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We found a multi-scale steady solution of the Boussinesq equations for Rayleigh–Bénard
convection in a three-dimensional periodic domain between horizontal plates with a
constant temperature difference. This was realised using a homotopy from the wall-to-wall
optimal transport solution provided by Motoki et al. (J. Fluid Mech., vol. 851, 2018,
R4). A connected steady solution, which is a consequence of bifurcation from a
thermal conduction state at Rayleigh number Ra ∼ 103, is tracked up to Ra ∼ 107 using
a Newton–Krylov iteration. The three-dimensional exact coherent thermal convection
exhibits a scaling of Nu ∼ Ra0.31 (where Nu is the Nusselt number) as well as multi-scale
thermal plume and vortex structures, which are quite similar to those in turbulent
Rayleigh–Bénard convection. The mean temperature profiles and the root-mean-square of
the temperature and velocity fluctuations are in good agreement with those of the turbulent
states. Furthermore, the energy spectrum follows Kolmogorov’s −5/3 scaling law with a
consistent prefactor, and the energy transfer to small scales with a nearly constant flux in
the wavenumber space is in accordance with the turbulent energy transfer.
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1. Introduction

Rayleigh–Bénard convection, a buoyancy-driven flow in a horizontal fluid layer heated
from below and cooled from above, is one of the most canonical flows widely observed
in nature, and also in engineering applications. The effect of buoyancy on a flow is
characterised by the Rayleigh number Ra. When Ra exceeds a certain critical value
Rac, the thermal conduction state becomes unstable and two-dimensional (2-D) steady
convection rolls appear (Drazin & Reid 1981). At a higher Ra, the convection becomes
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time-dependent and subsequently exhibits turbulent states with multi-scale thermal and
vortex structures. One of the primary interests in the Rayleigh–Bénard problem is the
scaling of turbulent heat transfer with Ra, i.e. the dependence of the Nusselt number
Nu on Ra. Over half a century ago, Priestley (1954) and Malkus (1954) simultaneously
and independently proposed Nu ∼ Ra1/3. Priestley derived the scaling from a similarity
argument based on dimensional analysis by assuming that the heat flux is independent
of the height of the fluid layer, H, while leaving the Prandtl number Pr dependence
unspecified. In contrast, Malkus obtained a scaling independent of Pr based on a marginal
stability argument. Later Malkus’ theory was reframed and developed by Howard (1966).
Malkus (1954) also raised a question for the upper limit of the heat transfer in thermal
convection, and the upper bounds of Nu ∼ Ra1/2 were derived via variational approaches
(Howard 1963; Busse 1969). In the 1990s, Doering & Constantin (1996) derived a rigorous
upper bound of Nu ≤ 0.167Ra1/2 − 1 by employing a new variational approach called ‘the
background method’ (Doering & Constantin 1992), and then the lowest asymptotic upper
bound, Nu − 1 = 0.02634Ra1/2, was obtained by Plasting & Kerswell (2003). Based
on the mixing-length theory, apart from the upper-bound problems, a scaling of Nu ∼
Pr1/2Ra1/2 was derived by Spiegel (1963). In 1961, his theory was already proposed as
testified by Batchelor (1961) (see also Doering 2019). Shortly afterwards, Kraichnan (1962)
modified Spiegel’s theory, and predicted Nu ∼ Pr1/2Ra1/2(ln Ra)−3/2 for a sufficiently
large Ra, as a scaling in an asymptotic state with turbulent boundary layers. The
logarithmic correction possibly varies from (ln Ra)−3/2 to (ln Ra)−3 (Chavanne et al.
1997); Nu ∼ Pr1/2Ra1/2 is currently called ‘ultimate’ scaling. In conventional turbulent
Rayleigh–Bénard convection, however, the ultimate scaling has not been observed yet. A
prominent experiment by Niemela et al. (2000) for a very high Ra exhibits Nu ∼ Ra0.31

even at Ra ∼ 1017. A recent numerical simulation by Iyer et al. (2020) up to Ra = 1015, in
a slender cylindrical container with an aspect ratio of 1/10, exhibits Nu ∼ Ra0.33. In the
1990s, Shraiman & Siggia (1990) deduced Nu ∼ Pr−1/7Ra2/7 by assuming the existence
of turbulent boundary layers. In the 2000s, Grossmann & Lohse (2000, 2001, 2002, 2004)
proposed a unifying scaling law of global properties for Ra and Pr, based on decomposing
the total scalar and energy dissipation into contributions from the bulk region and the
boundary layer. Their scaling argument results in two equations for the Nusselt number
Nu(Ra,Pr) and the Reynolds number Re(Ra,Pr) with six adjustable parameters, and they
are determined to fit experimental and numerical data. Many experiments and numerical
simulations have demonstrated the validity of this scaling law (Ahlers, Grossmann &
Lohse 2009; Stevens et al. 2013). Per the argument, the scaling Nu ∼ Ra1/3 is derived
in the high-Ra regime 108 � Ra � 1014 for Pr ∼ 1. The transition to the ultimate scaling
is also predicted for Ra � 1014; however, the local effective behaviour is represented by
Nu ≈ cRa0.38, where c is a fitting constant, due to logarithmic corrections (Grossmann &
Lohse 2011). Although some results have shown the transition to Nu ∼ Ra0.38, the high-Ra
scaling is still being discussed (Chillà & Schumacher 2012; Zhu et al. 2018; Doering,
Toppaladoddi & Wettlaufer 2019a,b). In contrast, for 108 � Ra � 1011, a considerable
amount of turbulent data exhibit the classical scaling Nu ∼ Ra1/3 (e.g. Niemela &
Sreenivasan 2006; He et al. 2012).

Recently, Waleffe, Boonkasame & Smith (2015) found a scaling of Nu = 0.115Ra0.31 in
2-D steady Rayleigh–Bénard convection for 107 � Ra � 109 and Pr = 7 (see also Sondak,
Smith & Waleffe 2015). In their work, 2-D steady solutions were obtained to maximise
Nu by optimising the horizontal periods. The scaling is achieved by a family of 2-D
solutions with a horizontal period that decreases with increasing Ra. Interestingly, the
scaling is quite similar to the three-dimensional (3-D) turbulent data fit Nu = 0.105Ra0.312
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Figure 1. Nusselt number Nu as a function of Rayleigh number Ra. The red and blue curves represent the 3-D
steady solution in the square periodic domain and 2-D steady solution with L/H = π/2 for Pr = 1 bifurcating
from the conduction state (black) at Ra ≈ 1879, respectively. The orange curves show the maximum and
minimum values of Nu in the 3-D time-periodic solution. The dashed lines denote unstable solutions.

