
J. Austral. Math. Soc. (Series A) 61 (1996), 42-56

THE PLANCHEREL FORMULA FOR THE HOROCYCLE SPACE
AND GENERALIZATIONS

RONALD L. LIPSMAN

(Received 15 December 1993)

Communicated by A. H. Dooley

Abstract

The Plancherel formula for the horocycle space, and several generalizations, is derived within the frame-
work of quasi-regular representations which have monomial spectrum. The proof uses only machinery
from the Penney-Fujiwara distribution-theoretic technique; no special semisimple harmonic analysis is
needed. The Plancherel formulas obtained include the spectral distributions and the intertwining operators
that effect the direct integral decomposition of the quasi-regular representation.

1991 Mathematics subject classification (Amer. Math. Soc): 22E46 43A85.

1. Introduction

In [6, 7] I laid out a program which indicated that the Plancherel formula for a
homogeneous space G/H should be within reach whenever the spectrum of the
induced representation r = Ind^ 1 is generically monomial. The latter means that
almost all of the irreducible unitary representations n that occur in r are representations
induced from a closed subgroup B of G by a character. For any such monomial
representation n, I prescribed a natural distribution J5M_B on the space of n and
computed its matrix coefficient. The Plancherel formula is then a direct integral
decomposition of the canonical cyclic distribution aT associated to r (see below) into
the spectral distributions ^ B. The definition of fin<B and the computation of its matrix
coefficient in [6] were rigorous. However, the derivation of the Plancherel formula in
[7] was heuristic. It was left as a challenge to render the heuristic proof rigorous for
different categories of homogeneous spaces G/H having monomial spectrum.

This challenge was taken up in several papers. In [5], a special algebraic symmetric
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[2] Plancherel formulae for horocycle spaces and generalizations 43

space was treated. In [6], completely solvable G and abelian symmetric spaces G/H
were considered. In [8], the situation was generalized to polynomial spectrum —
meaning the generic spectrum of x is induced from finite-dimensional representations
— and Strichartz symmetric spaces were handled. Other cases are considered in [1,
7 and 9] but in every instance so far G has been a non-semisimple group. In this
paper we shall derive the Plancherel formula for several monomial and polynomial
homogeneous spaces of a semisimple Lie group G. The most familiar example is the
horocycle space G/MN, where G = KAN is an Iwasawa decomposition, and M
is the centralizer of A in K. The Plancherel formula for that space has been known
for a long time [2]. But our proof will be much easier — coming about as an almost
immediate consequence of the results of [6]. We shall also employ the same method
to examine two kinds of generalizations. First of all, we shall consider homogeneous
spaces G/H where H is one of the canonical groups between N and the minimal
parabolic subgroup MAN, other than MN. Secondly, we shall expand the horocycle
example to include non-minimal parabolics.

The main results of the paper are explicit Plancherel formulas, including multipli-
city, spectral distributions, and the intertwining operator, for the homogeneous spaces
G/MN where P = MAN is any parabolic group; and also for the spaces G/P,
G/AN and G/N when P = MAN is a minimal parabolic subgroup. These results
are proven in: Theorems 2.2, 2.5 and Corollaries 2.3, 2.4; Theorem 2.6; Theorem
3.2; and Theorem 3.3, respectively. The cases G/MN and G/P are known. G/AN
and G/N apparently are not to be found in the literature — although almost any
semisimple specialist could have derived them. The point is that the known (and
presumed) proofs of these Plancherel formulas have been obtained in the past by
techniques special to semisimple groups. But in fact, the results of this paper show
that all of them — since they manifest monomial, or at worst polynomial, spectrum
— can be derived from the general theory of such homogeneous spaces developed in
[6,7 and 8].

2. Monomial spectrum

We recall the results from [6] (to which we refer the reader for basic terminology
and notation). Let G be a Lie group and H c G a closed subgroup. We fix right Haar
measures dg, dh on G and H. We write AG, AH for the modular functions of G, H
respectively (that is, the derivative of right Haar measure with respect to left). We set
A//jG = A///AG,a positive character on H. We select a smooth function q = qH G

on G satisfying q(e) = 1, q{hg) — AHiG(h)q(g). If x is a unitary character of H,
the induced representation nx = Ind^ X acts on the space

(2.1)
C?(G, H, X) = {/ € C°°(G): f(hg) = X(h)f(g), \f\ compactly supported mod//}
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by the formula

(2.2) nx(g)f(x) = f(xg)[q(xg)/q(x)]l/2.

The action (2.2) extends naturally from (2.1) to a unitary representation. Indeed, there
is a quasi-invariant measure dg on H\G defined as follows. Any / e CC(G, H) can
be written

f(g)= [ F(hg)dh, FeCAG);
JH

then

/ f(g)dg := / F(g)q(g)dg.
JH\G JG

The formula (2.2) defines the unitary action of G on

L2(G, H, x) •= the closure of C™(G, H, x) in the norm / | / | 2 c
\_JH\G

When x = 1» w e write r = T%\ and refer to r as the quasi-regular representation.
(Note that q and dg determine each other canonically.) If H needs to be specified, we
write T = rH.

Now suppose r is type I. Then it has a direct integral decomposition into irreducible
unitary representations

The basic assumption we make at this point is that //,-a.a. n are monomial, that is,
induced from a character. Focus on one such n momentarily: n = nx = IndgX> B
a closed subgroup of G, x a character of B. Choose db and qBG and realize nx in
L2(G, B, x)- Suppose further that:

(I) BH is closed,
(II) qHnB.H qHnB,B = 1 on H n B,

(III) x = 1 on H n B.

