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Abstract. Let f: M > M be a C' map on a compact manifold. We give a topological
condition under which f has an even number of periodic points with a given period.
We also obtain a sufficient condition, in terms of homology, for f to have infinitely
many periodic points.

1. Introduction

In [14], Levinson obtained a result concerning the number of periodic points of
diffeomorphisms of a disk. He gave a classification of periodic points and proved
certain equalities between the cardinal numbers of the classes of periodic points.
His equalities were improved by Massera [15] and extended to compact manifolds
by Shiraiwa [18]. Recently, Dold obtained an extension of these equalities to smooth
maps on manifolds in [§] (Theorem 1 below).

In this paper, we give two applications of the Dold’s equalities to the study of
periodic points of smooth maps. The first application is concerned with the problem
of whether the number »(n) of periodic points of a given period n is even or odd.
We give a condition on n and on the homotopy class of the map under which »(n)
is even. This generalizes results in [14, 15, 18].

In the second application, we generalize some results of Franks [8,9] on the
existence of infinitely many periodic points.

In the last section, we generalize the Dold’s equalities to isolated sets of periodic
points.

2. The Dold’s equalities
Let M be a C™ manifold (possibly with boundary), V an open set of M, and let
f: V> M be a continuous map. For positive integers n, define the iterates f": V, > M
inductively by

fl=f Va=f"'(Va),  fr0)=f""(f(x)) forn>1.
Denote by Fix (f") the fixed point set of ", i.e. the set of points x € V,, with f"(x) = x.

Suppose Fix (f") is compact. Then Fix (f™) is also compact for any divisor m
of n because Fix (f™) is a closed subset of Fix (f"), and hence the fixed point
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index I(f™) of f™ is defined (cf, [4]). Define an integer I,(f) by
L(f)= ¥ (DI,

T< P(n)
where P(n) is the set of all primes which divide n, the sum extends over all subsets
7 of P(n), |7|=cardinality of 7, and n:7=n([],. p)”' = n divided by all pe . For
example, if n is a prime number, then I,(f)=I(f")—-I(f).

Definition 1. We set
Per (n)=Fix (f")— U Fix (f™),

and call an element of Per (n) an n-periodic point, or simply a periodic point, of f.
Now assume that f is a C' map. For x € Per (n), let Df"(x) denote the derivative
of f" at x, and let a.(x) (resp. a_(x)) be the number of real eigenvalues A of Df"(x)
with A >1 (resp. A <—1) (counting multiplicity). We then classify the n-periodic
points by these numbers a.(x), a_(x); namely, we divide the set Per (n) into the
following four subsets:
Perge (n) ={x € Per (n)|a,(x), a_(x) are even},
Pergo (n) = {x € Per (n)| a.(x) is even, a_(x) is odd},
Peroe (n) ={x € Per (n)|a,(x) is odd, a_(x) is even},
Peroo (n) = {x € Per (n)| a,(x), a_(x) are odd}.
We let
vee(n) =|Perge (n)|, veo(n) =|Pergo (n)],
voe(n) =|Perog (n)], wvoo(n)=|Peroo (1),
ve(n) = vge(n) + veo(n), vo(n) = vog(n) + voo(n),

where | | denotes the cardinality.

Definition 2. A fixed point x of f" is regular if the derivative Df"(x) does not have
1 as an eigenvalue.

Note that if x € Per (n) is regular as a fixed point of f" and x is contained in the
interior Int M of M, then a.(x) determines the fixed point index I(f", x) of x for
the map f". In fact (cf, [5, p. 431]),

I(f", x)=1 if a.(x) is even,

=—1 ifa.(x)isodd.

Note also that if x € Per (n) is regular as a fixed point of f>" and x € Int M, then
a_(x) determines whether x is inverting in the sense of Dold [5]. (Such a point x
is said to be inverting if I(f*",x)=—I(f", x).) In fact, it is easy to see that x is
inverting if and only if a_(x) is odd (cf, [5]).