(He et al. 2012). Although the result suggests that simple and coherent structures can
capture the essence of convective turbulence, it does not imply that this can be realised by
any single 2-D steady solution with a fixed horizontal period (fundamental wavelength).
More recently, a wall-to-wall optimal transport problem, which is a variational problem for
finding a divergence-free velocity field optimising scalar transport between two parallel
plates, has been discussed (Hassanzadeh, Chini & Doering 2014; Tobasco & Doering
2017; Doering & Tobasco 2019). Motoki, Kawahara & Shimizu (2018a) also numerically
obtained 3-D time-independent velocity fields to be the optimal states maximising heat
transfer between two isothermal no-slip parallel plates under the constraint of fixed
total enstrophy. The optimal states exhibit ultimate scaling, which is quite close to
the lowest rigorous upper bound obtained by Plasting & Kerswell (2003), and lead to
hierarchical self-similar vortex structures. In the optimised 3-D velocity fields, smaller
and stronger vortices appear closer to the walls as the total enstrophy increases. In velocity
fields numerically optimised within a 2-D field, the emergence of such hierarchical flow
structures has not been observed (Souza, Tobasco & Doering 2020). Although the 3-D
optimal state needs an external body force other than buoyancy, we proved that the optimal
state found by Motoki et al. (2018a) could continuously connect to a steady solution of the
Boussinesq equations using the homotopy continuation method (see appendix A).

In this paper, we discuss the connected 3-D steady solution. In the Rayleigh–Bénard
convection between horizontal boundaries, a 3-D steady solution with convection cells
also bifurcates from the conduction state at the same critical value of Ra as the 2-D steady
solution (see figure 1). This is because convection rolls in any horizontal direction can
exist simultaneously. Although the 3-D solution is not stable, it exists even at a high Ra.
We demonstrate the ability of this invariant solution to capture key statistical features, as
well as coherent thermal and flow structures in turbulent Rayleigh–Bénard convection. We
then discuss the hierarchical multi-scale vortex structures and energy transfer in the 3-D
steady solution.

The remainder of the paper is organised as follows. In § 2, we introduce the governing
equations, boundary conditions and dimensionless parameters to characterise the thermal
convection. We then describe the numerical procedures to obtain nonlinear solutions.
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The statistical properties and spatial structures of the 3-D steady solution are presented
in § 3, and the hierarchical vortex structures are discussed in § 4. Finally, a summary
and conclusions are presented in § 5. In appendix A, we present the homotopy
continuation analysis from the 3-D optimal solution of the Euler–Lagrange equations
for the wall-to-wall optimal transport problem to the present 3-D steady solution of the
Boussinesq equations. The parameter dependence of the 3-D steady solution and the
adequacy of the spatial resolution are discussed in appendix B.

2. Boussinesq equations and numerical methods

Let us consider a fluid layer between two horizontal plates heated from below and cooled
from above. We employ the Oberbeck–Boussinesq approximation, wherein the density
variations are only significant in the buoyancy term. The time evolutions of velocity field
u(x, t) = uex + vey + wez and temperature field T(x, t) are described by the Boussinesq
equations

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇)u = − 1
ρ

∇p + ν∇2u + gαTez, (2.2)

∂T
∂t

+ (u · ∇)T = κ∇2T, (2.3)

where p(x, t) is pressure and ρ, ν, g, α and κ are the mass density, kinematic viscosity,
acceleration due to gravity, volumetric thermal expansivity and thermal diffusivity,
respectively. Vectors ex and ey are mutually orthogonal unit vectors in the horizontal
directions, while ez is a unit vector in the vertical direction. The two no-slip and
impermeable horizontal plates are positioned at z = 0 and z = H, and the top (or bottom)
wall surface is held at a lower (or higher) constant temperature:

u(z = 0) = u(z = H) = 0; T(z = 0) = �T > 0, T(z = H) = 0. (2.4a–c)

The velocity and temperature fields are supposed to be periodic in the x and y directions
with the same period Lx = Ly = L. The thermal convection is characterised by the
Rayleigh number Ra and the Prandtl number Pr:

Ra = gα�TH3

νκ
, Pr = ν

κ
. (2.5a,b)

The vertical heat flux is quantified by the Nusselt number:

Nu = −κ〈∂T/∂z〉xyt + 〈wT〉xyt

κ�T/H
= 1 + H

κ�T
〈wT〉xyzt, (2.6)

where 〈·〉xyt and 〈·〉xyzt represent the horizontal and time average and the volume and time
average, respectively. The second equality is given by the volume and time average of
(2.3).

Equations (2.1)–(2.3) are discretised employing a spectral Galerkin method based on
the Fourier series expansion in the periodic horizontal directions and the Chebyshev
polynomial expansion in the vertical direction. The nonlinear terms are evaluated using
a spectral collocation method. Aliasing errors are removed with the aid of the 2/3 (or
1/2) rule for the Fourier (or Chebyshev) transform. Time advancement is performed
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with the Crank–Nicholson scheme and the second-order Adams–Bashforth scheme for
the diffusion terms and the rest, respectively. The nonlinear steady solutions are obtained
using the Newton–Krylov iteration (for more details, see § 3 and appendix A in Motoki,
Kawahara & Shimizu (2018b)).

In this paper, we present the steady solution and the turbulent states in the horizontally
square periodic domain with L/H = π/2 ≈ 1.57 for Pr = 1. The domain is the same
as that of the optimal states derived by Motoki et al. (2018a). The numerical process
is conducted on 1283 grid points for Ra < 107 and 2563 grid points for Ra ≥ 107. In
the smaller (or larger) domain with L/H = 1 (or L/H = 2π/3.117 ≈ 2.02), we have
confirmed that the effects of the domain size on the heat flux and the spatial structures are
insignificant, which is described in the following sections. The domain size dependence is
shown in appendix B with the Prandtl number dependence and the adequacy of the spatial
resolution.

All the 3-D steady solutions presented in this paper satisfy the π/2-rotation symmetry

[u, v,w, T](x, y, z) = [v,−u,w, T]( y,−x, z) (2.7)

as well as the reflection symmetry

[u, v,w, T](x, y, z) = [−u, v,w, T](−x, y, z) = [u,−v,w, T](x,−y, z) (2.8)

and the shift-and-reflection symmetry

[u, v,w, T](x, y, z) = [u, v,−w, 1 − T](x + L/2, y + L/2, 1 − z). (2.9)

These symmetries are not imposed on the solutions explicitly at Ra � 106. At Ra ∼ 107,
we impose the symmetries (2.7)–(2.9) in order to reduce the computational degrees of
freedom.

