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ON THE TRANSITION DENSITIES
FOR REFLECTED DIFFUSIONS

VADIM LINETSKY,∗ Northwestern University

Abstract

Diffusion models in economics, finance, queueing, mathematical biology, and electrical
engineering often involve reflecting barriers. In this paper, we study the analytical
representation of transition densities for reflected one-dimensional diffusions in terms of
their associated Sturm–Liouville spectral expansions. In particular, we provide explicit
analytical expressions for transition densities of Brownian motion with drift, the Ornstein–
Uhlenbeck process, and affine (square-root) diffusion with one or two reflecting barriers.
The results are easily implementable on a personal computer and should prove useful in
applications.
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1. Introduction

Diffusions with one or two reflecting barriers appear in many applications in economics,
finance, queueing, mathematical biology, and electrical engineering. Among economics and
finance applications, we mention the currency exchange rate target-zone models pioneered by
Krugman (1991) (see also Svensson (1991), Bertolla and Caballero (1992), de Jong (1994), and
Ball and Roma (1998)), in which the currency exchange rate is allowed to float within a target
zone with two barriers enforced by the monetary authority; asset pricing models with price
caps and/or price supports (e.g. price supports for agricultural commodities (see Hanson et al.
(1999)); interest rate models with targeting by the monetary authority (e.g. Farnsworth and Bass
(2003)); interest rate models with reflection at zero interest rate (e.g. Goldstein and Keirstead
(1997) and Gorovoi and Linetsky (2004)); and stochastic volatility models (e.g. Schobel and
Zhu (1999)). References to further applications in economics can be found in Veestraeten
(2004).

In queueing theory, diffusions with reflecting barriers arise as heavy-traffic approximations
of queueing systems. Reflected Brownian motion has long played a key role in queueing models
(Harrison (1985), Abate and Whitt (1987a), (1987b)). More recently, reflected Ornstein–
Uhlenbeck (OU) and reflected affine processes have been studied as approximations of queueing
systems with reneging or balking (Ward and Glynn (2003a), (2003b)) and multiserver loss
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models (Srikant and Whitt (1996)). Applications of reflected Ornstein–Uhlenbeck processes in
mathematical biology were discussed in Ricciardi and Sacerdote (1987).

Explicit knowledge of the transition density of a process is important for the study of its
transient properties and for statistical estimation of the process parameters from empirical
data. The present paper studies the analytical representation of transition densities for reflected
one-dimensional diffusions in terms of their associated Sturm–Liouville spectral expansions.

Applications of spectral theory to diffusions go back to McKean (1956) (see also Itô and
McKean (1974, Section 4.11) and Wong (1964)). Based on the work of Feller on one-
dimensional diffusions, McKean constructed a spectral representation for a general one-dimen-
sional diffusion. At around the same time, Karlin and McGregor (1957) constructed spectral
representations for birth-and-death processes. The spectral expansion provides an analytical
representation of the transition density. Roughly speaking, the spectral expansion may be
interpreted as a large-time expansion in which the first term, corresponding to the zero principal
eigenvalue, gives the steady-state density (if it exists), while the terms corresponding to the
higher eigenvalues provide finite-time corrections to the steady-state density. Thus, we are
able to study how the process converges to the steady state. Moreover, the explicit analytical
knowledge of the transition density facilitates the maximum likelihood estimation of the process
parameters from empirical data. A range of recent applications of spectral expansions to
diffusion models in finance can be found in Lewis (1998), Davydov and Linetsky (2003),
Gorovoi and Linetsky (2004), Linetsky (2004a), (2004b), (2004c), (2004d), (2004e), and
references therein.

The paper is organized as follows. In Section 2, we give spectral representation results for
one-dimensional diffusions with general drift and diffusion parameters and reflection at the
origin. In Section 3, we give the large-n asymptotics for eigenvalues and eigenfunctions for
diffusions on a finite interval, reflected at both ends. In Section 4, we illustrate our results
with examples of Brownian motion with drift on a finite interval, reflected at both ends, and on
[0,∞), reflected at the origin. In Section 5, we provide an analytical treatment of the Ornstein–
Uhlenbeck process on the finite interval, reflected at both ends, and on [0,∞), reflected at the
origin. In Section 6, we provide an analytical treatment of affine (square-root) diffusions on the
finite interval, reflected at both ends, and on [0,∞), reflected at the origin. These results should
be particularly useful for economics, finance, queueing, and mathematical biology, as OU and
affine diffusions are widely used in these areas. In Section 7, we illustrate our results with
numerical examples of reflected OU and affine diffusions computed in MATHEMATICA®,
and show that spectral expansions provide a powerful computational tool to study the transient
behaviour of reflected diffusions. The Bessel processes with drift that appeared in queueing
applications in Coffman et al. (1998) are treated in a companion paper Linetsky (2004e).

2. Spectral representation of reflected diffusions

Consider a one-dimensional regular, time-homogeneous diffusion {Xt, t ≥ 0} with state
space I = [0, r] or I = [0, r), r ≤ ∞, and infinitesimal generator

(Gf )(x) = 1
2a

2(x)f ′′(x)+ b(x)f ′(x), x ∈ (0, r),

acting on functions on I subject to appropriate regularity and boundary conditions.

Assumption 1. We assume that the diffusion coefficient a(x) is continuous and strictly positive
on [0, r) and that the drift coefficient b(x) is continuous on [0, r).
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The infinitesimal generator can be rewritten as

(Gf )(x) = 1

m(x)

(
f ′(x)
s(x)

)′
, x ∈ (0, r),

where s(x) and m(x) are the scale and speed densities (see Borodin and Salminen (1996) or
Karlin and Taylor (1981) for details):

s(x) = exp

(
−

∫ x 2b(y)

a2(y)
dy

)
, m(x) = 2

a2(x)s(x)
.

The densities s(x) and m(x) are defined up to a scaling constant, i.e. s(x) → cs(x) and
m(x) → c−1m(x).

Assumption 2. We assume that the origin is a regular instantaneously reflecting boundary
included in the state space and that (Gf )(0) := limx↓0(Gf )(x). The right-hand boundary
r ≤ ∞ is either regular instantaneously reflecting, in which case it is included in the state
space I = [0, r] and (Gf )(r) := limx↑r (Gf )(x), entrance, or nonattracting natural with∫ r

0
m(x) dx < ∞.

If r is entrance or natural, it is not included in the state space I = [0, r).
Under these assumptions, X has a stationary distribution with density

π(x) = c−1m(x), c :=
∫ r

0
m(x) dx. (1)

We can choose the scaling constant in the definition of s(x) and m(x) so that
∫ r

0 m(x) dx = 1
but, for future convenience, we will not do so.

Let Cb(I ) be the Banach space of real-valued, bounded continuous functions on I . Then,
the conditional expectation operators

(Pt f )(x) := Ex[f (Xt )] =
∫
I

f (y)p(t; x, y) dy

(where Ex[·] ≡ E[· | X0 = x]) form a Feller semigroup {Pt , t ≥ 0} in Cb(I ). Here, p(t; x, y)
is the transition density with respect to the Lebesgue measure. The domain of the infinitesimal
generator G of {Pt , t ≥ 0} in Cb(I ) is

D(G) := {f ∈ Cb(I ) : Gf ∈ Cb(I ), boundary conditions at 0 and r}.
The boundary condition at 0 is

f ′(0) = 0. (2)

If r is regular instantaneously reflecting or entrance, then the boundary condition can be written
in the form

lim
x↑r

f ′(x)
s(x)

= 0. (3)

If r is natural, then no boundary condition is needed there.

https://doi.org/10.1239/aap/1118858633 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1118858633


438 V. LINETSKY

Let L2(I,m) be the Hilbert space of real-valued functions on I square integrable on I with
weight m and with inner product

(f, g) =
∫
I

f (x)g(x)m(x) dx.

