed out to us that this argument goes back to
work of E. E. Levi (see [Si], (1.1))).

4. Lefschetz Theorem

In this section we prove a Lefschetz Theorem, which implies part (d) of our
main theoremi.e,, if Y is a general complete intersection of very ample divisors
in X, thenJ™(Y) — J"(X) isanisomorphism if dinY = m > 2, and is surjective
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on N-torsion for eachnN, if m = 1 (in particular, J1(Y)—— J"(X) in this
case).

Note that in view of Lemma 3.7, this also implies the surjectivity statement
in (b) of the Main Theorem; the surjectivity in turn implies that in Lemma 3.2,
the mapj: J"(Y) — J"(X) is independent of the chaifyY = Y,,, Y11, ...} Of
reduced subvarieties of.

It is enough by induction to prove the above statement'fer general hyper-
plane section o . Recall (proof of Lemma 3.2) that the map—1(Y) — J"(X)
is induced by the Gysin mafi?'—3(Y, Z(n — 1)) — H? (X, Z(n)). This last
map is a composite of the maps

H>3(Y, Z(n — 1)) - HZ (X, Z(n)) - H* XX, Z(n)),

where the first map is obtained by cupping with the clas¥ ofi H2(X, Z(1)).
The second map is the usual map from cohomology with supports to conomology
without supports.

More generally, we have the following variant of the Lefschetz Hyperplane
Theorem, valid for projective varieties with arbitrary singularities.

THEOREM 4.1.

(a) Let X be a reduced projective variety ovél of dimensionn and letY
be a general hyperplane section. Then the the Gysin May, Z(j)) —
H*2(X,Z(j + 1)) is an isomorphism foi<dimY and surjective fori =
dimY.

(b) Let X be as above;r:f — X the normalizaLion, andA C X a closed
subvariety such that it/ = X — AandV = X — 7~ 1(A), the following
are satisfied:

(i) V is nonsingular of dimension
(i) V — U is the normalisation ot/
(i) if W = n*l(Using), thenUsing and W are nonsingular of dimensiom — 1
and W — Usingis an analytic covering space.

LetC c X be areduced curve such that

(i") C is alocal complete intersection X

(i) C N Xsingis reduced, and supported at smooth pointXef
(iii") € N (X — Xsing) has only plane curve singularities
(iv)y CNA=4.

LetY be a general hypersurface sectionXfof sufficiently large degree, and
which containsC. Then the Gysin maf (Y, Z(j)) — H*?(X,Z(j + 1)) is
an isomorphism fof < dimY and surjective foi = dimY.

Proof. We first prove (a), and then indicate how the proof is to be modified in
order to obtain (b).
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Let IP be the variety of all hyperplanes in the ambient projective space. Let
Y={x,v) e X xP|xe),} ST XxP

be the incidence locus. Hekg denotes the hyperplane sectiondtorresponding
to the pointv € P. We have a diagram,

Yy X xP

o~

P

By Corollary (5.1) of Verdier[V],n is locally trivial (for the complex topology)
over a Zariski open, dense ¢t c P. Choose any point € U and letY = 7,
be the corresponding hyperplane section. tet ¥, be any point. Choose a line
P! c P such thatv € P! butx ¢ Y, for somew e P Then this pencil of
hyperplanes does not haweas a base point anfly: := 7~ *(P!) — P!is the
blow up of X along the base locus of this pencil. Since U, the local triviality
of = implies that there exists a fundamental system of neighbourh@aafsx (on
the blow-up ofX along the base locus of the above pencil), such that there are
homeomorphisms of pairé/, V NY,) = (Y, N V) x (D? 0) where D? is the
disc (i.e.,D?> = {z € C | |zl < 1)), and 0 e D? is the origin. Further, the
homeomorphisms are compatible with restrictionWif C V are neighbourhoods
in the fundamental system, the homeomorphismifgestricts to that fow).

Sincex is not a base point of the linear systép: — P2, it follows that there
exists a fundamental system of neighbourhoods iof X itself such that there are
homeomorphismgV, V NY,) = (V NY,) x (D? 0), compatible with restriction.

We deduce that any pointon a general hyperplane sectign= Y, of X has
a fundamental system of neighbourhoddf x in X, such thatV,vV nY,) =
(Y, NV) x (D?0).