3. Three-dimensional steady solution

3.1. The Nu–Ra scaling
The 3-D and 2-D steady solutions in the domain with L/H = π/2 for Pr = 1 bifurcate
from the conduction state at Ra ≈ 1879, as shown in figure 1. The 2-D roll solution
is stable up to Ra ≈ 3.55 × 104, and subsequently a time-periodic 3-D solution appears
(the stable periodic solution has been obtained by the time evolution). Figure 2 presents
Nu in the 3-D and 2-D steady solutions as a function of Ra at a higher Ra. The red
line shows the 3-D steady solution, and the open and filled circles represent the present
turbulent data in the horizontally square periodic domain and the experimental data in
a cylindrical container (Niemela & Sreenivasan 2006), respectively. The blue circles
represent the 2-D optimised steady solutions for Pr = 1 obtained by Sondak et al. (2015).
Although the 3-D steady solution at high Ra exhibits smaller Nu than the 2-D optimised
solutions, it maintains larger Nu than the turbulent states even at Ra ∼ 107. The inset
shows Nu compensated by Raγ . The scaling exponent γ of turbulent states shows 2/7 for
Ra � 107; at higher Ra, it changes to 0.31. Such a transition has been experimentally and
numerically observed for Pr ∼ 1 (Castaing et al. 1989; Silano, Sreenivasan & Verzicco
2010). The exponent of the heat flux in the 3-D steady solution is greater than 2/7 but
less than 1/3, with 0.31 being the closest, whereas that in the 2-D steady solution with
fixed L/H = π/2 (blue line) is smaller than 2/7. The bumps in the 3-D steady solution
correspond to the remarkable changes in the thermal and flow structures, which will be
shown in § 3.3. At Ra ∼ 104 the heat flux of the 3-D steady solution surpasses maxima in
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Figure 2. Nusselt number Nu − 1 as a function of Rayleigh number Ra. The red and blue solid lines represent
the 3-D and 2-D steady solutions, respectively. The open black circles represent the present turbulent data
obtained in the horizontally square periodic domain, and the filled ones are the experimental turbulent data in
a cylindrical container (Niemela & Sreenivasan 2006). The blue filled circles indicate 2-D optimised steady
solutions for Pr = 1 obtained by Sondak et al. (2015). The orange solid and dashed lines indicate the upper
bound Nu − 1 = 0.02634Ra1/2 (Plasting & Kerswell 2003) and the optimal scaling Nu − 1 = 0.0236Ra1/2,
respectively, evaluated from the wall-to-wall optimal transport states (Motoki et al. 2018a). The inset shows Nu
compensated by Raγ : γ = 2/7 (plot A); γ = 0.31 (plot B); γ = 1/3 (plot C).

the 2-D steady solutions. As shown in appendix B, the 3-D steady solution with the smaller
horizontal period (L/H = 1) shows larger Nu at Ra ∼ 105. The results imply that a family
of the 3-D steady solutions with optimised horizontal periods might achieve maximal heat
transfer in the steady Rayleigh–Bénard convection. The orange dashed line indicates the
optimal scaling Nu − 1 = 0.0236Ra1/2 (Motoki et al. 2018a) given by the 3-D optimal
states maximising the wall-to-wall transport, and it is quite close to the rigorous upper
bound, Nu − 1 = 0.02634Ra1/2 (Plasting & Kerswell 2003). Although the 3-D optimal
states exhibiting significantly high heat flux require an external body force different from
buoyancy, the optimal state can be continuously connected to the present 3-D steady
solution of the full Boussinesq equations by a homotopy from the body force to the
buoyancy, as shown in appendix A.

3.2. Mean temperature and root-mean-square profiles
Figure 3 compares the mean temperature 〈T〉xyt, root-mean-square (RMS) temperature

Trms = 〈(T − 〈T〉xyt)
2〉1/2

xyt and RMS vertical velocity wrms = 〈w2〉1/2
xyt for the 3-D steady

solution with those for the turbulent states at 105 ≤ Ra ≤ 107. In figure 3(b,d, f ) the
distance to the wall, z, is normalised by δ, where δ is the thermal conduction layer thickness
given by δ/H = 1/(2Nu). The mean temperature in the 3-D steady solution well follows
that in the turbulent states; furthermore, the corresponding RMS values are also in good
agreement with each other. In the bulk region, all mean temperature profiles are flattened,
as a result of the nearly complete mixing by large-scale circulation. The temperature
difference �T/2 exists only at the thermal conduction layer, 0 ≤ z � 2δ/H = 1/Nu, and
Trms exhibits a peak at z/δ ≈ 1. If the advection, diffusion and buoyancy terms in the
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Figure 3. (a,b) Mean temperature, (c,d) RMS temperature and (e, f ) RMS vertical velocity as a function of
(a,c,e) z/H and (b,d, f ) z/δ in the 3-D steady solution and the turbulent state. Here δ is the thermal conduction
layer thickness that scales as δ/H = 1/(2Nu).

Navier–Stokes equation (2.2) at the conduction layer are balanced as

w′2

δ
∼ ν

w′

δ2 ∼ gα�T (3.1)

(the balance between the advection and diffusion terms is given by that in the energy
equation (2.3) for ν ∼ κ), the near-wall vertical velocity would then be

w′ ∼ (gα�Tδ)1/2 ∼ Ra1/3 κ

H
, (3.2)

914 A14-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

97
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.978


S. Motoki, G. Kawahara and M. Shimizu

A

B

104

103

102

101

100

103 104 105 106 107 108 109

Ra

Re

Re
/
Ra

γ

0.75

0.50

0.25

0

103 104 105 106 107 108 109

Figure 4. Reynolds number Re as a function of Rayleigh number Ra. The red and blue solid lines represent the
3-D and 2-D steady solutions, respectively. The open circles represent the present turbulent data obtained in
the horizontally square periodic domain. The inset shows Nu compensated by Raγ : γ = 4/9 (plot A); γ = 1/2
(plot B).

yielding the scaling law

Nu ∼ Ra1/3 (3.3)

(Kawano et al. 2021), which has been given by Malkus’ theory (Malkus 1954) and the
argument of Grossmann & Lohse (2000). As shown in figure 3( f ), the RMS vertical
velocity wrms scales as Ra1/3κ/H near the wall z/δ ∼ 1.

In the bulk region, where the effects of viscosity or thermal conduction are insignificant,
the advection and buoyancy terms are balanced as

U2
b

H
∼ gα�T ′, (3.4)

and the dominance of convective heat transfer in bulk and the scaling (3.3) give us

Ub�T ′

κ�T/H
∼ Ra1/3 (3.5)

(Kawano et al. 2021). Equations (3.4) and (3.5) yield the bulk velocity scales as

Ub ∼ Pr−2/3Ra4/9ν/H. (3.6)

The Reynolds number based on Ub scales with Pr−2/3Ra4/9, exhibiting consistency
with the scaling suggested by Grossmann & Lohse (2000) when both energy and scalar
dissipation are bulk-dominated. Figure 4 shows the Reynolds number Re defined as

Re = 〈w2〉1/2
xyztH

ν
(3.7)

as a function of Ra. The Reynolds number Re of the 3-D steady solution is comparable with
that of the turbulent states exhibiting Re ∼ Ra4/9 at a high Ra. In contrast, the 2-D steady
solution with fixed L/H = π/2 seems to approach Re ∼ Ra1/2, implying that 〈w2〉1/2

xyzt

scales with the buoyancy-induced terminal velocity U = (gα�TH)1/2.

