
/ . Austral. Math. Soc. Ser. B 33(1991), 65-76

A MATHEMATICAL ANALYSIS OF WIND
EFFECTS ON A LONG-JUMPER
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Abstract

A perturbation model is used to predict the distance jumped by a long-jumper for
a range of tailwinds and headwinds. The zeroth-order approximation is based on
gravity being the only force present, the effects of drag and lift only being included
in the first-order corrections. The difference in predicted distances produced by the
zeroth and first-order approximations is less than 2% for headwinds or tailwinds
upto 4 ms" . Most increases or decreases due to wind are caused by changes in
the run-up speed, and consequently the take-off angle and speed.

1. Introduction

Wind affects the performance of long-jumpers. The International Athletics
Union acknowledges this by imposing a special rule relating to wind during
long-jump performances. The average wind component parallel to the track
is measured near the jumping pit during an interval encompassing the run-
up and the jump. If this measurement exceeds 2 ms" 1 , no record-breaking
jump is recognised.

Undoubtedly the wind will affect the aerodynamic forces on the jumper
such as drag, lift and sideways forces, but as pointed out by Frohlich [5] there
is also an effect on the take-off conditions. A number of authors (Brearley [2],
Burghes et al. [3], Ward-Smith [11], [13], [14], Frohlich [5], de Mestre [4])
considered the effects of density change on Bob Beamon's world record jump
which has now lasted more than 20 years without being surpassed. From
these analyses it appears that in the absence of wind the drag effect during a

1 School of Information and Computing Sciences, Bond University Qld.
© Copyright Australian Mathematical Society 1991, Serial-fee code 0334-2700/91

65

https://doi.org/10.1017/S0334270000008626 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008626


66 Neville de Mestre [2]

long-jump would reduce the jump by no more than 1%. No analysis on long
jumps has included other aerodynamic forces such as lift.

Previous calculations of wind effects on long-jumpers have been restricted
to numerical solutions of the governing equations. This paper modifies the
perturbation solution in de Mestre [4] for a long-jumper influenced by gravity
and drag to include lift corrections, and then extends this work to analyse
the effects of wind. Representative calculations for a long-jumper assisted by
a tailwind or jumping into a headwind are presented.

2. Wind-free analysis

In the absence of wind, the velocity of the jumper relative to the ground
is the same as the velocity relative to the air. The long-jumper is modelled
as a projectile acted on by constant gravity plus the two components of the
total aerodynamic force (drag and lift), which at jumpers' speeds are usually
assumed to be proportional to the square of the air speed. With the origin
at the position of the jumper's centre of mass at take-off, the x direction
chosen as parallel to the run-up track and the y direction chosen as vertically
upwards, the governing equation of motion is

m^ = -mgk-^pSCDv2i+lrpSCLv2n. (1)

Here p denotes the density of the air, S is a typical cross-sectional area
of the jumper, m denotes the jumper's mass, r denotes the position vector
of the jumper at any time 7 during the jump, v denotes the corresponding
velocity vector, while CD and CL denote the drag and lift coefficients re-
spectively. The unit vectors k, t and n are respectively in the directions
vertically upwards, parallel to the jumper's velocity, and perpendicular to the
jumper's velocity but lying in the vertical plane through the athlete's centre
of mass.

To include the aerodynamic forces more precisely would require knowl-
edge of the drag and lift coefficients at each stage of the motion of the jumper
through the air. In addition the typical area S is usually chosen as the pro-
jected area of the jumper in a plane normal to the jumper's velocity. This
also changes during the long jump from a maximum value in the take-off
position to a much smaller value just before landing. In this paper the usual
assumption is made that SCD and SCL are each some average constant for
the duration of each long jump.

Equation (1) relates only to the projectile motion part of the long jump—
the aerial phase. The distance calculated for the jump consists of the aerial-
phase distance (xF) travelled forward by the centre of mass from take-off to
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landing plus the distance of the centre of mass ahead of the take-off board
at take-off and the distance of the centre of mass behind the landing point at
landing.

The initial conditions for the projectile motion are taken as

J j = V=[Fcosa, Fsina]l ^

r = 0, J
when 7 = 0. The problem can be solved more generally by including a lateral
component U in the velocity of the jumper at take-off. However, there is
no advantage athletically for a jumper to do this, as the jumping distance
is always measured in the 3c direction; likewise there is no mathematical
advantage, as the algebra is increased in complexity although the analysis
is essentially the same. Therefore, although this analysis could be extended
to include cross-winds and sideways aerodynamic forces, the advantages in
information gained are marginal.

The solution of (1) subject to conditions (2) produces r(7) from which x
can be determined when y = -h , the distance of fall of the centre of mass
from take-off to landing.