The Feller semigroup {Pt , t ≥ 0} restricted to Cb(I ) ∩ L2(I,m) extends uniquely to a self-
adjoint contraction semigroup on L2(I,m) with the infinitesimal generator G, an unbounded
self-adjoint, nonpositive operator inL2(I,m) (McKean (1956); see also Itô and McKean (1974,
Section 4.11) and Langer and Schenk (1990)). The spectral decomposition of G in L2(I,m)
yields the spectral decomposition of the semigroup Pt and the spectral representation of the
transition density p(t; x, y):

p(t; x, y) = m(x)

∫
[0,∞)

e−λtψ(x, λ)ψ(y, λ) dρ(λ), t > 0. (4)

In the spectral expansion (4), ψ(x, λ) is the unique solution of the Sturm–Liouville (SL)
equation

−(Gu)(x) = λu(x) (5)

with the initial conditions
u(0) = 1, u′(0) = 0, (6)

and ρ(λ) is the (nondecreasing, right-continuous) spectral function of the SL operator A = −G
(i.e. the negative of the infinitesimal generator G). The integral in (4) converges uniformly in x
and y on compact squares in I × I (McKean (1956)).

The problem is thus reduced to determining the spectral function ρ(λ) and the solution
ψ(x, λ) of the initial value problem. When r is not a natural boundary, the spectrum of G is
purely discrete (McKean (1956, Theorem 3.1)). When r is a natural boundary, the situation
is more complicated and there may be a nonempty continuous region in the spectrum. The
foregoing discussion of natural boundaries follows Linetsky (2004d). Natural boundaries can
be classified into two further subcategories, based on the oscillation of solutions of the associated
SL equation (5). For a given real λ, (5) is said to be oscillatory at an endpoint e if and only if
every solution has infinitely many zeros clustered at e. Otherwise, it is said to be nonoscillatory
at e. These subcategories are mutually exclusive for a fixed real λ, but the classification can
vary with λ. Generally, if an endpoint is a regular, exit, or entrance boundary for the diffusion
process, then the associated SL equation is nonoscillatory for all real λ at that endpoint. In our
case, 0 is regular reflecting and, hence, the SL equation is nonoscillatory at 0 for all λ. If r is
regular reflecting or entrance, then the SL equation is nonoscillatory at r for all λ. If r is natural,
there are two alternatives: either (i) (5) is nonoscillatory at r for all real λ (correspondingly, r
is called nonoscillatory) or (ii) there exists a real number� ≥ 0 such that (5) is oscillatory at r
for all λ > � and nonoscillatory at r for all λ < � (correspondingly, r is called oscillatory
with cutoff �). Equation (5) can be either oscillatory or nonoscillatory at r for λ = � > 0. It
is always nonoscillatory for λ = 0.

Based on this classification of boundaries, the spectrum of the SL operator A associated
with the diffusion process X on [0, r), with reflecting boundary at 0 and natural boundary at r ,
is classified as follows: (i) if r is nonoscillatory then the spectrum is simple, nonnegative, and
purely discrete, while (ii) if r is oscillatory, with cutoff � ≥ 0, then the spectrum is simple
and nonnegative, the essential spectrum is nonempty, σe(A) ⊆ [�,∞), and � is the lowest
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point of the essential spectrum. (A real value λ ∈ R is said to be in the essential spectrum of
a self-adjoint differential operator if and only if one or both of the following hold: (a) λ is in
the continuous spectrum; (b) λ is a limit point of the point spectrum.) Furthermore, if the SL
equation is nonoscillatory at r for λ = � ≥ 0, then there is a finite set of simple eigenvalues
in [0,�] (under Assumption 2, the set contains at least the principal eigenvalue λ0 = 0). If
the SL equation is oscillatory at r for λ = � > 0, then there is an infinite sequence of simple
eigenvalues in [0,�), with the limit point �.

Thus, nonoscillatory natural boundaries are similar to regular, exit, and entrance boundaries
in that they do not generate any continuous spectrum. Suppose that Assumptions 1 and 2 are
satisfied and that r is either a regular instantaneously reflecting, entrance, or nonoscillatory
nonattracting natural boundary. Let λ0 = 0 < λ1 < λ2 < · · · be the eigenvalues of the
SL operator A. (Note that the principal eigenvalue is λ0 = 0 since constants satisfy the SL
equation (5) with λ = 0 and the boundary conditions at 0 and r .) Then the spectral function
can be written in the form

ρ(λ) =
∞∑
n=0

1

‖ψ(·, λn)‖2 1{λn≤λ}, (7)

where 1{λn≤λ} = 1 if λn ≤ λ and 1{λn≤λ} = 0 if λn > λ, and ‖ · ‖ is the L2(I,m) norm. It
jumps by ‖ψ(·, λn)‖−2 at an eigenvalue λ = λn. The spectral representation (4) thus reduces
to the eigenfunction expansion

p(t; x, y) = π(y)+ m(y)

∞∑
n=1

e−λntϕn(x)ϕn(y), t > 0, (8)

where the sum converges uniformly in x and y on compact squares in I × I . Here, ϕn are the
normalized eigenfunctions given by (up to an overall sign) ϕn(x) = ±ψ(x, λn)/‖ψ(·, λn)‖.
The first term in the expansion, corresponding to the principal eigenvalue λ0 = 0, is the
stationary density (1) (note that ψ(x, 0) = 1).

Thus, the problem is reduced to determining the eigenvalues λn and eigenfunctions ϕn.

Proposition 1. For λ ∈ C and x ∈ I , let φ(x, λ) be the unique (up to a factor independent of x)
nontrivial solution of the SL equation (5) square integrable with weight m near r , satisfying the
boundary condition (3) at r , and such that φ(x, λ) and φ′(x, λ) ≡ ∂φ(x, λ)/∂x are continuous
in x and λ in I×C and entire in λ for each fixed x ∈ I . Then the eigenvalues {λn, n = 0, 1, . . . }
can be identified with simple nonnegative zeros of φ′(0, λ), i.e. roots of the equation

φ′(0, λ) = 0,

and the normalized eigenfunctions can be written in the form

ϕn(x) = ±
√

s(0)

Anδn
φ(x, λn) = ±

√
s(0)An
δn

ψ(x, λn), (9)

where

An := φ(0, λn), δn := dφ′(0, λ)
dλ

∣∣∣∣
λ=λn

. (10)
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Proof. The solution φ(x, λ) with the required properties exists by Lemma 1 in Linetsky
(2004d). For λ ∈ C and x ∈ I , let ψ(x, λ) be the unique solution of the SL equation (5) with
the initial conditions (6). Both ψ(x, λ) and ψ ′(x, λ) are continuous in x and λ in I × C and
entire in λ for each fixed x ∈ I . Sinceψ(x, λ) and φ(x, λ) are solutions of the SL equation, and
ψ(x, λ) satisfies the initial conditions (6), the Wronskian ofψ(x, λ) and φ(x, λ) is independent
of x and is entire in λ:

ψ(x, λ)
φ′(x, λ)

s(x)
− φ(x, λ)

ψ ′(x, λ)
s(x)

=: w(λ).

Setting x = 0 and using the initial condition (6), we have for the Wronskian

w(λ) = φ′(0, λ)
s(0)

. (11)

The eigenfunction ϕn satisfies the boundary condition (2) at 0; hence, it must be equal
to ψ(x, λn) up to a nonzero constant multiple. However, ϕn(x) also satisfies the boundary
condition at r and, hence, it must also be equal to φ(x, λn) up to a nonzero constant multiple.
Thus, for λ = λn, ψ(x, λn) and φ(x, λn) are linearly dependent, φ(x, λn) = Anψ(x, λn), and,
hence, their Wronskian must vanish for λ = λn. Setting x = 0 and using the initial condition
at 0, we find that An = φ(0, λn). Thus, from (11), the eigenvalues can be identified with the
zeros of φ′(0, λ). Conversely, let λn be a zero of φ′(0, λ). Then ψ(x, λn) and φ(x, λn) are
linearly dependent and, hence,ψ(x, λn) is a solution of the SL equation that is square integrable
with weight m on I and satisfies the required boundary conditions at 0 and r , i.e. ψ(x, λn) is
a (nonnormalized) eigenfunction corresponding to the eigenvalue λn. Finally, up to an overall
sign, the normalized eigenfunctions can be written in the form

ϕn(x) = ± ψ(x, λn)

‖ψ(·, λn)‖ = ± φ(x, λn)

‖φ(·, λn)‖ ,

where the norms can be calculated analytically (see Lemma 2 in Linetsky (2004d), with
w′(λn) ≡ (dw(λ)/dλ)|λ=λn ), giving

‖ψ(·, λn)‖2 = w′(λn)
An

= δn

s(0)An
, ‖φ(·, λn)‖2 = w′(λn)An = Anδn

s(0)
,

where δn and An are as defined in (10).