914 A14-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

97
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.978


Multi-scale steady solution for Rayleigh–Bénard convection

 1

π/4

π/8

–π/8

–π/4

–π/4 –π/8 0 π/8 π/4

1

0

0y/H

z/H

x/H

π/4

π/8

–π/8

–π/4

–π/4 –π/8 0 π/8 π/4

1

0

0y/H

z/H

x/H

π/4

π/8

–π/8

–π/4

–π/4 –π/8 0 π/8 π/4

1

0

0y/H

z/H

x/H

π/4

π/8

–π/8

–π/4

–π/4 –π/8 0 π/8 π/4

1

0

0y/H

z/H

x/H

δ

�T
T

δ
0

(a) (b)

(c) (d )

Figure 5. Thermal and flow structures in (a–c) the 3-D steady solution and (d) the turbulent state at (a) Ra =
105, (b) Ra = 106 and (c,d) Ra = 107. The yellow and grey objects represent the isosurfaces of the temperature
T/�T = 0.6 and the positive second invariant of the velocity gradient tensor, (a) Q/(κ2/H4) = 1.28 × 105,
(b) Q/(κ2/H4) = 1.28 × 106 and (c,d) Q/(κ2/H4) = 8 × 107, respectively. The contours represent
temperature T in the plane y/H = π/4(= −π/4), and the velocity vectors (u,w) in the enlarged views in
(c,d) are superposed.

3.3. Thermal and flow structures
Figure 5 visualises the thermal and flow structures in the 3-D steady solution and the
turbulent state. The yellow objects represent the isosurfaces of temperature T/�T = 0.6,
representing high-temperature plumes; the grey objects represent the vortex structures
visualised by the positive second invariant of the velocity gradient tensor

Q = −1
2
∂ui

∂xj

∂uj

∂xi
. (3.8)

At Ra = 105 (figure 5a), the 3-D steady solution consists of large-scale thermal plumes
as well as accompanying near-wall small-scale plume and vortex structures near the
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vertical planes x/H = 0 and y/H = 0. As Ra for the 3-D steady solution increases, smaller
thermal plume structures (and relevant smaller and stronger tube-like vortex structures)
appear near the walls without affecting the already existing large-scale structures. As Ra
increases from 105 to 106, thermal and vortex structures newly emerge along the diagonals
y = ±x near the walls (figure 5b). As Ra increases further from 106 to 107, smaller-scale
structures appear along x/H = ±π/8 and y/H = ±π/8 near the walls, and the large
secondary plumes approach the opposite wall (figure 5c). The bumps of Nu seen in figure 2
correspond to these remarkable changes in the thermal and vortex structures.

At Ra = 107 (figure 5c), we observe sheet-like thermal plumes with the smallest-scale
vortices, which are quite similar to those observed in the snapshot of the turbulent
state (figure 5d). The smallest-scale structures appear in the thermal conduction layer,
and the sizes of the plumes and vortices scale with the thickness δ. In 2-D optimised
steady solutions (Sondak et al. 2015; Waleffe et al. 2015), the appearance of small-scale
thermal and vortex structures has been observed with the shrinking horizontal period as
Ra increases, and the scaling Nu ∼ Ra0.31 is achieved by a family of solutions with smaller
horizontal periods. It should be stressed that the single 3-D steady solution spontaneously
reproduces the multi-scale coherent structures of convective turbulence.

4. Hierarchical vortices and energy transfer in wavenumber space

The 3-D steady solution is found to reproduce the near-wall coherent structures in
convective turbulence; however, the flow in bulk should be addressed. The developed
turbulence organises hierarchical coherent vortex structures of various scales (Goto, Saito
& Kawahara 2017; Motoori & Goto 2019). The smallest-scale vortex structures can still
be extracted by employing the isosurface of Q, as shown in figure 5; however, it is
difficult to identify large- and intermediate-scale structures. To examine the hierarchy of
multi-scale vortices in the 3-D steady solution, we consider coarse-graining the velocity
field u. The coarse-grained velocity field u∗ is obtained using the Gaussian low-pass filter
(Lozano-Durán, Holzner & Jimenez 2016; Motoori & Goto 2019) as follows:

u∗(x) =
∫

V
au(x′) exp

{
−

(
π�r
σ

)2
}

dx′, (4.1)

where �r = |x′ − x|, σ is the filter width and a is a constant such that the integral of
the kernel over the control volume V is unity. In the wall-normal direction, the Gaussian
filter is applied by reflecting it at the wall (Lozano-Durán et al. 2016). Figure 6 shows
hierarchical vortex structures in the 3-D steady solution at Ra = 2.6 × 107. Non-filtered
structures are shown in figure 6(a), and the isosurfaces of Q of the filtered velocity u∗ with
σ = H(= 2L/π), L/2, L/4, L/8 and L/16 are displayed in figure 6(b–f ), respectively. The
blue objects in figure 6(b) are the largest-scale structures corresponding to the large-scale
circulation, whereas the red ones in figure 6( f ) are the smallest-scale structures of size
σ/2 = L/32 ≈ 2δ, which coincides with the size of vortices observed in the non-filtered
field (figure 6a). The light blue, green and light red objects in figure 6(c,d,e) illustrate
the intermediate-scale vortex structures of eight, four and two times the size of the
smallest-scale vortices, respectively. The smaller-scale vortex structures exist closer to the
wall, while the intermediate-scale ones are observed in the bulk region in figure 6(d,e).

Figure 6(g,h) shows the superposed structures, and from their spatial distribution, it is
conjectured that the bulk flow is composed of multi-scale coherent structures. Figure 7(a)
shows the energy spectrum E(k, z) of the 3-D steady solution at the centre of the fluid
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Figure 6. Hierarchical vortex structures visualised by coarse-graining with Gaussian low-pass filter. (a) The
yellow and red objects represent the isosurfaces of the non-filtered T/�T = 0.6 and Q/(κ2/H4) = 2 × 108,
respectively. (b–h) The vortex structures are visualised by the isosurfaces of Q/(κ2/H4) of the filtered velocity
field with filter widths of σ = H(= 2L/π) (blue), σ = L/4 (light blue), σ = L/8 (green), σ = L/16 (light red)
and σ = L/32 (red); they are superposed in (g,h). The isosurface levels are (blue) 5 × 105, (light blue) 4 × 106,
(green) 1.2 × 107, (light red) 3 × 107 and (red) 1.6 × 108.
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Figure 7. (a) Energy spectrum E and (b) energy flux Π at the centre of the fluid layer, z = H/2, in the 3-D
steady solution (circles) and the turbulent state (lines) at Ra = 2.6 × 107. The lateral and longitudinal axes
are normalised by the kinematic viscosity ν and the energy dissipation rate ε at z = H/2, which yield the
Kolmogorov micro-scale length η = (ν3/ε)1/4. The red dashed lines represent E = 1.5ε2/3k−5/3 andΠ/ε = 1,
respectively. The light blue, green and light red colours indicate k = 2π/(L/4), 2π/(L/8) and 2π/(L/16),
respectively, normalised with η in the 3-D steady solution, corresponding to the intermediate-scale structures
shown in figure 6.