The variables are nondimensionalised using

v = vF, l = tV/g, f = rV2/g, (3)

and so the dimensionless forms of equations (1) and (2) are

f = - k - eDv2x + eLv2n j (4)

with r = [cosa, sina], r = 0 when t = OJ

Here eD = pSCDV2/(2mg), eL = eDCL/CD, and a dot denotes differentia-
tion with respect to t. In terms of components in the x, y directions the
equations (4) are

x = - eDxv - eLyv \

y = ~ 1 " eDyv + eLxv \ (5)
with x = cos a, j> = sina, x = y = 0 when t = 0. J

For most projectile problems this set of equations would usually have to
be solved numerically, but for the long jump modelled using constant gravity
and variable drag, de Mestre [4] obtained a perturbation solution based on
eD «: 1. Since eL is also small compared with unity the analysis is extended
here to include lift effects. In Section 4 it will be shown that this no-wind
analysis is extremely useful in obtaining the distance jumped when a wind is
blowing. Thus with

r = r0 + eDrx + O{e2
D), (6)
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the zeroth-order equations become

with x0 = cos a, y0 = sin a, x0 = y0 = 0 when t = 0. The solutions are

xQ = tcosa, yQ = tsina-^t2, (7)

and hence

= y cos2 a + (sin a - t)2

With fi = CJCD the first-order equations are therefore

jc, = -v0cosa +0{t-sina)vo,

yx = (t - sin a)v0 + /?u0 cos a

with x{ = yy= xt = yt = 0 when r = 0, where the results (7) and (8) have
been used. The corresponding solutions are

yi = fifi + 8i>) ( 9 )

where

gx{i) = -pj(t - sina)u0 + —^sina(sin a + cos a)5 - ^r(sin a + cos a)2

+ ^cos a ( / - sina)u0 + - c o s asina(sin a + cos a) 5

o o

+ ^cos a ln\t — sina + vo\ - ^ cos a^«|(sin a + cos a)2—sina|

and
1 2 2 -

/,(0 = v^{cosasina(sin a + cos a)2

-cos a ^«|(sin a + cos a)5-sina|}
1 3 2 2 x1

+ ^cosa{«0 - (sin a + cos a)2}

""" a{(sin a + cos a)?-vQ}
xcos a(t - sin a) £n\t-sin a+ vo\

1 3 2 2 -

cos asina^n|(sin a + cos a ) 2 - s i n a | .
The expressions for / , and gx could be further simplified, but they are left
in this form for ease of transference to equivalent results in Section 4.
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The time of flight (tF) for the jumper is obtained by solving y = —h,
which in nondimensional form becomes

•0(eD). (10)

Therefore writing

h = 'OF + £ /> 'IF + 0 (4 )

and substituting into (10) yields

h = {OF

where
t0F = sin a + y sin2 a + Ihg/V1.

The corresponding dimensionless horizontal distance is

xF = cos a < sin a + y sin2 a + Ihg/V2 \
1 - , (12)

+ eD<yi{t0F)cosa/y/sm'a + 2hg/Vl + xl(t0F)\ +

The foregoing analysis applies to any long jump where eD < 1. Ward-
Smith [12], [13] considered representative characteristics for a typical long
jump. These included g = 9.81 ms~2, p = 1.20kgm~3, m = 70kg, h = 0.5m
and SCD = 0.36. He also included horizontal and vertical take-off veloc-
ity components as 10.1ms"1 and 2.87 ms"1 respectively. These produce a
take-off speed of 10.5 ms"1 which is much too high, since energy is lost at the
take-off board and no jumper is capable of speeds before take-off approach-
ing 11ms"1. Consider therefore as typical take-off values V = 8.74 ms" 1 ,
a = 20° based on a series of measurements made by Lafortune [8] at the
Australian Institute of Sport using force plates.

The value for SCD has been estimated as 0.36 from measured values on
sprinters, cyclists and speed-skaters quoted in Ward-Smith [11]. A value for
SCL also needs to be estimated. The lift to drag ratio (CL/CD) for ski-
jumpers has been well documented (Krylov and Remizov [7], Ward-Smith
and Clements [9]), and can be as high as 0.25, but it varies with angle of
incidence and would never be this large for long-jumpers. To obtain some
idea of the effect of lift, a representative value 0.04 is chosen for SCL,
yielding fi= 1/9.