Let #} (X)(j + 1) be the sheaf oiX associated to the presheaf

Vi Hyqy(V,Z(j + 1)),

whereV C X is open. We claim that

(i) #y(X)(n) =0forr # 2, and
(i) H2(X)(j + 1) = Z(j)y-

This is because, using the Kunneth decomposition for any givand for any
V > x as above,

H)(V,Z( + 1) = Hy o (Y N V) x D2 Z(j + 1))

>~ H' (Y NV, Z(j)) ® HX(D? SY, Z(1)) = H ~2(Y NV, Z())).
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Since any algebraic variety can be triangulated, so that any point on it has a basis
of neighbourhoods consisting of contractible sets, we seefjaX)(j + 1) is
zero forr # 2. There exists a map of sheag§j)y — #2(X)(j + 1) using the
cohomology class df in H2(X, Z(1)). The above analysis gives that this map is an
isomorphism on stalks, i.e., we have a sheaf isomorpH&X) (j +1) = Z(j)y.
This proves (i) and (ii) as claimed.

We have a spectral sequence

EY? = HP(Y, #L(X)(j + 1) = HI (X, Z(j + 1)).

Since #L(X)(j +1) = 0forg # 2 and#H2(X)(j + 1) = Z(j)y, we easily
deduce thas* = H'(Y, Z(j)) — HL™2(X, Z(j + 1)) is an isomorphism. This
isomorphism is just the cup product with the clasg of

The Gysin mapH (Y, Z(j)) — H'*2(X, Z(j + 1)) is the composite

H (Y, Z(j)) — H*(X,Z(j + 1) > HX(X,Z(j + 1)),

wherea forms part of the long exact sequence of cohomology groups

o> HYY (X =Y, Z(j+1) — HI(X,Z(j +1) > HY2(X,Z(j+1) —
HYX-Y,Z(j+1) - ...

SinceX — Y is affine, the first and the last terms vanish by the Weak Lefschetz
theorem wherti < dimY and the last term vanishes by the same result evegif
dimY. Hence the Gysin map is an isomorphismi#fet dimY and is surjective for
i =dimY.

Proof of (b). Let P be the projective space parametrizing all divisors (hypersur-
face sections oK) in the linear systemY |, which containC. We have, as before,
the following diagram

Y X xP

o~

P

SinceY is general, we may assume it corresponds to a poirit yfing in the
Zariski open set given by Corollary 5.1 of [V], applied to the morphjsry — P.
Consider as before the spectral sequence

EDY = HP(Y, #(X)(n)) = H} (X, Z(n)).

As in the proof of Theorem 4.1(a), this reduces us to proving that forvaayy,
the stalk#}, (Z(n)), = 0 fori # 2, and that#2(n), = Z(n — 1) is generated by
the class of.

Since we only consider divisors X containingC, our previous analysis about
the stalks of the sheave®), (X)(n) is valid except at points of'. But at a point
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of x € C — Xsing, C is either nonsingular or has a plane curve singularity; hence
Bertini’'s theorem implies that is a smooth Cartier divisor oK nearx (see [B],
Chap. 5), so that the stalks again have the form claimed.

To finish the proof, we need to consider stalks at a poigtC N Xgsing= C N
Using. It suffices to show that there exists a fundamental system of neighbourhoods
N of x in U such thatN, N NY) = (N NY) x (D?, 0). SinceY is general, and
Using is nonsingular of dimension — 1, we may assume (Bertini's theorem) that
Y N Using is nonsingular of dimensiom — 2.

Let ¥ = n~Y(Y). SinceW — Using is an analytic covering spac&, N W
is a smooth Cartier divisor o, in a neighbourhood ofr ~1(x). HenceY is
smooth and meet® transversally in a neighbourhood of 1(x). Let 7 ~1(x) =
{X]_, “eosy xk}.

Choose local analytic coordinate functions. . ., z,-1 € Oyggx SO thatz; =
zi o 7 give local analytic coordinates ot at eachr;, andY N W is defined on
W by z; = 0. There exists an analytic functidf) defined in a neighbourhood of
7~ Y(x) in V such that, = 0 definesw in V nearr ~1(x), andfori = 1,...,n—1
the functionst; extend (holomorphically) to a neighbourhoodnof(x) in V such
thatY is now defined locally iV by z; = 0. DefineN = 7 ({|z;/| < €|]1 < i <
n}) for sufficiently smalle. Note thatr ~1(N) is the disjoint union of polydisc
neighbourhoods around and N is obtained by identifying these polydiscs along
Z, = 0. Itis now clear that the paitN, N N Y) is homeomorphic tgN N Y) x
(D2, 0). Shrinkinge gives a fundamental system of such neighbourhaéds O

It follows from the above discussion that, féra general complete intersection
of very ample divisors inX with dimY = m > 2, we haveH?"~Y(Y, Z(m)) =
H?'~1(X, Z(n)), which implies a corresponding isomorphism on tensoring @ith
Since by [D], and Lemma 3.1, all the morphisms involved are morphisms of mixed
Hodge structuresF°H?"~1(Y, C(m)) maps ontoF°H%~1(X, C(m)) under the
above isomorphism. Hence the natural mépY) — J"(X) is an isomorphism

if m > 2. In casen = 1, the map/(Y) — J"(X) is a surjection onV-torsion

for eachN, because the map on lattices is surjective. This proves (d) of the Main
Theorem.