layer, z = H/2, and the corresponding turbulence spectrum at Ra = 2.6 × 107. The energy
spectrum E(k, z) is defined as

E(k, z) = L
2π

∑
k−�k/2<|k2D|<k+�k/2

1
2

〈
|ũ(k2D, z)|2

〉
t
, (4.2)

where ˜(·) indicates the Fourier coefficients in the periodic (x and y) directions and 〈·〉t
represents the time average. Here k2D = (kx, ky) and k = |k2D| are the wavenumber vector
and its magnitude, respectively, and �k = 2π/L. The lateral and longitudinal axes are
normalised by the kinematic viscosity ν and the energy dissipation rate

ε(z) = ν

2

〈(
∂ui

∂xj
+ ∂uj

∂xi

)2
〉

xyt

, (4.3)

which yield the Kolmogorov micro-scale length η = (ν3/ε)1/4. The spectra of the 3-D
steady solution and turbulent state are in good agreement at high wavenumber kη � 100.
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Multi-scale steady solution for Rayleigh–Bénard convection

Furthermore, in the wavenumber band 2π/(L/4) � kη � 2π/(L/16), corresponding to
the intermediate-scale range, the energy spectrum follows Kolmogorov’s −5/3 power law,
E = CKε

2/3k−5/3 (Kolmogorov 1941), with the constant CK ≈ 1.5, which is consistent
with that in the inertial subrange of high-Reynolds-number turbulence (Sreenivasan 1995;
Ishihara et al. 2016).

In figure 7(b), we show the energy flux in the wavenumber space, Π(k, z) (Mizuno
2016), defined as

Π(k, z) =
∑
k′≥k

∑
k−�k/2<|k2D|<k+�k/2

Ts(k2D, z), (4.4)

Ts(k2D, z) = Re

[〈
∂jũi(ũiuj)

†
〉
t
− 1

2

∂
〈
ũj(ũjw)†

〉
t

∂z

]
, (4.5)

where (∂1, ∂2, ∂3) = (ikx, iky, ∂/∂z) and † denotes the complex conjugate. Here Ts(k2D, z)
represents the energy transfer between the Fourier modes, and the sum of all spectral
components does not contribute to the total energy budget, i.e.

∑
k2D

Ts(k2D, z) = 0. In
the intermediate-scale range, the energy flux exhibits positive values, that is, the energy is
transferred from large to small scale, and it scales with the same order of energy dissipation
rate.

In the optimised 2-D steady solution (Sondak et al. 2015; Waleffe et al. 2015), as
Ra increases the horizontal scale of large-scale convective rolls reduces due to the
shrinking of the horizontal period. The bulk flows at high Ra diverge from those in
the turbulent states, although it is intriguing that the optimised steady solutions exhibit
the turbulent scaling Nu ∼ Ra0.31. Meanwhile, the 3-D steady solution reproduces not
only the near-wall coherent structures but also the turbulence in the bulk of the
Rayleigh–Bénard convection.

5. Summary and conclusions

We have discovered a 3-D steady solution to the Boussinesq equations, exhibiting a scaling
of Nu ∼ Ra0.31 and leading to multi-scale coherent structures, which are similar to those
observed in turbulent Rayleigh–Bénard convection. The invariant solution bifurcates from
the conduction state at Ra ∼ 103, and it has been tracked up to Ra ∼ 107 using the
Newton–Krylov iteration. The heat flux of the 3-D steady solution can surpass maxima
in the 2-D steady solutions (Sondak et al. 2015; Waleffe et al. 2015), and thus a family of
the 3-D steady solutions with optimised horizontal periods might achieve maximal heat
transfer in steady Rayleigh–Bénard convection. In contrast, in the 3-D steady solution
with fixed horizontal periods, the horizontal-averaged temperature and the RMS of the
temperature and velocity fluctuations are in good agreement with the horizontal and
temporal averages obtained for the turbulent states. In the near-wall region of both the
3-D steady solution and the turbulent states, smaller-scale thermal plumes emerge with
an increase in Ra. The size of the coherent thermal structures and relevant vortices is
comparable with the thermal conduction layer thickness δ/H = 1/(2Nu), and the RMS
vertical velocity at z/δ ∼ 1 scales with the velocity scale Ra1/3κ/H, corresponding to
Nu ∼ Ra1/3. The Reynolds number Re based on the RMS vertical velocity scales as
Re ∼ Ra4/9, which is related to the scaling Nu ∼ Ra1/3. The bulk flow in the 3-D steady
solution comprises hierarchical multi-scale vortices. We have extracted the large- and
intermediate-scale vortex structures by employing the coarse-graining method. The ratio
of the largest to the smallest length scales in the 3-D steady solution at Ra = 2.6 × 107
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is approximately 20. The energy spectrum at the centre of the fluid layer shows good
agreement with that of the turbulent state. In the intermediate-scale range, the spectrum
follows E = 1.5ε2/3k−5/3, which is commonly observed in the inertial subrange of the
developed turbulence. Furthermore, energy is transferred from large to small scales in the
wavenumber space, and the energy flux balances the energy dissipation rate, in accordance
with the Kolmogorov–Obukhov energy cascade view.

Recently, van Veen, Vela-Martín & Kawahara (2019) have found a time-periodic
solution that reproduces inertial range dynamics in a triply periodic turbulence driven
by a constant body force of the Taylor–Green type. They have obtained the invariant
solution by applying large-eddy simulation based on the Smagorinsky-type eddy-viscosity
model. Meanwhile, by introducing the buoyant force, we have succeeded in finding
a multi-scale solution of the full incompressible Navier–Stokes equations without any
empirical models. We believe that the current work and approaches based on multi-scale
invariant solutions will trigger significant advances in the theoretical understanding and
deductive modelling of coherent structures and energy transfer mechanisms in developed
turbulence.
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Appendix A. Homotopy from wall-to-wall optimal transport solution

The wall-to-wall optimal transport problem (Hassanzadeh et al. 2014; Motoki et al. 2018a;
Souza et al. 2020) involves maximising the heat flux between two parallel plates with
a constant temperature difference, under the constraint of fixed total enstrophy, which is
written as