Thus, when r is nonoscillatory, the problem is reduced to determining the zeros λn of
φ′(0, λ). We now study the case in which r is an oscillatory natural boundary with cutoff� ≥ 0.
Sufficient conditions for the oscillatory/nonoscillatory classification of natural boundaries can
be formulated directly in terms of the behaviour of a(x) and b(x) near the boundary r (Linetsky
(2004d)). We first transform the SL equation (5) to the Liouville normal form. The following
smoothness assumptions are sufficient to be able to perform the Liouville transformation.

Assumption 3. The functions a′(x), a′′(x), and b′(x) exist and are continuous on [0, r).
We transform the independent and dependent variables as follows, where x = x(y) is the

inverse of the Liouville transformation y = y(x):

y = y(x) = √
2

∫ x

0

dz

a(z)
, v(y) = 21/4u(x(y))√

a(x(y))s(x(y))
. (12)
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The function v(y) then satisfies the SL equation in the Liouville normal form (in which the
coefficient in front of the second derivative is constant and equal to negative one and the first-
derivative term is absent; the SL equation in the Liouville normal form has the form of the
one-dimensional Schrödinger equation):

−v′′ +Q(y)v = λv, y ∈ (0, R), R := y(r). (13)

Here, the potential function Q(y) is given by

Q(y) = V(x(y)), (14)

where

V(x) := 1

8
(a′(x))2 − 1

4
a(x)a′′(x)+ b2(x)

2a2(x)
+ 1

2
b′(x)− b(x)a′(x)

a(x)
,

and is continuous on [0, r).
The oscillatory/nonoscillatory classification remains invariant under the Liouville transfor-

mation, i.e. (5) is nonoscillatory at r for a particular λ if and only if (5) is nonoscillatory at R
for that λ. The oscillatory/nonoscillatory classification of (5) depends on the behaviour of the
potential function Q near R. To formulate the classification result, we make the following
additional assumption.

Assumption 4. Let r be a natural boundary. We assume that the limit limx↑r V(x) exists (it is
allowed to be infinite).

Under this assumption, we have the following two alternatives. (i) Suppose that r is trans-
formed into a finite endpoint by the Liouville transformation, i.e. R < ∞; then r is nonoscil-
latory. (ii) Suppose that r is transformed into R = ∞ by the Liouville transformation. If

lim
x↑r V(x) = ∞

then r is nonoscillatory. If, for some finite �,

lim
x↑r V(x) = �, (15)

then r is oscillatory with cutoff�. Since the SL operator A is nonnegative, it follows that� ≥ 0.
If � = 0, r is always nonoscillatory for λ = � = 0. To determine whether r is oscillatory or
nonoscillatory for λ = � > 0, we have the following criterion. If

lim
y↑R y

2(Q(y)−�) > − 1
4 , (16)

then r is nonoscillatory for λ = � > 0, while if

lim
y↑R y

2(Q(y)−�) < − 1
4 ,

then r is oscillatory for λ = � > 0.
When r is an oscillatory natural boundary with cutoff � ≥ 0, there is some nonempty

essential spectrum above �. In general, the essential spectrum may have a complicated
structure. In particular, if the potential function oscillates towards an infinite boundary, it may
consist of an infinite sequence of disjoint intervals separated by gaps. Furthermore, eigenvalues
may be present in the gaps or embedded in the continuous spectrum. The following assumption
simplifies the structure of the essential spectrum.
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Assumption 5. If r is an oscillatory natural boundary with cutoff �, we assume that the
function V(x) has bounded variation on [0, r).

With this assumption, the essential spectrum of A is σe(A) = [�,∞). Moreover, the
spectrum above � is purely absolutely continuous (see Linetsky (2004d)), and the spectral
function ρ(λ) can be written in the form

ρ(λ) =
∑
n≥0

1

‖ψ(·, λn)‖2 1{λn≤λ} +ρac(λ) 1{�≤λ} . (17)

Here, ρac(λ) is the absolutely continuous part and {λn} are the eigenvalues in [0,�]. If r is
nonoscillatory for λ = � then this set is finite and contains at least the principal eigenvalue
λ0 = 0. If r is oscillatory for λ = � then the set is infinite; there is an infinite sequence of
eigenvalues starting with λ0 = 0 and increasing towards � – the limit point of this sequence.
In both cases, the spectral expansion for the density reduces to

p(t; x, y) = π(y)+ m(y)
∑
n≥1

e−λntϕn(x)ϕn(x)+ m(y)

∫ ∞

�

e−λtψ(x, λ)ψ(y, λ) dρac(λ).

(18)

Remark 1. The spectral function (17) can be obtained as follows. Pick some ε ∈ (0, r) and
consider a diffusion process X(ε) reflected at ε. The right-hand endpoint ε is regular reflecting
and the spectral function ρ(ε)(λ) has the form (7). Then take the limit as ε → r . The limit
limε↑r ρ(ε)(λ) = ρ(λ) produces the spectral function of the original problem on [0, r) with
natural boundary r . This is the standard approach of approximating a singular SL problem with
a regular problem by placing a regular boundary just before the singular boundary (Levinson
(1951), Levitan (1950), McKean (1956), Levitan and Sargsjan (1975)). The regularized problem
has a purely discrete spectrum. The singular problem is recovered in the limit of taking the
regular boundary towards the singular one. Roughly speaking, the discrete spectrum above �
of the regular problem on [0, ε] merges into the continuous spectrum of the singular problem
on [0, r) in the limit as ε ↑ r . (As ε increases towards r , the eigenvalues are distributed more
and more densely and, in the limit, merge to form the continuous spectrum.)

Remark 2. Equations (8) and (18) give the spectral representation of the transition density. It is
straightforward to show that the cumulative distribution function has the spectral representation

Px(Xt ≤ y) = Pπ (X∞ ≤ y)−
∞∑
n=1

e−λnt ϕn(x)ϕ
′
n(y)

λns(y)
, t > 0, x ∈ I, (19)

when r is nonoscillatory, and

Px(Xt ≤ y) = Pπ (X∞ ≤ y)−
∑
n≥1

e−λnt ϕn(x)ϕ
′
n(y)

λns(y)
−

∫ ∞

�

e−λt ψ(x, λ)ψ ′(y, λ)
λs(y)

dρac(λ),

when r is oscillatory with cutoff � ≥ 0. Here, Pπ (X∞ ≤ y) = ∫ y
0 π(x) dx.

Remark 3. In this section we have made a number of assumptions on the drift and diffusion
coefficients of the process and its boundary behaviour (Assumptions 1–5). Here we comment
on each of the assumptions in turn. Continuity of a(x) and b(x) (Assumption 1) is not necessary
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in order to develop the general form of the spectral representation for transition density. In fact,
McKean’s (1956) spectral representation is valid in the general case of diffusion defined by
scale and speed measures that are not required to be absolutely continuous with respect to the
Lebesgue measure (e.g. Borodin and Salminen (1996, pp. 16–17)). Moreover, the spectral
representation generalizes to gap diffusions (e.g. Langer and Schenk (1990)). We made the
simplifying assumption of continuous coefficients in order to be able to apply standard results
from Sturm–Liouville theory that require continuity of coefficients.

Furthermore, we restricted ourselves to processes with the right-hand boundary r being
reflecting, entrance, or nonattracting natural (Assumption 2). Under this assumption, the
process has a stationary density. This is a case often encountered in applications of reflected
diffusions. However, all results in this paper can be directly modified to extend to the cases in
which r is either killing (e.g. an OU process reflected at 0 and killed at r < ∞; see Linetsky
(2004a) for details on the killed OU process) or attracting natural (e.g. Brownian motion on
[0,∞), reflected at 0, with positive drift). In the former case, the boundary condition (3) at r
changes to f (r) = 0 (in the latter case, no boundary condition at r is necessary). In these cases,
the process does not have a stationary distribution and zero is no longer the principal eigenvalue
(the lower bound of the spectrum is strictly positive). See Linetsky (2004d) for more details.