5. Roitman Theorem

We now prove the Roitman theorem, i.e., part (e) of the main theorem. In the case
when dimX = 2, i.e.,X is areduced singular surface, this is the Roitman Theorem
proved by Barbieri, Pedrini and Weibel in [BPW]. (We have a different, shorter
proof of this case which, however, we omit in order to save space.) The higher
dimensional case will be reduced to the surface case.

From now on, lefX be a reduced projective variety (ov&y of dimensiom > 3.

We first choose an algebraic subsetC Xsing as follows. LetX™ denote
the union of thez-dimensional components &f, and X’ the union of the smaller
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dimensional components. Let X — X be the normalisation. Then there exists a
closed sefA C X, with X' C A, codimym (AN X™) > 2, suchthatitV = X — A
andV = X — n~%(A), the hypotheses (i)—(iii) of Theorem 4.1(b) are satisfied.

Now let § be a O-cycle withs] € (CH"(X)dego and AJ¢(8) = 0. Then by
Lemma 2.1, the cyclés = (f)c € R"(X), whereC is a reduced Cartier curve on
X,andf € R(C, X). Further, we may assunemeetsXing only at smooth points
of Xsing, andC N Xsing is reduced. Finally, we can chooéketo be disjoint fromA
(apply Lemma 2.1, taking in that lemma to be the aboy& N X™).) Thus with
the above notatiorC C U, C N Xsing = C N Using, andC N Usingis a reduced finite
set of points.

Now as in [B], Chapter 5, we may make a sequence of blow-ups at smooth
pointsa: X’ — X, and find a 0-cyclé’ on X', such that

Q) a8’ =36
(2) for some reduced Cartier cur¢g on X’ and somef’ € R(C’, X'), we have
(e =ké&'

(3) each irreducible component 6f is smooth outside(;,,, and anyx € X' —
Xsinglies on at most 2 irreducible components(sf

(4) if a pointx € X' — Xg, lies on 2 irreducible components 6f, then both
components o€’ have distinct tangents at

By Lemma 3.4 and Corollary 3.6, the sequence of blow-ups does not change either
the Chow group or/"; hence we may assume without loss of generality that
X, C, f themselves have the above properties (2), (3), (4). Repldcingby their
inverse images iX’, we may assume (i), (i), (ii) hold as well (replage X — X
by its base change t&’, etc.). Now the (modified) curv€ satisfies ()—(iv') of
Theorem 4.1(b).

Applying Bertini’s theorem, we can find a reduced complete intersection surface
S of large degree irX such thatC C S, andS is smooth outside&ing (Using the
same arguments as given in [B]; the point is thatas local embedding dimension
< 2 outsideXsing). SinceC is a Cartier curve, we can also chodssuch thatC is a
Cartier divisor onS. Now sinces is supported or§, we apply Roitman’s Theorem
for surfaces [BPW], as follows.

LEMMAS5.2. LetX, C andS be as above. Then the Gysin mEB(S, Z(2)) —
H?~Y(X, Z(n), and the induced natural map?(S) — J"(X), are isomorphisms.

Proof.Let Y be a general hypersurface sectionxobf sufficiently high degree
containingC. ThenC is a Cartier curve oy, andY is smooth outsid& sing.

By (b) of Theorem 4.1, the Gysin mag?'~3(Y, Z(n — 1)) — H?* (X,
Z(n)) is an isomorphism. This implies that the corresponding miap'(Y) —
J"(X) is an isomorphism as well. The lemma then follows by induction on
n =dimX. O
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Finally, we have the diagram

+CH?(S)dego— +CH"(X)dego

W JA(S)

k" (X).

Now suppose that the chosen cycle cléads € (CH"(X)gego IS such that
AJg(8) = 0. Then for the Cartier curv€, the functionf € R(C, X), and a
surfaceS containingC as above, we have (j§] € CH?(S), sinceks = (f)c,

and R(C, X) = R(C,S); (i) AJ2() = 0 € ,J?(S), from the injectivity of
K J2(S) = J"(X) (i.e., the above lemma).

Hence[§] = 0 in C H?(S), by the Roitman theorem for surfaces [BPW]. This
implies[6] = 0in CH"(X).

Hence, we have shown that the mapH" (X)gego — «J"(X) is injective for
everyk. Since this map has already been proved to be surjective (by part (b) of the
Main Theorem), we get that it is an isomorphism. This finishes the proof of the
Roitman theorem (part (e) of the Main Theorem).
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