Maximise Nu = 1 + 〈wθ〉xyz,

subject to ∇ · u = 0,

(u · ∇)θ + w = κ∇2θ,

Pe =
〈|∇ · u|2〉1/2xyz H2

κ
= const.

and the boundary conditions,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A1)

where θ = T − (1 − z) is the temperature fluctuation about a conduction state. The
constraint optimisation is relevant to the maximisation of the objective functional

F ′ =
〈
w′θ ′− φ′ (x′) [(

u′ · ∇′) θ ′+ w′−∇′2θ ′
]
+ψ ′ (x′) (∇′ · u′)+μ′

2

(
Pe2−|∇′u′|2

)〉
xyz
,

(A2)
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Figure 8. Homotopy from the wall-to-wall optimal transport solution at Pe = 508 (from Motoki et al. 2018a)
to the present 3-D steady solution for a fixed Ra = 104 and Pr = 1. (a) Nusselt number Nu as a function of the
homotopy parameter λ. The red open circle shows the optimal solution Sop of the Euler–Lagrange equations for
the wall-to-wall optimal transport problem, and the red and blue filled circles represent the 3-D steady solution
S3D and the 2-D steady solution S2D of the Boussinesq equations, respectively. (b–d) Isosurfaces of temperature
T/�T = 0.6 at (b) λ = 0, (c) λ = 0.3 and (d) λ = 1.0. The contours represent the temperature T in the planes
x/H = −π/4 and y/H = π/4. The numerical computation is carried out on 643 grid points.

where φ′(x′), ψ ′(x′) and μ′ are Lagrange multipliers and prime (·)′ represents a
non-dimensional variable based on H, �T , κ and ρ. The Euler–Lagrange equations are

δF ′

δu′ ≡ −∇′ψ ′ + θ ′∇′φ′ + μ′∇′2u′ + (θ ′ + φ′)ez = 0, (A3)

δF ′

δθ ′ ≡ (
u′ · ∇′)φ′ + w′ + ∇′2φ′ = 0, (A4)

δF ′

δφ′ ≡ − (
u′ · ∇′) θ ′ + w′ + ∇′2θ ′ = 0, (A5)

δF ′

δψ ′ ≡ ∇′ · u′ = 0, (A6)

∂F ′

∂μ′ ≡ 1
2

〈
Pe2 − |∇′u′|2

〉
xyz

= 0. (A7)

In our previous work (Motoki et al. 2018a), we obtained the optimal state to satisfy
(A3)–(A7). Thus, to fulfil the Boussinesq equations, the optimal velocity and temperature
field (u′

op, θ ′
op) require an additional body force,

f ′(x′) = −
(

u′
op · ∇′

)
u′

op − ∇′p′
op + Pr∇′2u′

op + PrRa
(

1 − z′ + θ ′
op

)
ez, (A8)
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Figure 9. (a) Nusselt number Nu compensated by Ra0.31 and (b) Reynolds number Re compensated by
Pr−2/3Ra4/9 as a function of the Rayleigh number Ra in the 3-D steady solutions for different horizontal
period L and Prandtl number Pr. The magenta, red and orange symbols represent L/H = 2π/3.117, π/2 and
1, respectively, for Pr = 1, and the green symbols represent L/H = π/2 for Pr = 7. The blue filled and open
diamonds represent the 2-D optimised steady solutions (Sondak et al. 2015) for Pr = 1 and 7, respectively. The
blue dashed line indicates the least square fit in the 2-D steady solutions for Pr = 7, Nu − 1 = 0.115Ra0.31,
determined in the range 107 < Ra ≤ 109 (Waleffe et al. 2015). The present solutions have been obtained on
grid points of +, (Nx,Ny,Nz) = (64, 64, 64); •, (128, 128, 128); ×, (192, 192, 128); ◦, (256, 256, 256).

which is different from the buoyant force, where p′
op is the pressure determined by the

Poisson equation stemming from the Boussinesq equations. We consider homotopy from
the Euler–Lagrange system to the steady Boussinesq system:

− (
u′ · ∇′) u′ − ∇′p′ + Pr∇′2u′ + PrRa

(
1 − z′ + θ ′) ez = λf ′, (A9)

− (
u′ · ∇′) θ ′ + w′ + ∇′2θ ′ = 0, (A10)

∇′ · u′ = 0, (A11)

where λ is a homotopy parameter. For fixed Ra = 104, Pr = 1 and f ′, we have tracked
the solution from λ = 1 to 0 using the Newton–Krylov method (figure 8). The connected
solution S3D is the present 3-D steady solution shown in §§ 3 and 4.
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Figure 10. The 3-D steady solution in the domain with L/H = 2π/3.117 ≈ 2.02 for Pr = 1 at (a) Ra = 105,
(b) Ra = 106 and (c) Ra = 107. The yellow and grey objects represent the isosurfaces of T/�T = 0.6 and
(a) Q/(κ2/H4) = 1.28 × 105, (b) Q/(κ2/H4) = 8 × 105 and (c) Q/(κ2/H4) = 8 × 107, respectively. The
contours indicate T in the plane y/H = π/3.117.
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Figure 11. The 3-D steady solution in the domain with L/H = 1 for Pr = 1 at (a) Ra = 105, (b) Ra = 106

and (c) Ra = 107. The yellow and grey objects represent the isosurfaces of T/�T = 0.6 and (a) Q/(κ2/H4) =
1.28 × 105, (b) Q/(κ2/H4) = 2.4 × 106 and (c) Q/(κ2/H4) = 5 × 107, respectively. The contours indicate T
in the plane y/H = 0.5.
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Figure 12. The 3-D steady solution in the domain with L/H = π/2 ≈ 1.57 for Pr = 7 at (a) Ra = 105,
(b) Ra = 106 and (c) Ra = 107. The yellow and grey objects represent the isosurfaces of T/�T = 0.6 and
(a) Q/(κ2/H4) = 1 × 105, (b) Q/(κ2/H4) = 1 × 106 and (c) Q/(κ2/H4) = 1.28 × 107, respectively. The
contours indicate T in the plane y/H = π/2.