We now fix a positive integer n, and assume that every fixed point of f" is regular
and contained in Int M. In this case, as is easily seen by the relations between the
fixed point index and the numbers a,(x), a_(x) mentioned above, the number vg(n)
(resp. vo(n)) is equal to the number of n-periodic points x with index I(f",x)=1
(resp. —1). Moreover, when n is even, the number vgo(n/2) (resp. voo(n/2)) is
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equal to the number of inverting (n/2)-periodic points x with index I(f"? x)=1
(resp. —1). The following result of Dold [5, Proposition (6.2)] gives a relation
between these numbers and the number I,(f):

THeEOREM 1 (Dold). Let f: V> M be a C' map defined on an open subset V of a
manifold M, and let n be a positive integer. Suppose that f" has only finitely many
fixed points and that every fixed point of f" is regular and contained in the interior
Int M of M. Then

L(f)=vg(n)—vo(n) if n is odd,

=pp(n)—vo(n)—2(vego(n/2) — voo(n/2)) if n is even.

In some special cases, this theorem was proved and was applied to the study of
periodic solutions of periodic differential systems by Levinson [14, § 6], Massera
[15], Shiraiwa [18]. In [§] Dold used this theorem to prove that n divides the number
I.(f) for any continuous map f defined on an open set of an ENR with Fix (f")
compact. (This result was also obtained by Zabreiko and Krasnosel’skii [19], [13,
Theorem 31.4].) In §§ 3 and 4, we shall give two other applications of Theorem 1.

3. The first application
Throughout this section, we assume that M is a compact manifold.

Let f: M > M be a continuous map.
Definition 3. A positive integer k is an L,-period of f if

L,(f™ ) =Ly(f") foranyi=1,

where L,(f')€Z, denotes the mod 2 reduction of the Lefschetz number L(f’) of
f' ie. Ly(f')=0 or 1 according as L(f’) is even or odd. We denote the minimal
L,-period of f by a(f).

For example, let f: S' - S* be a continuous map on the circle. Then L(f')=1-d’,
where d is the degree of f, and hence L,(f')=0 for all i or L,(f')=1 for all i
Therefore, in this case, a(f)=1.

The following proposition clearly implies that a(f) always exists and is an odd
number:

PROPOSITION 1. Let p be a prime number and A a square matrix with entries in Z/pZ.
Then there exists a positive integer k such that for any i =1,

tr At =1r A’
and that k is not divisible by p.

Proof. Since {A'|i=1} is a finite set, there exist positive integers I and ! such that
A'=A"" Then for any i=1I,

Al' =AIAI'—I =AI+IAE—I =Ai+l
Let i be a positive integer. Then, iqg= I for some power g of p. Since
tr B” =tr B (3.1)

for any j=0 and any square matrix B with entries in Z/pZ ([2, Proposition 5],
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[17, Lemma]), we have
trA' =tr A¥=tr A" =tr A" DI=1r A",
Hence [ is a period for {tr A'},.,. Decompose ! as kr, where k is not divisible by p
and r is a power of p. Then, by (3.1), for any i,
tr A =tr AV =tr A" =tr A"

Thus k is also a period, and the proof is completed. O

Given an n-periodic point x of f, we call the set {f'(x)|i=1} an n-periodic orbit of
[ As an application of Theorem 1, we have:

THEOREM 2. Let f: M > M be a C' map and n an odd number with n=3. Suppose
that every fixed point of f" is regular and contained in Int M. Suppose also that n is
divisible by a(f)* or by a prime number p which is congruent to 2' modulo a(f) for
some i=0. Then, the number ¥(n) of n-periodic orbits of f is even.

Proof. By the assumption, |Fix (f")| <. Hence by Theorem 1,
#(n) =|Per (n)|/n=2vo(n)/n+I1.(f)/n.

Hence, it is sufficient for the proof to show that the mod 2 reduction I,,,(f) of L.(f)
is equal to zero. Let a = a(f). Suppose first a®|n. Then for any r< P(n),n:7is a
multiple of a. Therefore, since L,(f*)= L,(f*) for any multiple k of a,

L.(f)= ( %( ) (—1)"') Ly(f*)=0.
Next, suppose n is divisible by a prime p with p =2’ (mod a) for some i. Decompose
n as n=p’r, where j, r=1 and r is not divisible by p. Then

L) =L(f") - L. (3.2)
Since a is a period for the sequence {I,,(f")}i=1,
Ir,z(fps) = Ir,z(fzis) for s =0.