Assumption 3, of further continuity of a(x) and b(x), is only needed in order to be able to
perform the Liouville transformation to the Schrödinger form (13), and Assumptions 4 and 5,
of the existence of the limit and the bounded variation of V(x), are only needed in order to
formulate a simple and explicit classification of the spectrum. These assumptions are satisfied
in most applications (e.g. OU and affine processes). However, in general, these assumptions
are not required in order to be able to construct the spectral representation. In fact, an example
of a process with constant diffusion coefficient, drift m(x) = −pµβ for 0 ≤ x < pκ and
m(x) = −pµ(x + β) for x < 0, discontinuous first derivative, and a reflecting boundary
condition at pκ appears in Whitt (2004, Theorem 2.1) and Whitt (2005, Theorem 2.1) in
queueing applications (µ and β are constant parameters). In this case, we cannot reduce the
Sturm–Liouville equation to the Schrödinger form (13) with continuous potential, but we can
still either work with the original SL equation (5) directly, or with the Schrödinger equation
with discontinuous potential, to construct the corresponding spectral expansion.

3. Large-n eigenvalue and eigenfunction asymptotics
for diffusions reflected at both boundaries

Consider a diffusion on [0, r] with both 0 and r regular instantaneously reflecting boundaries
and suppose that Assumptions 1 and 2 hold on [0, r]. Large-n eigenvalue and eigenfunction
asymptotics for regular SL operators are available in the Sturm–Liouville literature. The
following results follow from the results in Fulton and Pruess (1994).

Consider the SL equation (5) with the boundary conditions u′(0) = 0 and u′(r) = 0. The
Liouville transformation (12) transforms (5) to the Liouville normal form (13). The boundary
conditions are transformed into the boundary conditions

v′(0)− γ1v(0) = 0, v′(R)− γ2v(R) = 0, (20)

where the coefficients γ1 and γ2 are given by

γ (x) := 1√
2

(
b(x)

a(x)
− a′(x)

2

)
, γ1 := γ (0), γ2 := γ (r).
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LetQ(y) be the potential function (14) (in this section we assume thatQ′(y) exists on [0, R]).
We introduce the notation

C1 :=
∫ R

0
Q(y) dy, C2 :=

∫ R

0
Q2(y) dy,

A(x) :=
∫ y(x)

0
Q(z) dz, x ∈ [0, r],

where

y(x) = 21/2
∫ x

0
a(z)−1 dz.

We have the following large-n asymptotics for the eigenvalues and normalized eigenfunctions:

λn = n2π2

R2 + a0 + a2

n2π2 +O

(
1

n4

)
, (21)

a0 = 1

R
(2γ1 − 2γ2 + C1),

a2 = 1
4R(C2 +Q′(R)−Q′(0))+ R(γ1Q(0)− γ2Q(R))− 2

3R(γ
3
1 − γ 3

2 )

− (γ1 − γ2 + 1
2C1)

2,

ϕn(x) = ±21/4

√
a(x)s(x)

R

×
{

cos

(
nπy(x)

R

)
+ R

nπ
( 1

2A(x)+ γ1 − 1
2a0y(x)) sin

(
nπy(x)

R

)}
+O

(
1

n2

)
.

(22)

These estimates are useful in applications. The large-n asymptotics of the eigenvalues
facilitate the numerical work of finding accurate eigenvalues as zeros of the Wronskian w(λ).
We can use the estimates as a starting point of some numerical search procedure to find the
accurate values of λn. Often, even for moderate values of n, the estimates approximate the exact
eigenvalues and eigenfunctions sufficiently closely. Here we have given the large-n eigenvalue
estimates with an error of the order 1/n4. Additional terms in the 1/n expansions can be
obtained by following the procedure in Fulton and Pruess (1994).

4. Reflected Brownian motion with drift

4.1. Brownian motion with drift on [0, r], reflected at 0 and r

Consider Brownian motion with constant drift µ ∈ R on [0, r], reflected at both 0 and r .
The scale, speed, and stationary densities are

s(x) = e−2µx, m(x) = 2e2µx, π(x) = 2µe2µx

e2µr − 1
,

respectively. The associated SL equation has constant coefficients:

1
2u

′′ + µu′ + λu = 0. (23)
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For λ ∈ C and x ∈ [0, r], the solutions φ(x, λ) and ψ(x, λ), with the initial conditions
φ(r, λ) = 1 and φ′(r, λ) = 0, and ψ(0, λ) = 1 and ψ ′(0, λ) = 0, and their Wronskian are

φ(x, λ) = eµ(r−x)
{

cosh(ν(λ)(r − x))− µ

ν(λ)
sinh(ν(λ)(r − x))

}
,

ψ(x, λ) = e−µx
{

cosh(ν(λ)x)+ µ

ν(λ)
sinh(ν(λ)x)

}
,

w(λ) = eµr
2λ

ν(λ)
sinh(ν(λ)r), where ν(λ) =

√
µ2 − 2λ.

The Wronskian zeros/eigenvalues are

λ0 = 0, λn = µ2

2
+ π2n2

2r2 , n = 1, 2, . . . .

Substituting λn into φ(x, λ) gives φ(x, λ0) = 1,

φ(x, λn) = (−1)neµ(r−x)
{

cos

(
xπn

r

)
+ µr

πn
sin

(
xπn

r

)}
, n = 1, 2, . . . ,

and
A0 = 1, An = φ(0, λn) = (−1)neµr, n = 1, 2, . . . .

The Wronskian derivative evaluated at λn is

δn = w′(λn) = (−1)neµrr

(
1 + µ2r2

π2n2

)
.

The normalized eigenfunctions (9) can be written in the form

ϕn(x) = ± e−µx√
r(1 + (µ2r2/π2n2))

{
cos

(
xπn

r

)
+ µr

πn
sin

(
xπn

r

)}
. (24)

Substituting this result into (8) and (19), we obtain the density and the cumulative distribution
function as follows:

p(t; x, y) = 2µe2µx

e2µr − 1
+ 2

r
eµ(y−x)−µ2t/2

×
∞∑
n=1

e−(π2n2/2r2)t

µ2 + π2n2/r2

{
πn

r
cos

(
xπn

r

)
+ µ sin

(
xπn

r

)}

×
{
πn

r
cos

(
yπn

r

)
+ µ sin

(
yπn

r

)}
(25)

and

Px(Xt ≤ y) = e2µy − 1

e2µr − 1
+ 2

r
eµ(y−x)−µ2t/2

×
∞∑
n=1

e−(π2n2/2r2)t

µ2 + π2n2/r2

{
πn

r
cos

(
xπn

r

)
+ µ sin

(
xπn

r

)}
sin

(
yπn

r

)
. (26)
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For µ = 0, (25) and (26) reduce to the familiar expressions for driftless Brownian motion on
[0, r], reflected at 0 and r (e.g. Borodin and Salminen (1996)).

The Liouville transformation (12), i.e. y = 21/2x and v(y) = 21/4 exp(2−1/2µy)u(2−1/2y),
reduces (23) to the Schrödinger equation (with constant potential)

v′′ + (λ−Q)v = 0, Q = 1
2µ

2, x ∈ (0, R), R = √
2r, (27)

subject to the boundary conditions

v′(0)− γ v(0) = 0, v′(R)− γ v(R) = 0, γ = µ/
√

2.

In this case, the estimate (21) for the eigenvalues is exact with an = 0, n ≥ 2. We can verify the
large-n estimate (22) for the normalized eigenfunctions by expanding (24) in powers of n−1.

Remark 4. The density (25) of Brownian motion with drift between two reflecting barriers
has apparently remained unpublished until recently, while the driftless version of this formula
is classic. The density (25) appeared recently in the currency exchange rate target-zone model
in a preliminary version of Svensson (1991) (corrected in de Jong (1994)). Using Poisson’s
summation formula, it can alternatively be expressed as a series of terms involving Gaussian
densities and cumulative distribution functions (Veestraeten (2004)).

4.2. Brownian motion with drift on [0, ∞), reflected at 0

Now suppose that µ < 0. Infinity is a nonattracting natural boundary and
∫ ∞

0 m(x) dx =
1/|µ|. The stationary density is exponential:

π(x) = 2|µ|e−2|µ|x.

