A NOTE ON THE FINITE FOURIER TRANSFORM

JAMES L. GRIFFITH

(rec. 20 June 1958. Revised 14 Nov. 1958)

1. One of the best known theorems on the finite Fourier transform is:-

The integral function $F(z)$ is of the exponential type C and belongs to L^{2} on the real axis, if and only if, there exists an $f(x)$ belonging to $L^{2}(-C, C)$ such that

$$
\begin{equation*}
F(z)=(2 \pi)^{-1 / 2} \int_{-C}^{C} \mathrm{e}^{i z x} f(x) d x \tag{1.1}
\end{equation*}
$$

(Boas [1], 6.8). Additionally, if $f(x)$ vanishes almost everywhere in a neighbourhood of C and also in a neighbourhood of $-C$, then $F(z)$ is of an exponential type lower than C.

Thus we may write

$$
\begin{equation*}
F(z)=(2 \pi)^{-1 / 2} \int_{B}^{A} e^{i z x} f(x) d x \tag{1.2}
\end{equation*}
$$

where the interval (B, A) is enclosed in the interval $(-C, C)$ and if $B \neq-C$, then $A=C$. Also $f(x)$ is not zero almost everywhere in any neighbourhood of A or of B.

We will assume that

$$
\begin{equation*}
f(x) \sim K(A-x)^{p}, \quad \operatorname{Re} p>-\frac{1}{2} \tag{1.3}
\end{equation*}
$$

as $x \rightarrow A-(K$, constant $\neq 0)$, and that

$$
\begin{equation*}
f(x) \sim M(x-B)^{q}, \quad \operatorname{Re} q>-\frac{1}{2} \tag{1.4}
\end{equation*}
$$

as $x \rightarrow B+(M$, constant $\neq 0)$.
The purpose of this note is to indicate the connection between equations (1.3) and (1.4) and the asymptotic behaviour of $F(i v)$ for large $|v|$.
2. We assume that $v>0$, then

$$
(2 \pi)^{1 / 2} F(-i v)=\int_{B}^{A} e^{v x} f(x) d x
$$

by a change in variable we obtain

$$
\begin{equation*}
(2 \pi)^{1 / 2} e^{-v A} F(-i v)=\int_{0}^{A-B} e^{-v y} f(A-y) d y \tag{2.1}
\end{equation*}
$$

Writing $U(x)$ as the unit function ($=1, x>0$ and $=0$ otherwise) we
immediately observe that equation (2.1) shows that $(2 \pi)^{1 / 2} e^{-v A} F(-i v)$ is the Laplace transform of $f(A-y) U(A-B-y)$.

If we note also that equation (1.3) may be written in the form

$$
f(A-y) \sim K y^{p}, \quad \operatorname{Re} p>-\frac{1}{2}
$$

as $y \rightarrow 0+$, we may apply Theorem 1 p. 473 of Doetsch [2] to obtain

$$
\begin{equation*}
(2 \pi)^{1 / 2} e^{-v A} F(-i v) \sim K \Gamma(p+1) v^{-p-1} \tag{2.2}
\end{equation*}
$$

as $v \rightarrow+\infty$.
Similarly, we have

$$
(2 \pi)^{1 / 2} e^{v B} F(i v)=\int_{0}^{A-B} e^{-v y} f(B+y) d y
$$

which will show that

$$
(2 \pi)^{1 / 2} e^{v B} F(i v) \sim M \Gamma(q+1) v^{-q-1}
$$

as $v \rightarrow+\infty$.
These results are summarized by
THEOREM 2. If $f(x)$ belongs to $L^{2}(B, A)$ and

$$
\begin{equation*}
F(z)=(2 \pi)^{-1 / 2} \int_{B}^{A} e^{i z x} f(x) d x \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
f(x) \sim K(A-x)^{p}, \quad \operatorname{Re} p>-\frac{1}{2} \tag{i}
\end{equation*}
$$

as $x \rightarrow A-$, where K is a constant,

$$
\begin{equation*}
f(x) \sim M(x-B)^{q}, \quad \operatorname{Re} q>-\frac{1}{2} \tag{2.5}
\end{equation*}
$$

as $x \rightarrow B+$, where M is a constant, then

$$
\begin{equation*}
F(i v) \sim(2 \pi)^{-1 / 2} M \Gamma(q+1) v^{-q-1} e^{-v B} \tag{2.6}
\end{equation*}
$$

as $v \rightarrow+\infty$, and

$$
\begin{equation*}
F(i v) \sim(2 \pi)^{-1 / 2} K \Gamma(p+1)(-v)^{-p-1} e^{-v A} \tag{2.7}
\end{equation*}
$$

as $v \rightarrow-\infty$.
Note:- A modification of the proof of Theorem 2 will allow equations (2.6) and (2.7) to be replaced by