Hence by (3.1), I,(f7')=IL,(f) for s=0.
Therefore by (3.2), L.(f) = L,(f) — L.(f)=0. i

Let b(M) be the maximum of the Betti numbers of M. It is easy to show that if
b(M)=1 (resp. 2) then a(f)=1 (resp. 1 or 3). Hence, by Theorem 2, we have:

COROLLARY. Let n be an odd number. Assume either that b(M)=1, n=3, or that
b(M)=2,n=5. Let f: M > M be a C' map and suppose that every fixed point of f"
is regular and contained in Int M. Then #(n) is even.

In the case where f is a diffeomorphism of a disk, this corollary has been obtained
by Levinson [14], Massera [15]. Theorem 2 follows from Shiraiwa [18, Theorem 3]
in the case where f is a diffeomorphism with L(f)= L(f"') for any i.

When b(M) =3, the condition for #*(n) to be even does not seem simple in many
cases. For example, let M be a disk with 3 holes. Suppose a 3x3 matrix (a;)
representing the homomorphism f,: H,(M; Z) > H,(M; Z) is given by a;=0or 1
according as i+j=<3 or i+j>3 respectively. Then a(f)=7 and the computation
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of I,(f) shows that, for n odd, #(n) is odd if and only if n=r' or 7r', where r is
a prime number satisfying r=3, 5, 6 (mod 7).

4. The existence of infinitely many periodic points

In this section, we shall generalize some theorems of Franks in [8, 9] on the existence

of infinitely many periodic points. Here we assume the following conditions:

(i) M is a compact manifold and f: M > M is a C' map.

(ii) f" has only regular fixed points for any n=1, and f has no periodic points
on the boundary of M.

(iii) All non-zero eigenvalues of f,: H,(M; @)~> H,(M; Q) are qth roots of unity
for some g>0.

We first define homotopy invariant integers y(f, a) for positive integers a, which

play a central role in the generalization of the Franks’s results. For a positive integer

rand i=0, let ¥(r, i) be the number of eigenvalues A of f;: H(M; Q)> H(M; Q)

which are rth primitive roots of unity (counting multiplicity) and set

¥()= T (D'(r /().

where ¢(r) denotes the Euler function, i.e. ¢(r) is the number of integers s such
that 1<s=r and (r, s), the greatest common divisor of r and s, is equal to 1. For
a positive integer a, let

y(f, @) =% n(r)ya(f),

where the sum is taken over all odd numbers r, and u(r) is the Mébius function,
ie. u(1)=1,u(r)=(-1)* if r is a product of k distinct primes, and u(r)=0
otherwise. (This definition of y(f, a) makes sense, because vy,,.(f) =0 if ar+ q.) For
example, if g =2'3, i=0,then y(£; 1) = y,(f) — vs(f), ¥(£,3) = v3(f),and ¥(f, a) =0
for odd a=5.

Now let

Va(n)=vy(n)/n fora, b=E,O.

Then these are clearly non-negative integers and we have:

THeEOREM 3. Let a be an odd number and let i(a) denote the smallest i =0 such that
2'a does not divide q. Then for any i = i(a)— 1, we have

1750(2'}1) - 1-’00(2ia) =y(fa)— A (’7EE(2ja) - 1705(2ja))~

j=

Recall that an n-periodic point x is said to be inverting if I(f*", x)=—I(f", x)
(8 2). Then it is clear that x is an inverting n-periodic point if and only if x¢€
Pergo (n) U Pergo (). Theorem 3 immediately implies the following corollaries
concerning the existence of infinitely many inverting periodic points:

COROLLARY 1. Let a be an odd number. Suppose that

V(£ a)> L se(2a) o v(f,a) <~ Fox(Pa).
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Then for any i = i(a)— 1, f has an inverting 2'a-periodic point.
COROLLARY 2. Let a be an odd number satisfying y(f, a) =0. Suppose either
(i) vge(2'a)=voo(2'a)=0 foranyi=0, or
(ii) vgo(2'a) =voe(2'a)=0 foranyi=0.
Then we have
7eo(2'a)+ Poo(2'a) = ¥ (Pee(2/a)+ #oe(27a))
j=0
for any i = i(a)—1. In particular, if f has a 2'"a-periodic point for some iy=i(a)—1,
then for each k= iy, f has an inverting 2*a-periodic point.
Corollary 1 generalizes the result of Franks [8]. In [8], Corollary 1 has been proved
in the special case where a =1, M is a circle, a sphere, a closed interval, or a disk,
under some additional assumptions. Also, Corollary 2 generalizes Theorem C in
Franks [9]; in this theorem, Corollary 2 has been obtained in the restricted case of
i(a)=0. (Note that i(a) =0 implies y(f, a) =0, and that the notion of an inverting
periodic point is identical with that of a ‘twisted’ periodic point in [9].) Thus
Theorem 3 generalizes and unifies results of Franks in [8, 9], which were obtained
by using the Lefschetz zeta function.
Proof of Theorem 3. Using Theorem 1, we can prove the following equalities by
induction on i:

Feo(2'a) - Foo(2a)
~ % (Pox(2'a) = Pex(2'a) + i) 41
where I.(f) = L(f)/ k. Henjc_e it is sufficient to show that if i=i(a)—1, then
¥ LulN=1fa)

For r=1, let A, be the set of all rth primitive roots of unity. Let
Y(rj)= L N forj=1,

A€A,

M,(n)=%( ) (—1)”'¢(r,n:r)).

r< P(n)
Then clearly we have:

L(f)= |Z Y.(f)M,(n). (4.2)
rlq
It is easy to show that
M(n)=1 5 wld)b(r,n/d).

LEMMA. Forn,r=1, M.(n) = u(r/n), where u(r/n) means 0 if r is not divisible by n.

Proof. We prove this lemma by induction on the number s(n) of primes dividing
n. If s(n) =0, then n =1 and the lemma is trivial. Assume the lemma holds for any
r and any n such that s(n) is less than an integer s. Let r, n =1 and suppose s(n) =s.
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Decompose n and r as n=p'n’, r=p’r’, where n’,r',i=1, j=0, and p is a prime
which does not divide n’, r’. Let v =min {i, j} and w=min {i —1, j}. For any k, we
have

P (r, kn) =y (r", n)d(r)/ d(r"),
where r"=r/(r, k), because the k times power of an rth primitive root of unity is
an r/(r, k)th primitive root of unity. Hence, by the induction hypothesis, we have

M, (n) =% E u(dNy(r, p'n’/d’)—¢(r, p""'n'/d")}

=n; {Mrp_"(n’)‘bu - Mrp_"'(n’)d’w}

=p~u(/n'Hu(p’ )b, —n(p’ )b}, (4.3)
where ¢, = ¢(p’)/ d(p'™°), ¢ = d(p’)/ S (p’™™).

If n does not divide r, then we can assume p’ does not divide r. Therefore, v=w
and by (4.3) M,(n)=0. If n divides r, then v=i and w=i—1. Hence by (4.3),
M, (n)= w(r/n). Thus the proof is completed. O

Now let i=i(a)—1. By (4.2) and Lemma, since

Y u(r/2’a)=0 forreven,

we have
2 Be=E %) ¥ ulr/2a)
= 3 wDur/a) =y a).
Thus the proof is completed. O

5. An extension of Theorem 1

Let M be a C™ manifold, V an open set of M, and let f: V> M be a continuous
map. Let n be a positive integer, and S an isolated set of fixed points of f",i.e. an
open and closed subset of Fix (f"). If S is compact, then an integer L,(f, S) is
defined by

L(£8)= ¥ (p"1m,s,), (5.1)

T< P(n)
where S, =Fix (f""")n S and I(f"°", S,) denotes the fixed point index of S, for
the map f"°". For a,b=E, O, let

Va,b(n, S) = IPerab (n) (@) SI’ Va(n, S) = VuE(n, S)+ VaO(n; S)

Note that if S =Fix (f"), then I,(f, S) = L,(f), va(n, S) = v,,(n). We then have the
following generalization of Theorem 1:

THEOREM 4. Let f: V> M be a C' map defined on an open subset V of a manifold
M, and let n be a positive integer. Let S be a finite subset of Fix (f"). Suppose that
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every fixed point of f" contained in S is regular and that S < Int M. Then
L(f,S)=ve(n, S)—vo(n, S) if n is odd,
=vg(n, §)—vo(n, §)—2(vgo(n/2, S)—voo(n/2,S)) if niseven.
Proof. In the case where f(S) =S, the theorem can be considered as a special case
of Theorem 1. In fact, if we choose an open neighborhood W of S with Wn
Fix (f") =S, then Fix (f™)n S =Fix ((f|w)™) for any divisor m of n, and hence
L(f, S)=L.(f|w). Therefore, Theorem 4 is immediately obtained by applying

Theorem 1 to the map f|y.
The general case can be also proved by using Theorem 1 in the following way. Since

L(f, $)= Zs L(f{x}),  va(n, S)= ¥ va(n, {x}),

xeS

without loss of generality, we may assume that S consists of only one point x. Let
m be the least period of x and let n’ = n/m. Then it is easy to see that Fix (f"*") n {x}
is not empty if and only if < P(n’). Hence we have

L(f,{x})= %l( \ (D), ). (5.2)
Choose an open neighborhood W of x such that Fix (f")n W ={x}andletg = f"|.