The Liouville transformation reduces the SL equation to the Schrödinger equation (27) with
constant potential Q = 1

2µ
2, x ∈ (0,∞), and the boundary condition v′(0) − γ v(0) = 0,

γ = µ/21/2. From (15), infinity is an oscillatory natural boundary with cutoff� = 1
2µ

2, while,
from (16), the SL equation is nonoscillatory for λ = �. The SL operator has an absolutely
continuous spectrum in [ 1

2µ
2,∞) plus a single eigenvalue λ0 = 0 in [0, 1

2µ
2]. We shall obtain

the spectral representation of Brownian motion on [0,∞), reflected at 0, by explicitly taking
the limit as r ↑ ∞ in (25). Introduce�s := π/r and sn := n�s, n = 1, 2, . . . , and write (25)
as follows:

p(r)(t; x, y) = 2µe2µx

e2µr − 1
+ 2

π
eµ(y−x)−µ2t/2

×
∞∑
n=1

e−(s2
n/2)t

s2
n + µ2 {sn cos(snx)+ µ sin(snx)}{sn cos(sny)+ µ sin(sny)}�s.

(28)

Taking the limit as r ↑ ∞ is equivalent to taking the limit as�s ↓ 0. The series in (28) has the
form of a Riemannian sum and, in the limit, we obtain the following integral:

p(t; x, y) = 2|µ|e−2|µ|y + 2

π
eµ(y−x)−µ2t/2

×
∫ ∞

0

e−(s2t/2)

s2 + µ2 {s cos(sx)+ µ sin(sx)}{s cos(sy)+ µ sin(sy)} ds.
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For the cumulative distribution function, we similarly obtain

Px(Xt ≤ y) = 1 − e−2|µ|y + 2

π
eµ(y−x)−µ2t/2

×
∫ ∞

0

e−s2t/2

s2 + µ2 {s cos(sx)+ µ sin(sx)} sin(sy) ds. (29)

The integral in (29) can be expressed in terms of the standard normal cumulative distribution
function �(x):

2

π
eµ(y−x)−µ2t/2

∫ ∞

0

e−s2t/2

s2 + µ2 {s cos(sx)+ µ sin(sx)} sin(sy) ds

= e2µy�((x + y + µt)/
√
t)−�((x − y + µt)/

√
t). (30)

(The proof of this integral identity is available from the author upon request.) Substituting (30)
into (29) yields the following well-known result for Brownian motion reflected at the origin
(e.g. Harrison (1985, p. 49) and Abate and Whitt (1987a), (1987b)):

Px(Xt ≤ y) = �((y − x − µt)/
√
t)− e2µy�((−y − x − µt)/

√
t).

5. Reflected Ornstein–Uhlenbeck process

5.1. OU process on [0, r], reflected at 0 and r

Consider an Ornstein–Uhlenbeck process with infinitesimal diffusion and drift parameters
a(x) = σ and b(x) = κ(θ − x) on [0, r], reflected at 0 and r . Here θ ∈ (0, r) is the long-run
level, κ > 0 is the rate of mean reversion towards the long-run level, and σ > 0 is the constant
diffusion parameter (volatility). The scale and speed densities are

s(x) = eκ(θ−x)2/σ 2
, m(x) = 2

σ 2 e−κ(θ−x)2/σ 2
.

The stationary density (1) is

π(x) =
√

2κ

σ

φ(z)

�(β)−�(α)
, (31)

where z ∈ [α, β] is a standardized variable with

z :=
√

2κ

σ
(x − θ), α := −

√
2κ

σ
θ, β :=

√
2κ

σ
(r − θ), (32)

and φ(x) and �(x) are the standard normal density and cumulative distribution function,
respectively.

The associated SL equation is

1

2
σ 2 d2u

dx2 + κ(θ − x)
du

dx
+ λu = 0. (33)

We introduce the standardized variable z := (2κ)1/2(x − θ)/σ and look for solutions of the
form u(x) = exp( 1

4z
2)w(z). Substituting this functional form into (33), we arrive at the Weber–

Hermite equation for w (Erdelyi (1953, p. 116) and Buchholz (1969, p. 39)):

d2w

dz2 +
(

1

2
+ ν − 1

4
z2

)
w = 0, where ν := λ

κ
.
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For any λ ∈ C, the pair of linearly independent solutions are provided by the Weber–Hermite
parabolic cylinder functionsE(0)ν (z) andE(1)ν (z) (Buchholz (1969, pp. 40–43)). These functions
are related by (Buchholz (1969, p. 40))

E(0)ν (z) = √
2e−z2/4

1F1(− 1
2ν; 1

2 ; 1
2z

2), E(1)ν (z) = 2ze−z2/4
1F1(

1
2 (1 − ν); 3

2 ; 1
2z

2)

to the Kummer confluent hypergeometric function 1F1(a; b; x), which is defined for all z ∈ C,
a ∈ C, and b ∈ C\{0,−1,−2, . . . } by the series

1F1(a; b; x) =
∞∑
n=0

(a)n

(b)n

zn

n! , (34)

where (a)0 := 1, (a)n := a(a + 1) · · · (a + n − 1) are the Pochhammer symbols. (The
Kummer confluent hypergeometric function 1F1(a; b; x) is available as a built-in function in
both the MATHEMATICA and MAPLE® software packages (Hypergeometric1F1[a, b, z] in
MATHEMATICA). To efficiently compute the function, depending on the values of a, b, and
z, these software packages use several integral representations and asymptotic expansions in
addition to the series (34) (see Slater (1960) and Buchholz (1969)).)

The Weber–Hermite parabolic cylinder functions have the differential properties

d

dz
{ez2/4E(0)ν (z)} = −2−1/2νez

2/4E
(1)
ν−1(z),

d

dz
{ez2/4E(1)ν (z)} = 21/2ez

2/4E
(0)
ν−1(z) (35)

and have a Wronskian independent of z (Buchholz (1969, p. 43)):

E(0)ν (z)
d

dz
{E(1)ν (z)} − E(1)ν (z)

d

dz
{E(0)ν (z)} = 2−1/2{νE(1)ν (z)E

(1)
ν−1(z)+ 2E(0)ν (z)E

(0)
ν−1(z)}

= 2(ν+3)/2. (36)

We furthermore introduce the function

ϒ(ν; x, y) := νE(1)ν (x)E
(1)
ν−1(y)+ 2E(0)ν (x)E

(0)
ν−1(y). (37)

From (36), ϒ(ν; x, x) = 2ν/2+2.
Using (35)–(37), we obtain solutions φ(x, λ) and ψ(x, λ), with the initial conditions

φ(r, λ) = 1 and φ′(r, λ) = 0, and ψ(0, λ) = 1 and ψ ′(0, λ) = 0,

given by

φ(x, λ) = 2−ν/2−2e(z
2−β2)/4ϒ(ν; z, β), ψ(x, λ) = 2−ν/2−2e(z

2−α2)/4ϒ(ν; z, α).
The Wronskian (11) is

w(λ) = 2−(ν+3)/2κ1/2σ−1e−(α2+β2)/4ν�(ν;α, β),
where

�(ν;α, β) := E
(0)
ν−1(α)E

(1)
ν−1(β)− E

(1)
ν−1(α)E

(0)
ν−1(β). (38)

Recalling that ν = λ/κ , the Wronskian zeros/eigenvalues are

λ0 = 0, λn = κνn, n = 1, 2, . . . ,
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where {νn, n = 1, 2, . . . } are positive roots of the equation

�(ν;α, β) = 0. (39)

The normalized eigenfunctions (9) are given by

ϕ0(x) = ±c−1/2, c = 2π1/2σ−1κ−1/2[�(β)−�(α)],

ϕn(x) = ±21/4κez
2/4ϒ(νn; z, β)√

λn�nϒ(νn;α, β) , �n := ∂�(ν;α, β)
∂ν

∣∣∣∣
ν=νn

, n = 1, 2, . . . . (40)

To evaluate the derivative (40) of the function (38) with respect to ν, we recall the derivative of the
Kummer function with respect to its first index (this derivative is available in MATHEMATICA
with the call Hypergeometric1F1(1,0,0)[a, b, z]), where ψ(z) = �′(z)/�(z) is the digamma
function (Abramowitz and Stegun (1972)):

∂

∂a
{1F1(a; b; z)} =

∞∑
k=0

(a)kψ(a + k)

(b)kk! zk − ψ(a)1F1(a; b; z). (41)

Finally, substituting the eigenvalues and eigenfunctions into (8), we obtain the spectral repre-
sentation for the reflected OU density.