Appendix B. Dependence of multi-scale steady solution on domain size, Prandtl
number and spatial resolution

Figure 9 shows the Nusselt number Nu compensated by Ra0.31 and the Reynolds number
Re compensated by Pr−2/3Ra4/9 as a function of the Rayleigh number Ra in the 3-D steady
solutions for different horizontal period L and Prandtl number Pr. The magenta, red and
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Ra (Nx,Ny,Nz) �x/H �z/H 〈η〉z/H η|c/H δ/H τ/(U/H)
×10−2 ×10−2 ×10−2 ×10−2 ×10−2

105 (128, 128, 128) 1.22 0.0153–1.24 3.92 4.25 9.57 —
3-D steady 106 (128, 128, 128) 1.22 0.0153–1.24 1.82 2.08 4.95 —
solution 107 (256, 256, 256) 0.611 0.00379–0.616 0.859 1.01 2.59 —

107.42 (256, 256, 256) 0.611 0.00379–0.616 0.638 0.746 2.08 —
105 (128, 128, 128) 1.22 0.0153–1.24 3.99 4.85 10.1 7906

Turbulent 106 (128, 128, 128) 1.22 0.0153–1.24 1.88 2.05 5.57 2500
states 107 (256, 256, 256) 0.611 0.00379–0.616 0.897 0.945 3.04 1028

107.42 (256, 256, 256) 0.611 0.00379–0.616 0.657 0.685 2.34 513

Table 1. Numerical details of the 3-D steady solution and the turbulent states for L/H = π/2 and Pr = 1.
Here �x and �z are the spatial resolutions in the x and z directions; 〈η〉z and η|c represent the

Kolmogorov micro-scale length η = (ν3/ε)
1/4 based on the vertical averaged energy dissipation rate, 〈ε〉z =

(ν/2)〈(∂ui/∂xj + ∂uj/∂xi)
2〉xyzt, and that at the centre of the fluid layer, ε|z=H/2, respectively; δ is the thermal

conduction layer thickness, δ/H = 1/(2Nu); τ is the integral time to obtain the statistics; and U = (gα�TH)1/2

is the buoyancy-induced terminal velocity.

orange symbols represent L/H = 2π/(kcH) ≈ 2.02, π/2 ≈ 1.57 and 1, respectively, for
Pr = 1, where kc = 3.117/H is the wavenumber corresponding to the minimal critical
Rayleigh number Rac = 1708 (Drazin & Reid 1981). Although there is a variation for
small Ra, the three solutions show similar Nu at Ra � 106. The green symbols represent
L/H = π/2 for Pr = 7, and the dependence of Nu on Pr is minor. The dependence of Nu
on the domain size and Pr (for 1 � Pr � 10) is expected to not be significant at a high
Ra, since the emergence of the small-scale plume and vortex structures near the walls,
which are robustly observed for different values of L and Pr (figures 5, 10, 11 and 12),
might be a key ingredient in the vertical heat flux. In contrast, a variation in Re exists;
however, all the solutions are comparable at Ra ∼ 107. The blue filled and open diamonds
in figure 9(a) indicate the 2-D optimised steady solutions for Pr = 1 and 7, respectively,
obtained by Sondak et al. (2015). The 3-D steady solutions can exceed the maximal heat
flux in the 2-D steady solutions. Meanwhile, at Ra � 106 the present 3-D steady solutions
with 1 ≤ L/H � 2 exhibit smaller Nu than those of the 2-D optimised steady solutions at
the same Pr.

In figure 9 the symbols +, •, × and ◦ show the results obtained on different grid
points (Nx,Ny,Nz) = (64, 64, 64), (128, 128, 128), (192, 192, 128) and (256, 256, 256),
respectively, and the effects of the spatial resolutions on Nu and Re are minor. For our
main results with L/H = π/2 and Pr = 1, the grid points (Nx,Ny,Nz) = (128, 128, 128)
are enough to evaluate the characteristics of the 3-D steady solution at Ra � 107;
(Nx,Ny,Nz) = (256, 256, 256) are sufficient at Ra ∼ 107. Furthermore, the Kolmogorov
micro-scale length η and the thermal conduction layer thickness δ in the 3-D steady
solution and the turbulent states at Ra = 105, 106, 107 and 107.42 ≈ 2.6 × 107 are
summarised in table 1 together with the grid sizes. Since the energy dissipation rate is
a function of the wall-normal coordinate z, ε(z) = (ν/2)〈(∂ui/∂xj + ∂uj/∂xi)

2〉xyt, η also
depends on z. Here 〈η〉z and η|c are based on the total energy dissipation rate, 〈ε〉z, and
that at the centre of the fluid layer, ε|z=H/2, respectively, and 〈η〉z < η|c in all cases. The
grid size in the x direction, �x(= �y), and the maximal value of z, �z, are comparable
with η and less than one-third of δ. Therefore, the spatial resolution is sufficient to resolve
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the smallest-scale thermal and flow structures in the 3-D steady solution and the turbulent
states. The present turbulent direct numerical simulation data are obtained by averaging
time of more than 200 convective time units based on the buoyancy-induced terminal
velocity U = (gα�TH)1/2.

REFERENCES

AHLERS, G., GROSSMANN, S. & LOHSE, D. 2009 Heat transfer and large scale dynamics in turbulent
Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503–537.

BATCHELOR, G.K. 1961 Considerations of convective instability from the viewpoint of physics - Discussion.
In Aerodynamic Phenomena in Stellar Atmospheres, Proceedings of the 4th Symposium on Cosmical Gas
Dynamics, August 18–30, 1960 (ed. R.N. Thomas), pp. 385–402. N. Zanichelli.

BUSSE, F.H. 1969 On Howard’s upper bound for heat transport by turbulent convection. J. Fluid Mech. 37,
457–477.

CASTAING, B., GUNARATNE, G., HESLOT, F., KADANOFF, L., LIBCHABER, A., THOMAE, S., WU, X.Z.,
ZALESKI, S. & ZANETTI, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection.
J. Fluid Mech. 204, 1–30.

CHAVANNE, X., CHILLA, F., CASTAING, B., HEBRAL, B., CHABAUD, B. & CHAUSSY, J. 1997 Observation
of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett. 79, 3648–3651.

CHILLÀ, F. & SCHUMACHER, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys.
J. E 35, 58.

DOERING, C.R. 2019 Thermal forcing and ‘classical’ and ‘ultimate’ regimes of Rayleigh–Bénard convection.
J. Fluid Mech. 868, 1–4.

DOERING, C.R. & CONSTANTIN, P. 1992 Energy dissipation in shear driven turbulence. Phys. Rev. Lett. 69,
1648–1651.

DOERING, C.R. & CONSTANTIN, P. 1996 Variational bounds on energy dissipation in incompressible flows.
I. Convection. Phys. Rev. E 53 (6), 5957–5981.

DOERING, C.R. & TOBASCO, I. 2019 On the optimal design of wall-to-wall heat transport. Commun. Pure
Appl. Maths 72, 2385–2448.

DOERING, C.R., TOPPALADODDI, S. & WETTLAUFER, J.S. 2019a Absence of evidence for the ultimate
regime in two-dimensional Rayleigh–Bénard convection. Phys. Rev. Lett. 123, 259401.

DOERING, C.R., TOPPALADODDI, S. & WETTLAUFER, J.S. 2019b Absence of evidence for the ultimate
regime in two-dimensional Rayleigh–Bénard convection. arXiv:1912.07698.