Then

17,0 = 1™, x) = 1(g™").
Therefore by (5.2), I,(f, {x}) = I.(g). Applying Theorem 1 to g and n’, we can verify
that I,.(g) is equal to the right-hand side of the desired equality (in the case of
S ={x}). Hence the proof is completed. O

For the application of Theorem 4 to the study of the number of periodic points,
one must compute the number I,(f, S). This, however, is difficult in general. But if
L.(f, S) is invariant under homotopy in some sense, this invariance will be of great
help in the computation. In the following, we give a sufficient condition on S for
the number I,(f, S) to be invariant under homotopy by making use of Nielsen fixed
point theory. For a general reference on Nielsen fixed point theory, see Jiang [11].
See also Brown [3].

In the rest of this paper, we assume that V=M and M is compact and connected.
Let p: M > M be the universal covering of M. Denote the group of covering
transformations of M by T.

Definition 4. We say that two liftings f and f "of f: M > M are conjugate if there
exists an element y of I' such that f'=yo f o y~'. The conjugacy class [ £1 of the
lift £ is said to be a lifting class of f. The subset p(Fix (f)) of Fix (f) is called the
Nielsen class (or the fixed point class) of f determined by the lifting class [ f] (see
[11, p. 5]). (Note that this definition does not depend on the choice of a representative
f of a lifting class; indeed, if [ f1=[f"], then p(Fix (f)) = p(Fix (f")).)

The following are known (cf, [11]):
(i) A Nielsen class is an isolated set of fixed points of f.
(ii) There are only finitely many non-empty Nielsen classes, and Fix (f') splits into
a disjoint union of Nielsen classes.
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(iii) Two fixed points x and y of f belong to the same Nielsen class if and only if
there exists a path ¢ in M from x to y such that fo ¢ is homotopic to ¢ with
endpoints fixed.

Note that by (i), I,(f, N) is defined for any Nielsen class N of f”", and by (ii),

In(f)=§In(f;N) and Vab(n)=§Vab(n,N),

where N ranges over the set of all Nielsen classes of f".

Let go, 8:: M > M be homotopic contmuous maps, and H: M x[0,1]- M a

homotopy from go to gi. A homotopy H:M x[0,1]~> M is called a ltftmg of the
homotopy H if H isa lifting of H, for any te [0,1], where H:M>M, H,:M > M
are defined by H,(x)= H(x, t), H(%)= H(Z 1)
Definition 5. Let g; be a lifting of g;, i =0, 1. We say that the lifting class [g,] (and
the Nielsen class determined by [g,]) corresponds to the lifting class [g,] (and the
Nielsen class determined by [g,]) via the homotopy H if H has a lifting H from
goto g;.

Now let f,, fi: M > M be homotopic continuous maps, and H: M x[0,1]> M a
homotopy from f; to fi. Let n be a positive integer and define a homotopy
H":M x[0,1]> M from f§ to f7 by H"(x, t)=(H,)"(x). Then we have:

ProrosITION 2. Let N; be a Nielsen class of fi', i =0, 1. If N, corresponds to N, via
the homotopy H", then

In(ﬂ), Np) = In(fla Ny).

Proof. For i=0,1, denote by «; the lifting class of f] which represents N;. Let
< P(n). Let L, be the set of lifting classes 8 of f7°7 with B™ = a;, where n'=
n/(n:7) and B" is defined by 8" =[h"] for a lifting h of f7° with 8 =[h]. Then
it is easy to see that Fix (f7'")n N; is a disjoint union of the Nielsen classes
determined by all B € L;,- and that there is a bijective correspondence between L,
and L, . via the homotopy H"'". Therefore, the result follows from the homotopy
invariance theorem for the indices of Nielsen classes [11, Theorem 4.5, 3, Theorem
3, p. 94]. O
Remark. Proposition 2 can be generalized to compactly fixed maps on noncompact
ENRs by using the generalized Nielsen fixed point theory on noncompact ENRs
due to Fadell and Husseini [6].