The roots νn have to be found numerically. The large-n estimates are given by (21). The
Liouville transformation y = 21/2x/σ , u(x) = 2−1/4σ 1/2 exp(κ(θ−x)2/2σ 2)v(y(x)) reduces
the SL equation (33) to the Schrödinger equation with quadratic potential

d2v

dy2 +[λ−Q(y)]v = 0, Q(y) = κ2

4

(
y+ α√

κ

)2

− κ
2
, y ∈ (0, R), R =

√
2

σ
r, (42)

subject to the boundary conditions (20) with γ1 = κθ/σ21/2 and γ2 = κ(θ − r)/σ21/2.
Specializing (21) to our case, we obtain

λn = σ 2π2n2

2r2 + a0 +O

(
1

n2

)
, a0 = κ

2
+ κ2

6σ 2 (r
2 − 3rθ + 3θ2). (43)

The estimate (22) for the eigenfunctions gives the following estimate for the eigenfunctions (40):

ϕn(x) = ±σr−1/2ez
2/4

{
cos

(
nπx

r

)
+ r

nπσ 2 f (x) sin

(
nπx

r

)}
+O

(
1

n2

)
,

f (x) = κ2

6σ 2 x
3 − κ2θ

2σ 2 x
2 +

(
κ

2

(
α

2
− 1

)
− a0

)
x + κθ.

5.2. OU process on [0, ∞), reflected at 0

Consider the OU process on [0,∞), reflected at 0. Infinity is a nonattracting natural
boundary. The stationary density is

π(x) =
√

2κ

σ

φ(z)

1 −�(α)
(44)

(z and α are defined in (32)). The potential function in (42) has the limit limy↑∞Q(y) = ∞.
Hence, infinity is nonoscillatory and the spectrum is purely discrete.
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The unique (up to a multiple independent of x) solution φ(x, λ) that is square integrable
with weight m(x) for each λ ∈ C, i.e.

∫ ∞
0 |φ(x, λ)|2m(x) dx < ∞, and entire in λ for each

x ∈ [0,∞) can be written in the form

φ(x, λ) = Hν(2
−1/2z), ν = λ/κ

(recall that z = (2κ)1/2(x − θ)/σ ), where Hν(z) is the Hermite function, defined by (Lebedev
(1972, p. 285))

Hν(z) = 2ν
√
π

{
1F1(− 1

2ν; 1
2 ; z2)

�( 1
2 (1 − ν))

− 2z
1F1(

1
2 (1 − ν); 3

2 ; z2)

�(− 1
2ν)

}
. (45)

(The Hermite function is available in MATHEMATICA with the call HermiteH[ν, z].) The
solution φ(x, λ) has the following asymptotic properties:

lim
x↑∞φ(x, λ) = 0, lim

x↑∞
φ′(x, λ)

s(x)
= 0.

Using the differential property

d

dz
{Hν(z)} = 2νHν−1(z),

the Wronskian is
w(λ) = 2λσ−1κ−1/2e−α2/2Hν−1(2

−1/2α).

The eigenvalues are
λ0 = 0, λn = κνn, n = 1, 2, . . . , (46)

where νn are roots of the equation

Hν−1(2
−1/2α) = 0. (47)

The normalized eigenfunctions are given by

ϕ0(x) = ±c−1/2, c = 2π1/2σ−1κ−1/2[1 −�(α)],

ϕn(x) = ±κ
3/4σ 1/2eα

2/4Hνn(2
−1/2z)√

2λn�nHνn(2−1/2α)
, �n := ∂Hν−1(2−1/2α)

∂ν

∣∣∣∣
ν=νn

, n = 1, 2, . . . .

To calculate the derivative of the Hermite function with respect to its index, recall (45) and (41)
(this derivative is available in MATHEMATICA with the call HermiteH(1,0)[ν, z]).

To determine the eigenvalues λn, n ≥ 1, we must find the roots of (47) numerically. A useful
estimate for the eigenvalues can be obtained as follows. The Hermite function can be expressed
in terms of the Tricomi confluent hypergeometric functionU(a, b, z) (Lebedev (1972, p. 293)):

Hν(x) = 2νU(− 1
2ν,

1
2 , x

2).

Using an estimate of the function U(a, b, z) for a → −∞ (Slater (1960, p. 69, Equa-
tion (4.4.18))),

U(a, b, z) = 21/2z1/4−b/2ez/2kk−1/4e−k cos(2
√
kz−πk+ 1

4π){1+O(k−1/2)}, k = 1
2b−a,
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we have an estimate of the Hermite function for ν → ∞:

Hν(x) = 2ν+1/2ex
2/2kk−1/4e−k cos(2x

√
k−πk+ 1

4π){1+O(k−1/2)}, k = 1
2ν+ 1

4 . (48)

From (48), (46), and (47), for large n the eigenvalues λn can be estimated as follows:

λn ∼ 2κn+ 2κα2

π2 + 23/2κα

π

√
n− 1

4
+ α2

2π2 . (49)

Note that, for the process on the infinite interval [0,∞), the eigenvalues λn grow linearly with
n, in contrast with the n2 growth, in (43), for the process on the finite interval. We also note
that, the larger the mean-reversion parameter κ , the faster the eigenvalue growth.

Remark 5. The Laplace transform of the transition density for the reflected OU process on
[0,∞)was previously obtained in Ricciardi and Sacerdote (1987) in the context of applications
in mathematical biology. The spectral expansion obtained in this section can be regarded
as the Laplace inversion of their transform (λn are the poles of the Laplace transform and
m(y)ϕn(x)ϕn(y) are the corresponding residues). An analytical approximation of the transition
density for small κ was recently obtained in Ward and Glynn (2003b), in the context of queueing
applications.

6. Reflected affine diffusion

6.1. Affine diffusion on [0, r], reflected at 0 and r

Consider an affine diffusion with infinitesimal parameters a(x) = σ(x − �)1/2 and b(x) =
κ(θ − x) on [0, r], reflected at 0 and r . Here, θ ∈ (0, r) is the long-run level, κ > 0 is
the rate of mean reversion towards the long-run level, σ > 0 is the volatility, and � < 0 is
the shift parameter. This process is a shifted square-root diffusion of Feller (1951) restricted
to the interval [0, r], with reflection at the boundaries (see also Shiga and Watanabe (1973),
Pitman and Yor (1982), and Göing-Jaeschke and Yor (2003) for more details on square-root
processes; this process is known as a Cox–Ingersoll–Ross model (Cox et al. (1985)) in the
finance literature). The scale and speed densities are

s(x) = (x − �)−be2κ(x−�)/σ 2
, m(x) = 2

σ 2 (x − �)b−1e−2κ(x−�)/σ 2
, (50)

where

b := 2κ(θ − �)

σ 2 > 0.

The stationary density is

π(x) = c−1zb−1e−z, c = σ 2

2κ
[γ (b, β)− γ (b, α)], (51)

where z ∈ [α, β] is a standardized variable,

z := 2κ(x − �)

σ 2 , α := −2κ�

σ 2 , β := 2κ(r − �)

σ 2 , (52)

and γ (b, x) = ∫ x
0 z

b−1e−z dx is the incomplete gamma function (see Abramowitz and Stegun
(1972)).
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The associated SL equation is

1

2
σ 2(x − �)

d2u

dx2 + κ(θ − x)
du

dx
+ λu = 0, x ∈ [0, r]. (53)

Let z = z(x) be the standardized variable defined in (52). Substituting u(x) = w(z(x))

into (53), we arrive at the confluent hypergeometric equation for w = w(z) (Slater (1960,
p. 2)),

z
d2w

dz2 + (b − z)
dw

dz
− aw = 0, a := −λ

κ
, z ∈ [α, β], (54)

where b is as defined in (50) andα andβ are as defined in (52). For any a ∈ C, the pair of linearly
independent solutions are provided byU(a, b, z) and ezU(b−a, b,−z), whereU(a, b, z) is the
Tricomi confluent hypergeometric function defined for all a, z ∈ C and b ∈ C\{0,±1,±2, . . . }
by (Slater (1960, p. 5))

U(a, b, x) = �(1 − b)

�(1 + a − b)
1F1(a; b; x)+ �(b − 1)

�(a)
x1−b

1F1(1 + a − b; 2 − b; x).