The calculated value for eD is 0.024 which is certainly small enough for
the perturbation expansion to be valid. With the above representative val-
ues, the projectile part of the jump yields ~tF = 0.747 s and x~F = 6.07 m.
Without drag and lift, the time of flight is 0.746 s and the value of ~xF is
6.13 m. When only lift is ignored, the calculations yield 1F = 0.745 s and
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~xF = 6.06 m. The inclusion of drag reduces the time of flight by an almost
negligible amount, while the range is reduced by 1%. On the other hand the
inclusion of lift with drag gives a marginally larger flight time than in the
gravity-only case, but adds only a negligibly small amount to the range for
the drag case. Therefore for a no-wind analysis it seems sufficient for most
purposes to use a gravity-only model.

3. Run-up and wind

When the wind blows, not only is the projectile part of the long-jump af-
fected, but also the run-up, and hence the take-off speed and angle. Two
authors have considered the variations to the speed due to wind but no one
has considered the angle variations. Ward-Smith [13] obtains the influence
of wind on maximum sprinting speed by numerically solving a second-order
differential equation, based on the application of the first law of thermody-
namics to the acceleration phase of sprinting. On the other hand, Frohlich
[5] considers the power lost or gained to the wind and has to solve the cubic
equation 2 2 l
where w0 is the athlete's speed just before take-off when no wind is blowing,
and M, is the athlete's speed just before take-off when a wind Wx is blowing
parallel to the track. A positive Wx denotes a tailwind and a negative Wx a
headwind.

Measurements by Hay and Miller [6] show that the velocity varies dra-
matically over the last few strides. Over this interval the jumpers must be
preparing for take-off and continually adjusting the length of their strides
so that they do not take-off beyond the take-off board and register a foul
jump. Measurements by Bartlet [1] and also Lafortune [8] show that there
is a small downward component to the jumper's velocity just before take-off.
Because of these extra complexities it was decided to simplify the analysis,
and so the technique due to Frohlich [5] is used to produce the approach
speed variations due to the wind given in Table 1.

However Frohlich [5], and also Ward-Smith [13], fail to take account of
the decrease in speed during take-off. From the previously mentioned exper-
iments conducted by Bartlet [1] and Lafortune [8] a representative ratio of
speed just after take-off to speed just before take-off is 0.92±0.04. Therefore,
with V = 0.92M0 it is seen that V = 8.74 ms"1 corresponds to an approach
speed M0 = 9.5 ms"1, which is a typical run-up speed without wind. Val-
ues of V corresponding to different wind strengths and directions are also
included in Table 1.
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TABLE 1. Approach speed, take-off speed, take-off angle for different winds.

71

^(ms-1)

Mms-1)
F(ms-')

< )

- 4

8.84

8.13

21.57

- 3

9.01

8.29

21.14

- 2

9.18

8.44

20.73

- 1

9.34

8.60

20.35

0

9.50

8.74

20.00

+ 1

9.65

8.88

19.68

+2

9.79

9.01

19.38

+3

9.92

9.13

19.11

+4

10.04

9.24

18.88

To determine explicitly the change in take-off angle a for different take-
off speeds V, it would be necessary to conduct experiments on long-jumpers
keeping all other conditions fixed except for wind strengths. Then the take-off
speed and take-off angle could be measured, and a graph used to determine
a relationship between these two characteristics. In the absence of such ex-
periments it seems reasonable to postulate that if the wind is blowing in the
jc-direction only, then the vertical component of impulse from the spring in
the athlete's take-off foot is independent of the wind strength. This assump-
tion says that V sin a is a constant for the same athlete under different wind
conditions.

Qualitative support for this assumption is provided by a comparison of
the long jump and high jump take-off angles and speeds. In the long jump
the take-off speed is near sprinting speed and the take-off angle is near 20° ,
whereas in the high jump the take-off speed is low and the take-off angle
is near 60° . Using this assumption the values of a are calculated for the
values of V due to different wind strengths, and are also included in Table 1.

Wind analysis

When a wind w is blowing, the air speed of any projectile is given by

V* = V — W . (13)

The drag and lift effects will depend on v*, and only on v in the absence of
wind. Therefore, with the addition of wind, the basic equation (1) for the
projectile part of the long-jumper's motion becomes

& = -mgk-
t Lat

(14)

where f * is a unit vector in the direction of v*, and n* is a unit vector
perpendicular to T* and lying in the vertical plane. The initial conditions
(2) remain the same as before. Ward-Smith [12], [13], [14], and Frohlich [5]
solved (14) numerically for CL = 0, because they claimed that with wind
present no analytical solution is possible.
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Noone and Mazumdar [9] produced an analytical solution of an approxi-
mate form of (14), again with CL = 0, but they did not use this solution in
any of their calculations. They simply reverted to a Runge-Kutta numerical
solution of the original equations to draw their conclusions.

An analytical perturbation solution of (14) will now be obtained, and used
directly to obtain estimates for the effects of wind.