$$
\begin{equation*}
F(z) \sim(2 \pi)^{1 / 2} M \Gamma(q+1)(-i z)^{-p-1} e^{i z B} \tag{2.8}
\end{equation*}
$$

as $|z| \rightarrow \infty$ with $0<\arg z<\pi$, and

$$
\begin{equation*}
F(z) \sim(2 \pi)^{1 / 2} K \Gamma(p+1)(i z)^{-q-1} e^{i z A} \tag{2.9}
\end{equation*}
$$

as $|z| \rightarrow \infty$ with $-\pi<\arg z<0$.
3. We now assume that $F(z)$ is an integral function of type C which belongs to $L^{2}(-\infty, \infty)$ on the real axis and that equations (2.6) and (2.7) hold. Then the theorems of Boas [1] quoted at the beginning of this note show that there is a function $f(x)$ belonging to $L^{2}(-C, C)$ such that

$$
\begin{equation*}
(2 \pi)^{1 / 2} F(z)=\int_{P}^{Q} e^{i z x} f(x) d x \tag{3.1}
\end{equation*}
$$

where the interval (P, Q) is included in the interval $(-C, C)$.
With a change of variable, we obtain

$$
(2 \pi)^{1 / 2} e^{v P} F(i v)=\int_{0}^{Q-P} e^{-v y} f(P+y) d y
$$

which may be modified to

$$
\begin{align*}
(2 \pi)^{1 / 2} e^{v B} F(i v) v^{q+1} & =e^{v(B-P)} v^{q+1} \int_{0}^{\eta} e^{-v y} f(P+y) d y \\
& +e^{v(B-P-\eta)} v^{q+1} \int_{0}^{Q-P-\eta} e^{-v y} f(P+\eta+y) d y \tag{3.2}
\end{align*}
$$

where $0<\eta<Q-P$.
Since $f(x)$ belongs to $L^{1}(P, Q)$, the integrals on the right side of equation (3.2) are bounded uniformly in v. Using equation (2.6) we see that $P=B$ and that $f(P+y)$ is not zero almost everywhere in $0<y<\eta$ and also that

$$
\begin{align*}
\lim _{v \rightarrow+\infty} v^{q+1} \int_{0}^{\eta} e^{-v v} f(\dot{P}+y) d y & =\lim _{v \rightarrow+\infty}(2 \pi)^{1 / 2} e^{v B} F(i v) v^{a+1} \tag{3.3}\\
& =M \Gamma(q+1)
\end{align*}
$$

That is

$$
\begin{equation*}
\int_{0}^{\eta} e^{-v y} f(P+y) d y \sim M \Gamma(q+1) v^{-q-1} \tag{3.4}
\end{equation*}
$$

as $v \rightarrow+\infty$.
Now chapter 16 of Doetsch [2] is devoted almost entirely to the discussion of the implications of equations of the type (3.4). Possibly the most general result is obtained from his Theorem 4 of page 512 . Here q is restricted to have real values and it must be known that $f(P+y)>-S y^{q}$ for some S. We may then infer that

$$
\int_{0}^{y} f(P+y) d y \sim M \frac{y^{q+1}}{q+1}
$$

as $y \rightarrow 0+$.
We may now return to equation (3.1) and examine the upper limit Q. We can show that $A=Q$ and derive similar conclusions to those just made. We summarize this work in

THEOREM 3. If $F(z)$ is an integral function of the exponential type such that
(i) $\quad F(x)$ belongs to $L^{2}(-\infty, \infty)$ on the real axis, and
(ii) equations (2.6) and (2.7) hold, then there exists a function $f(x)$ which belongs to $L^{2}(B, A)$ such that
(α) equation (2.3) holds, and
$(\beta) f(x)$ does not vanish almost everywhere in any neighbourhood of B, or in any neighbourhood of A.

Additionally, if M and q are real, and if $f(x)>-S_{1}(x-B)^{a}$ for some constant upper neighbourhood of B, then

$$
\begin{equation*}
\int_{B}^{x} f(t) d t \sim \frac{M(x-B)^{q+1}}{p+1} \tag{3.5}
\end{equation*}
$$

as $x \rightarrow B+$; and if K and p are real, and if $f(x)>-S_{2}(A-x)^{p}$ for some constant S_{2} in a lower neighbourhood of A, then

$$
\begin{equation*}
\int_{x}^{A} f(t) d t \sim \frac{K(A-x)^{p+1}}{q+1} \tag{3.6}
\end{equation*}
$$

as $x \rightarrow A-$.
The estimates (3.5) and (3.6) still hold if one (or both) of the inequality signs in the last paragraph is changed from $>$ to $<$.

\dot{R} eferences

[1] Boas Jnr, R. P., Entire Functions, Academic Press, New York (1954).
[2] Doetsch, G., Handbuch der Laplace-Transformation, Bd 1, Birkhäuser, Basel (1950).
University of New South Wales
Sydney, Australia