(For b ∈ Z, U(a, b, x) is defined as the limit limε→0 U(a, b + ε, x); see Slater (1960).
The Tricomi confluent hypergeometric function is available in MATHEMATICA with the call
HypergeometricU[a, b, z].)

These solutions have the differential properties (Slater (1960, p. 16))

d

dz
{U(a, b, z)} = −aU(a + 1, b + 1, z), (55)

d

dz
{ezU(b − a, b,−z)} = ezU(b − a, b + 1,−z), (56)

and the Wronskian (Slater (1960, p. 18))

U(a, b, z)
d

dz
{ezU(b−a, b,−z)}− ezU(b−a, b,−z) d

dz
{U(a, b, z)} = eiπ(a−b)z−bez. (57)

We introduce the following notation:

�(a, b; x, y) : = eyU(a, b, x)U(b − a, b + 1,−y)eiπ(b−a)

+ aexU(a + 1, b + 1, y)U(b − a, b,−x)eiπ(b−a). (58)

From (55)–(57), �(a, b; z, z) = z−bez. Using (55)–(58), we obtain solutions φ(x, λ) and
ψ(x, λ), with the initial conditions φ(r, λ) = 1 and φ′(r, λ) = 0, and ψ(0, λ) = 1 and
ψ ′(0, λ) = 0, given by

φ(x, λ) = βbe−β�(a, b; z, β), ψ(x, λ) = αbe−α�(a, b; z, α).
The Wronskian (11) is

w(λ) = a

(
2κ

σ 2

)1−b
(αβ)be−α−β�(a, b;α, β),

where

�(a, b;α, β) = eαU(a + 1, b + 1, β)U(b − a, b + 1,−α)eiπ(b−a)

− eβU(a + 1, b + 1, α)U(b − a, b + 1,−β)eiπ(b−a). (59)
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Recalling that a = −λ/κ , the Wronskian zeros/eigenvalues are

λ0 = 0, λn = −κan, n = 1, 2, . . . ,

where 0 > a1 > a2 > · · · are negative roots of the equation

�(a, b;α, β) = 0 (60)

(for fixed b, α, and β). The normalized eigenfunctions (9) are given by

ϕ0(x) = ±c−1/2 (c is as defined in (51)),

ϕn(x) = ±
(

2κ

σ 2

)b/2
κ1/2σ�(an, b; z, β)√

2λn�nαbe−α�(an, b;α, β)
, �n := ∂�(a, b;α, β)

∂a

∣∣∣∣
a=an

, n ≥ 1.

(61)

To compute the derivative with respect to a, recall (59) and the derivative of U(a, b, z) with
respect to its first index a (this derivative is available in MATHEMATICA with the call
HypergeometricU(1,0,0)[a, b, z]):

∂

∂a
{U(a, b, z)} = �(b − 1)z1−b

�(a)

∞∑
k=0

ψ(a − b + k + 1)(a − b + 1)kzk

k! (2 − b)k

+ �(1 − b)

�(a − b + 1)

∞∑
k=0

ψ(a + k)(a)kz
k

k! (b)k
− {ψ(a)+ ψ(a − b + 1)}U(a, b, z).

The eigenvalues λn have to be found numerically by finding the roots an of (60). The large-n
estimates are given by (21). The Liouville transformation

y = 23/2

σ
(
√
x − �− √−�), u(x) = 2−1/4σ 1/2(x − �)−b/2+1/4eκ(x−�)/σ 2

v(y(x))

reduces the SL equation (54) to the Schrödinger equation

d2v

dy2 + [λ−Q(y)]v = 0, y ∈ (0, R), R = 23/2σ−1(
√
r − �− √−�),

with potential

Q(y) =
3
4 + b(b − 2)

(y + a)2
− 1

2
κb + 1

16
κ2(y + a)2, a = 23/2σ−1

√−� (62)

and boundary conditions (20) with

γ1 =
√
κ

α

(
κθ

σ 2 − 1

2

)
, γ2 =

√
κ

β

(
κ(θ − r)

σ 2 − 1

2

)
.

Specializing (21) to our case, we obtain

λn = σ 2n2π2

8(
√
r − �− √−�)2 + a0 +O

(
1

n2

)
, (63)

a0 = 1

12
κ(β + α + √

αβ)− 1

2
κb + κ√

αβ

(
1

4
b(b − 2)+ κθ

σ 2 − 5

16

)
+ κ2r

σ 2(β − √
αβ)

.

Equation (22) gives the estimates for the eigenfunctions.
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6.2. Affine diffusion on [0, ∞), reflected at 0

Consider an affine diffusion process on [0,∞), reflected at 0. Infinity is a nonattracting
natural boundary. The stationary density is

π(x) = c−1zb−1e−z, c = σ 2

2κ
[�(b)− γ (b, α)], (64)

where �(b) is the standard gamma function. The potential function in (62) has the limit
limy↑∞Q(y) = ∞. Hence, infinity is nonoscillatory and the spectrum is purely discrete.

The unique (up to a multiple independent of x) solution φ(x, λ) that is square integrable
with weight m(x) for each λ ∈ C, i.e.

∫ ∞
0 |φ(x, λ)|2m(x) dx < ∞, and entire in λ for each

x ∈ [0,∞) can be written in the form

φ(x, λ) = U(a, b, z)

(recall that z = 2κ(x − �)/σ 2). This solution has the following asymptotic properties:

lim
x↑∞φ(x, λ) = 0, lim

x↑∞
φ′(x, λ)

s(x)
= 0.

Using the differential property (57), the Wronskian is

w(λ) = −a
(

2κ

σ 2

)1−b
αbe−αU(a + 1, b + 1, α).

The eigenvalues are
λ0 = 0, λn = −κan, n = 1, 2, . . . ,

where an are the negative roots of the equation

U(a + 1, b + 1, α) = 0. (65)

The normalized eigenfunctions are given by

ϕ0(x) = ±c−1/2 (c is as defined in (64)),

ϕn(x) = ±
(

2κ

σ 2

)b/2
κ1/2σU(an, b, z)√

2λn�nαbe−αU(an, b, α)
,

�n := − ∂

∂a
{U(a + 1, b + 1, α)}

∣∣∣∣
a=an

, n ≥ 1.

To determine the eigenvalues, we need to find the roots of (65) numerically. Recalling the
estimate (48), we obtain a useful estimate for the eigenvalues:

λn ∼ κ

(
n− 1

2
b + 1

4
+ 2α

π2

)
+ 2κ

π

√(
n− 1

4

)
α + α2

π2 . (66)

Note that, for the process on the infinite interval [0,∞), the eigenvalues λn grow linearly with
n, in contrast with the n2 growth in (63) for the process on the finite interval. We also note that,
the larger the mean-reversion parameter κ , the faster the eigenvalue growth.
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7. Numerical examples

7.1. OU process

Consider an OU process on [0, 2] with parameters σ = 1, κ = 1, and θ = 1, reflected at 0
and 2, and starting at the origin, x = 0. To determine the eigenvalues λn with n ≥ 1, we use
the root finding function FindRoot in MATHEMATICA to determine the roots νn of (39) (for
fixed α and β). (The author used MATHEMATICA 4.0 running on a Pentium® III personal
computer for all calculations in this paper.) For each n ≥ 1, we use the estimate (43) as a
starting point for the FindRoot function. Table 1 gives the eigenvalues λn, n = 1, 2, . . . , 10,
as well as the estimates (43). MATHEMATICA allows us to compute the eigenvalues to any
desired accuracy. Table 1 shows that the estimates are accurate even for the lower eigenvalues,
and that the accuracy of the estimates rapidly increases with n.