DRAZIN, P.G. & REID, W.H. 1981 Hydrodynamic Stability. Cambridge University Press.
GOTO, S., SAITO, Y. & KAWAHARA, G. 2017 Hierarchy of antiparallel vortex tubes in spatially periodic

turbulence at high Reynolds numbers. Phys. Rev. Fluids 2, 064603.
GROSSMANN, S. & LOHSE, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407,

27–56.
GROSSMANN, S. & LOHSE, D. 2001 Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86 (15),

3316–3319.
GROSSMANN, S. & LOHSE, D. 2002 Prandtl and Rayleigh number dependence of the Reynolds number in

turbulent thermal convection. Phys. Rev. E 66, 016305.
GROSSMANN, S. & LOHSE, D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of

plumes. Phys. Fluids 16 (012), 4462–4472.
GROSSMANN, S. & LOHSE, D. 2011 Multiple scaling in the ultimate regime of thermal convection. Phys.

Fluids 23, 045108.
HASSANZADEH, P., CHINI, G.P. & DOERING, C.R. 2014 Wall to wall optimal transport. J. Fluid Mech. 751,

627–662.
HE, X., FUNFSCHILLING, D., NOBACH, H., BODENSCHATZ, E. & AHLERS, G. 2012 Transition to the

ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108, 024502.
HOWARD, L.N. 1963 Heat transport by turbulent convection. J. Fluid Mech. 17, 405–432.
HOWARD, L.N. 1966 Convection at high Rayleigh number. In Applied Mechanics, Proceedings of the Eleventh

International Congress of Applied Mechanics (ed. H. Görtler), pp. 1109–1115. Springer.
ISHIHARA, T., MORISHITA, K., YOKOKAWA, M., UNO, A. & KANEDA, Y. 2016 Energy spectrum in

high-resolution direct numerical simulations of turbulence. Phys. Rev. Fluids 1, 082403(R).
IYER, K.P., SCHEEL, J.D., SCHUMACHER, J. & SREENIVASAN, K.R. 2020 Classical 1/3 scaling of

convection holds up to Ra = 1015. Proc. Natl Acad. Sci. USA 117, 7594.

914 A14-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

97
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/1912.07698
https://doi.org/10.1017/jfm.2020.978


S. Motoki, G. Kawahara and M. Shimizu

KAWANO, K., MOTOKI, S., SHIMIZU, M. & KAWAHARA, G. 2021 Ultimate heat transfer in ‘wall-bounded’
convective turbulence. J. Fluid Mech. 914, A13.

KOLMOGOROV, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large
Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301–305.

KRAICHNAN, R.H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 1374.
LOZANO-DURÁN, A., HOLZNER, M. & JIMENEZ, J. 2016 Multiscale analysis of the topological invariants

in the logarithmic region of turbulent channels at a friction Reynolds number of 932. J. Fluid Mech. 803,
356–394.

MALKUS, W.V.R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225,
196–212.

MIZUNO, Y. 2016 Spectra of energy transport in turbulent channel flows for moderate Reynolds numbers.
J. Fluid Mech. 805, 171–187.

MOTOKI, S., KAWAHARA, G. & SHIMIZU, M. 2018a Maximal heat transfer between two parallel plates.
J. Fluid Mech. 851, R4.

MOTOKI, S., KAWAHARA, G. & SHIMIZU, M. 2018b Optimal heat transfer enhancement in plane Couette
flow. J. Fluid Mech. 835, 1157–1198.

MOTOORI, Y. & GOTO, S. 2019 Generation mechanism of a hierarchy of vortices in a turbulent boundary
layer. J. Fluid Mech. 865, 1085–1109.

NIEMELA, J. & SREENIVASAN, K.R. 2006 Turbulent convection at high Rayleigh numbers and aspect ratio
4. J. Fluid Mech. 557, 411–422.

NIEMELA, J.J., SKRBEK, L., SREENIVASAN, K.R. & DONNELLY, R.J. 2000 Turbulent convection at very
high Rayleigh numbers. Nature 404, 837–840.

PLASTING, S.C. & KERSWELL, R.R. 2003 Improved upper bound on the energy dissipation rate in plane
Couette flow: the full solution to Busse’s problem and the Constantin–Doering–Hopf problem with
one-dimensional background field. J. Fluid Mech. 477, 363–379.

PRIESTLEY, C.H.B. 1954 Convection from a large horizontal surface. Aust. J. Phys. 7, 176–201.
SHRAIMAN, B.I. & SIGGIA, E.D. 1990 Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42

(6), 3650–3653.
SILANO, G., SREENIVASAN, K.R. & VERZICCO, R. 2010 Numerical simulations of Rayleigh–Bénard

convection for Prandtl numbers between 10−1 and 104 and Rayleigh numbers between 105 and 109. J. Fluid
Mech. 662, 409–446.

SONDAK, D., SMITH, L.M. & WALEFFE, F. 2015 Optimal heat transport solutions for Rayleigh–Bénard
convection. J. Fluid Mech. 784, 565–595.

SOUZA, A.N., TOBASCO, I. & DOERING, C.R. 2020 Wall-to-wall optimal transport in two dimensions.
J. Fluid Mech. 889, A34.

SPIEGEL, E.A. 1963 A generalization of the mixing-length theory of thermal convection. Astrophys. J. 138,
216–225.

SREENIVASAN, K.R. 1995 On the universality of the Kolmogorov constant. Phys. Fluids 7, 2778.
STEVENS, R.J.A.M., VAN DER POEL, E.P., GROSSMANN, S. & LOHSE, D. 2013 The unifying theory of

scaling in thermal convection: the updated prefactors. J. Fluid Mech. 730, 295–308.
TOBASCO, I. & DOERING, C.R. 2017 Optimal wall-to-wall transport by incompressible flows. Phys. Rev. Lett.

118, 264502.
VAN VEEN, L., VELA-MARTÍN, A. & KAWAHARA, G. 2019 Time-periodic inertial range dynamics. Phys.

Rev. Lett. 123, 134502.
WALEFFE, F., BOONKASAME, A. & SMITH, L.M. 2015 Heat transport by coherent Rayleigh–Bénard

convection. Phys. Fluids 27, 051702.
ZHU, X., MATHAI, V., STEVENS, R.J.A.M., VERZICCO, R. & LOHSE, D. 2018 Transition to the ultimate

regime in two-dimensional Rayleigh–Bénard convection. Phys. Rev. Lett. 120, 144502.

914 A14-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

97
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.978

	1 Introduction
	2 Boussinesq equations and numerical methods
	3 Three-dimensional steady solution
	3.1 The Nu--Ra scaling
	3.2 Mean temperature and root-mean-square profiles
	3.3 Thermal and flow structures

	4 Hierarchical vortices and energy transfer in wavenumber space
	5 Summary and conclusions
	A Appendix A. Homotopy from wall-to-wall optimal transport solution
	B Appendix B. Dependence of multi-scale steady solution on domain size, Prandtl number and spatial resolution
	References