We give two examples of the computation of I, (f, S) by using the homotopy
invariance.

Example 1. If f is homotopic to a map ¢ which has no periodic points, then by
Proposition 2, I,(f, N) =0 for all n and all Nielsen classes N of f" (since for any
homotopy H from f to ¢, N corresponds to the empty set via H"). In particular,
if f is homotopic to the identity map and the Euler characteristic of M is zero, then
the same conclusion holds. Therefore, in the special case where f is a diffeomorphism
of an annulus homotopic to the identity, Theorem 4 becomes a result of Kawakami
[12], which are applied to the study of periodic systems of differential equations.

Example 2. We give an example where I,(f, S) #0. Let M be a disk with k open
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disks removed and f: M > M a continuous map. Assume that f has a fixed point
Xo. It is well known that the fundamental group == m(M, x,) is a free group
generated by k generators x,,...,x,. Let B, be the braid group on k strings,
o, ..., 0k the generators of By, and p: By - Aut (7) the homomorphism defined
by (cf, [1, (1.14)])
P(a'i)(xj) = xixi+1x;'-l ifj=i
=X; ifj=i+1,
=X; otherwise. (5.3)

We assume that there exists o € B, such that p(o): 7> 7 coincides with the
homomorphism f, : 7 - 7 induced by f.

For an integer i, let N; denote the set of fixed points x of f" such that
w([e(f" 2 ¢)"]) =i, where c is some path in M from x, to x and u:7~Z is the
homomorphism defined by u(x;) =1. (Note that ¢(f"°c)”' is a loop in M based
at x,.) It is easy to show that N; is a union of Nielsen classes of f".

Let Z[¢] be the ring of integer polynomials on the variable ¢ and its inverse. For
a finite set 7 of primes, define a homomorphism ¥, : Z[t]- Z[t] by ¥.(t) = t*, where
d =]],<. p. For o € By, let B(o) be the reduced Burau matrix of o [1, p. 125]. Then
tr B(o) is an element of Z[¢] and we have:

ProPoSITION 3.

L LUAEN)-t'== % (=) (tr B(c")).

icZ r< P(n)
Proof. Consider first the case of n = 1. Let 7 act itself on the right by y¢ = £ ' yf,(£),
v, £€€m, and let R(f) denote the resulting set of orbits. There is a bijective
correspondence @ between R(f) and the set of lifting classes of f given by ®([y]) =
[ye f ], where f is a lifting of f having a fixed point (such a lifting f always exists)
[11, Theorem 1.7]. For a € R(f), let N, denote the Nielsen class of f determined
by ®(«). Define an element I( Jf) of the free abelian group Z[ R(f)] generated by
the set R(f) by

()= ¥ ILN) @
aeR(f)

Then f( f) is a homotopy invariant; moreover, it is known that i f) coincides with
the generalized Lefschetz number I:( f) defined by Husseini [10, Theorem (1.13)].
Also by {7, Theorem 2.3],

£ =1- £ A@p(@)x)/a%), (5.4

where §/8x; denotes the Fox derivative and A: Z[ 7] > Z[ R(f)] is the homomorphism
induced by the natural projection. Define a homomorphism I': Z[ R(f)] > Z[¢] by
I'([x;])=t Then I'(a) =¢' if and only if N,  N,. Therefore by (5.3), (5.4),

S I(f,N) -t =T(I(f))=~tr B(o), (5.5)

icZ

and we obtain the desired equality in the case of n = 1. (For another proof of (5.5),
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see [16, Proposition 2].) The equality for general n can be proved by applying (5.5)
to the maps ™, m|n. 0O

For example, assume M has three holes and o =o,0;". Then,
trB(o)=1—t—t " tr B(c)=1-2(t+t)++12
Therefore, by Proposition 3,
L(f,N)=2 ifi=1,-1,
==2 ifi=2,-2,
=0  otherwise.

The maps treated in Example 2 appear naturally in the theory of periodic systems
(see [16, Lemma 2]). Hence Theorem 4 and Proposition 3 can be applied to the
study of such systems.
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