Now if (13) is integrated, then the transformation

/ Wdl,
Jo

r = r + / wdl, (15)
Jo

where v* = dt*/dl, shifts the origin to a co-ordinate system fixed in the
moving air mass. If the variables r*, v*, 7, W are nondimensionalised
according to (3) then the transformed variations of equations (14) and (2)
become

r =-M-eDv x +eLv n --^

with v* = [cosa - WJV, sina - Wy/V], and r* =

when t = 0, and the initial wind velocity components are given by w(0) =

\Wx,wy\.
When (4) and (16) are compared it is seen that they are essentially identical

except for the term ^ , the rate of change in wind velocity during the jump.
A perturbation expansion is again used when w is known for all t, then r*
and hence r can be calculated. Although the technique is equally applicable
for varying wind the simplest illustration of wind effect is to assume that the
wind acts parallel to the run-up track and is constant for the whole time-
of-flight interval of the long jump; that is to take w = [Wx, 0] . Then the
transformation (15) becomes

and (16) reduces to

f . 2 . . *2..
r =-k-eDv x + eLv n

with v* = [cosa - WJV, s ina] , and r* = 0

when t = 0 .
Equation (17) can be solved by perturbation expansions and yields x*, y*

and t* similar to results (7)—(12) but with cosa replaced by cosa - Wx/V
everywhere.

Thus corresponding to (11) the time of flight with wind is

h = 'OF+eDy* ( v ) /v s i n 2 +2hg/y2+o(4) (18)
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where it is noted that

t0F = sin a + \/sin2 a + 2hg/V2

is independent of the wind strength. Moreover the zeroth-order dimension-
alised time

1OF = I V sina 4- \Jv2 sin2 a -I- 2gh \ /g

is constant for a particular jumper under different wind conditions because
of the postulate concerning the constancy of V sin a . Therefore, the time
of flight corrections for the presence of wind only emerge in the first-order
approximations.

The expression for the distance jumped due to the projectile part of the
long jump is

•0(4)]. (19)
Again it is noted that the zeroth-order approximation is independent of

the wind. This was to be expected since the wind only affects the drag and
lift during the projectile part of the motion, and these are first-order effects
for the typical parameters of a long jump. However, for a particular jumper
the zeroth-order jump distance varies with change in wind strength because
K2cosa varies.

For the representative characteristics in Section 2 applied to expressions
(18) and (19) the results are calculated and displayed in Table 2. Also in-
cluded for comparison are the jump distances for gravity plus drag, in which
lift is neglected.

The addition of drag to the analysis reduces the time of flight for all values
of the wind considered, but only by an amount of the order of 0.1%. The
addition of lift reverses this trend, so that for all headwinds and the lesser
tailwinds the model predicts that the jumper will be held up in the air just
slightly longer than when drag and lift are neglected.

On examination of this aerial phase of the projectile jump distance, it is
noted that the addition of lift has very little effect overall and only increases
the distances slightly for the stronger headwinds and lower tailwinds. The
inclusion of drag reduces the gravity-only distances by 11 cm for the strongest
headwind considered down to 2 cm for the strongest tailwind. Since jumpers
are mainly interested in the tailwind cases (because these give longer jumps)
it appears that even for the presence of winds, a gravity-only analysis will
suffice for the aerial-phase calculations.
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Table 2 shows that the wind has a significant effect mainly because of
changes in take-off values. The difference in jump length from a 4 ms"1

tailwind to a 4 ms"1 headwind can be almost 1 metre. The model predicts
an increase in jump distance of 23 cm from a jump on a still day to a jump
by the same athlete with a 2 ms"1 tailwind (the allowable limit for records).
This compares favourably with the 27 cm predicted by Ward-Smith [14] for
a faster take-off speed.

FIGURE 3.

^(ms"1)

Distance (m) with

K = 8.74, a = 20°

Run-up

increment (m)

Increment in jump distance due to wind effect on run-up.

- 4

6.02

-0.48

- 3

6.03

-0.35

- 2

6.05

-0.23

- 1

6.06

-0.11

0

6.07

0

+1

6.08

+0.11

+2

6.09

+0.21

+3

6.10

+0.30

+4

6.11

+0.39

Finally, calculations were performed to determine the aerial phase dis-
tance if the take-off parameters had not been affected by the wind, and had
remained at V = 8.74, a = 20. Subtracting these from the corresponding
distances with the correct take-off values gives an estimate of the increments
due to wind effects on the run-up and take-off characteristics. These are
shown in Table 3.

It seems clear from the mathematical analysis, as it has been to most
jumpers for many years, that long-jumpers should generally forget about
breaking records (limited to tailwinds less than 2 ms
tailwind is strongest.

- l ) and jump when the
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