In Figure 1, we plot transition densities with t = 1
4 , 1

2 , 1, 2, as well as the stationary density
(31) (it was produced with the Plot function in MATHEMATICA). The stationary density is

Table 1: Eigenvalues of the OU process on [0, 2], reflected at 0 and 2. The eigenvalues λn are obtained
by numerical root finding, and the estimates are obtained using (43). The OU process parameters are

σ = κ = θ = 1 and r = 2.

n Eigenvalue λn Estimate

1 1.798 46 1.900 37
2 5.575 58 5.601 47
3 11.758 8 11.770 0
4 20.399 7 20.405 9
5 31.505 3 31.509 2
6 45.077 2 45.079 9
7 61.116 0 61.118 0
8 79.622 0 79.623 5
9 100.595 100.596

10 124.036 124.037

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

t = 1
2

t = 1
4

t 1= t = 2

π( )y

y

Figure 1: Transition densities p(t; 0, y), with t = 1
4 , 1

2 , 1, 2, and the stationary density π(y) for the OU
process on [0, 2], reflected at 0 and 2. The OU process parameters are σ = κ = θ = 1 and r = 2, starting

at the origin.
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Table 2: Eigenvalues of the OU process on [0,∞), reflected at 0. The eigenvalues λn are obtained
by numerical root finding and the estimates are computed using (49). The OU process parameters are

σ = κ = θ = 1 and r = 2.

n Eigenvalue λn Estimate

1 1.234 23 1.230 50
2 2.697 46 2.672 87
3 4.280 19 4.255 31
4 5.929 81 5.906 58
5 7.622 44 7.600 88
6 9.345 49 9.325 38
7 11.091 5 11.072 6
8 12.855 5 12.837 6
9 14.634 2 14.617 2

10 16.425 1 16.409 0

t = 1
4

t = 1
2

t = 1

t = 2

π( )y

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

y

Figure 2: Transition densities p(t; 0, y), with t = 1
4 , 1

2 , 1, 2, and the stationary density π(y) for the OU
process on [0,∞), reflected at 0. The OU process parameters are σ = κ = θ = 1, starting at the origin.

the first term in the spectral expansion, corresponding to the principal eigenvalue λ0 = 0. The
terms in the series corresponding to the higher eigenvalues λn are suppressed by the factors
e−λnt . As t increases, the transition density approaches the stationary density. The t = 2
density is already very close to the stationary density. The spectral expansion method produces
the transition density in a form especially convenient when studying how the system approaches
its steady state.

Next consider the OU process on [0,∞), reflected at 0 (the parameters are the same as before
and the process starts at the origin). To determine λn, n ≥ 1, we use the FindRoot function
to determine the roots νn of (47) (for fixed α). For each n ≥ 1, we use the estimate (49) as a
starting point for the FindRoot function. Table 2 gives the eigenvalues λn, n = 1, 2, . . . , 10, as
well as the estimates (49). In Figure 2, we plot transition densities with t = 1

4 , 1
2 , 1, 2, as well as

the stationary density (44). To further illustrate the convergence of eigenfunction expansions,
in Table 3 we compute the mean E[X1 | X0 = 0] and second moment E[X2

1 | X0 = 0] of the
OU process on [0,∞), reflected at 0. The expectations are computed by integrating against
the transition density (using the NIntegrate function in MATHEMATICA) and truncating the
eigenfunction expansion after the nth term (the row with n = 0 gives the steady-state values).
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Table 3: Mean E[X1 | X0 = 0] and second moment E[X2
1 | X0 = 0], at time t = 1, of the OU process

on [0,∞), reflected at 0. The row with n = 0 gives the steady-state values. The row with n = 1 gives
the values computed by truncating the eigenfunction expansion after the term with n = 1, and similarly

for the other rows. The OU process parameters are σ = κ = θ = 1, starting at the origin.

n E[X1 | X0 = 0] E[X2
1 | X0 = 0]

0 1.112 64 1.612 64
1 0.891 96 1.036 27
2 0.885 15 1.055 79
3 0.884 49 1.056 37
4 0.884 42 1.056 41
5 0.884 41 1.056 41
6 0.884 41 1.056 41

Generally, owing to the presence of the factors e−λnt , the larger the time t , the faster the
eigenfunction expansion converges.

7.2. Affine process

Consider an affine process on [0, 2] with parameters σ = 1, κ = 1, θ = 1, and � = −1,
reflected at 0 and 2 and starting at the origin, x = 0. To determine the eigenvalues λn, n ≥ 1,
we use the FindRoot function in MATHEMATICA to determine the roots νn of (60) (for fixed
b, α, and β). For each n ≥ 1, we use the estimate (63) as a starting point for the FindRoot
function. Table 4 gives λn, n = 1, 2, . . . , 10, as well as the estimates (63). MATHEMATICA
allows us to compute the eigenvalues to any desired accuracy. Table 4 shows that the estimates
are quite accurate even for the lower eigenvalues, and that the accuracy of the estimates rapidly
increases with n. In Figure 3, we plot transition densities with t = 1

4 , 1
2 , 1, as well as the

stationary density (51). As t increases, the density approaches the stationary density; for t = 1,
the density is already quite close to the stationary density.

Next consider an affine process on [0,∞), reflected at 0 (the parameters are the same as
before and the process starts at the origin). To determine λn, n ≥ 1, we use the FindRoot

Table 4: Eigenvalues of the affine process on [0, 2], reflected at 0 and 2. The eigenvalues λn are obtained
by numerical root finding, and the estimates are obtained using (63). The affine process parameters are

σ = κ = θ = 1, � = −1, and r = 2.

n Eigenvalue λn Estimate

1 2.829 53 2.821 95
2 9.782 85 9.728 30
3 21.303 2 21.238 9
4 37.421 4 37.353 7
5 58.142 1 58.072 7
6 83.466 2 83.396 0
7 113.394 113.324
8 147.926 147.855
9 187.063 186.991

10 230.803 230.731
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Figure 3: Transition densities p(t; 0, y), with t = 1
4 , 1

2 , 1, and the stationary density π(y) for the affine
process on [0, 2], reflected at 0 and 2. The affine process parameters are σ = κ = θ = 1, � = −1, and

r = 2, starting at the origin.

Table 5: Eigenvalues of the affine process on [0,∞), reflected at 0. The eigenvalues λn are obtained
by numerical root finding, and the estimates are obtained using (66). The affine process parameters are

σ = κ = θ = 1 and � = −1.

n Eigenvalue λn Estimate

1 1.212 24 0.534 02
2 2.435 40 1.913 36
3 3.642 08 3.202 32
4 4.832 23 4.445 23
5 6.008 42 5.658 90
6 7.173 03 6.851 88
7 8.327 93 8.029 23
8 9.474 59 9.194 22
9 10.614 2 10.349 1

10 11.747 6 11.495 6
100 107.737 107.656

function to determine the roots an of (65) (for fixed b and α). Table 5 gives the eigenvalues
λn, n = 1, 2, . . . , 10, as well as the estimates (66). In Figure 4, we plot transition densities
with t = 1

4 , 1
2 , 1, 2, as well as the stationary density (64). To further illustrate the convergence

of eigenfunction expansions, in Table 6 we compute the mean E[X1 | X0 = 0] and second
moment E[X2

1 | X0 = 0] of the affine diffusion on [0,∞), reflected at 0. The expectations
are computed by integrating against the transition density (using the NIntegrate function in
MATHEMATICA) and truncating the eigenfunction expansion after the λn term (the row with
n = 0 gives the steady-state values).
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Figure 4: Transition densities p(t; 0, y), with t = 1
4 , 1

2 , 1, 2, and the stationary density π(y) for the
affine process on [0,∞), reflected at 0. The affine process parameters are σ = κ = θ = 1 and � = −1,

starting at the origin.

Table 6: Mean E[X1 | X0 = 0] and second moment E[X2
1 | X0 = 0], at time t = 1, of the affine process

on [0,∞) reflected at 0. The row with n = 0 gives the steady-state values. The row with n = 1 gives the
values computed by truncating the eigenfunction expansion after the term with n = 1, and similarly for

the other rows. The affine process parameters are σ = κ = θ = 1 and � = −1, starting at the origin.

n E[X1 | X0 = 0] E[X2
1 | X0 = 0]

0 1.210 53 2.315 79
1 0.962 37 1.370 75
2 0.953 54 1.431 63
3 0.952 31 1.433 88
4 0.952 08 1.434 12
5 0.952 03 1.434 15
6 0.952 02 1.434 16
7 0.952 02 1.434 16
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