With these assumptions, we can define the Penney distributions whose matrix
coefficients form the critical components of the Plancherel formula. For any unitary
representation it of G, we set Jf™ = the C°° vectors in the space 3^n on which n
acts, and Jff^00 = the conjugate-dual space of distributions. If n = nx, we know

CC°°(G, B, X) C L2(G, B, X)°° C C°°(G, B, X).
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I now summarize some of the main results of [6] — namely Theorem 2.1 and Pro-
position 2.2 therein. Since all of our applications in this paper will be to semisimple
G, I shall state the results under the assumption that G is unimodular. In that case, I
abbreviate qH = qH,G, qB = qB<G.

THEOREM 2.1.

(i) The distribution ax : f -» f(e) on L2(G, H)°° := L2(G, H, I)00 is cyclic
and relatively invariant under the action of H with modulus qH~l/1-

(ii) For co € &{G) := C™(G), the distribution r(co)ar is a smooth function coH,
called the smooth form ofax and given by the formula

coH(g) := T(co)aT(g) = qH'l/2(g) [ co(g-lh-l)qH-l/2(h)dh, co e &{G).
JH

(iii) The matrix coefficient of aT is {r(co)aT,aT)=coH(e) = fHco(h~])qH~1/2(h) dh.
(iv) Ifnx — lndG

Bx, the distribution

(,/.j) px . j —> I jqB qH qHnB.H un, / e i t (u, a, x)
JHnB\H

is well-defined and relatively invariant under the action of H with modulus

(v) The smooth function (or smooth form) nx{co)fix is given by

nx(to)px(g)= f (oH(bg)X(b)qB-1/2(bg)qH
l/2(bg)qHnBy1(b)db,

JHnB\B

co e ®(G).

(vi) The matrix coefficient (nx(co)Px, fix) of fix is given by

[ coH(bh)x{b)qB-XI2(b)qH
xl2{h~xbh)

3\H JHnB\B

qHnB,B~l (b)qHnB,H~l (h) db dh\

where co e *3+{G) := the positive linear combinations of functions of the
form (O*X*(O\,Q>\ € &{G).

The reader is urged to consult [6]. But at this point let us recall exactly what
the Penney-Fujiwara Plancherel formula (PFPF for short) is. It is a decomposition
of the matrix coefficient of aT into matrix coefficients of distributions fl attached to
irreducible unitary representations. Namely, it asserts that one can find a measurable
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family X of irreducible unitary representations, a positive regular Borel measure [i on
X, and distributions /$„ attached to n € X so that

(2.4) (T(co)az,az) =

An immediate consequence (see [6, Proposition 3.2]) is that the map x(a))ar —•
(7r(o))^} is the intertwining operator for the direct integral decomposition x =
f® n dfx(n) — at least if the multiplicity is finite. In this paper, we shall find the
Plancherel measure and establish the formula (2.4) for various semisimple homogen-
eous spaces.

REMARKS. There are several subtleties that can arise in this venture that have been
addressed in previous work.

(1) The integrals in the definition (2.3) of the Penney distributions Bx are
well-defined because of conditions (II) and (III). The integrals converge because
of condition (I). One expects that the integrals actually converge for all vectors
/ e L2(G, B, x)°°- The proof of that fact may involve a very delicate argument
depending heavily on the structure of the homogeneous space (see [5] or [1] for
example).

(2) The second subtle point is that even if one cannot demonstrate convergence
of the distribution integrals (2.3) for all C°° vectors, Proposition 3.3 of [6] shows
that if one can prove (2.4), then /x - a.a. distributions have unique extensions from
C™(G, B, x) to the full space of C°° vectors. The value of 6 on a non-compactly
supported test function could conceivably be given by something other than the
absolutely convergent integral, but no such example is known.

(3) A further complication is caused by the fact that the assumption (I) may
sometimes be violated (see for example [1]). In that case, one cannot assert that
for / e C™(G, B, x) the integrand in the definition (2.3) of 8X is automatically in
CC(H, H n B). Thus the convergence of the integral is problematic even for test
functions. Experience has shown ([1]) that, even without condition (I), the integral
in (2.3) is still convergent — not only for / e C^°(G, B, x) — but ultimately for all
C°° vectors. On the other hand, the integral specifying the smooth form — and so
also the intertwining operator — may prove to be more troublesome. This scenario is
illustrated in Section 2b below.

(4) It is worth reviewing what is 'chosen' and what is 'canonical' in the setup.
The Haar measures are chosen and fixed. The q functions qB, qH are chosen, but
any alteration affects the L2 space since q and dg are paired. Finally, there is
freedom to choose qnnB.H, but the measure qnnB,H~x (h)dh is canonical — ditto with
QHnB,B~x(b)db. In this way we see that everything in Theorem 2.1 is — if not
canonical, then at least — completely natural.
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Until further notice G is a connected semisimple Lie group with finite center. Also
we fix a maximal compact subgroup K and an Iwasawa decomposition G = KAN.
Let M be the centralizer of A in A". Then P = MAN is a minimal parabolic
subgroup. If we fix Haar measures dm, da, dn on the unimodular groups M, A, N,
then dmdadn is left Haar measure on P, and fN f(n) dn = e2f>0oga) fN f(ana~l) dn,
where p is one-half the sum of the positive roots (on a with respect to n). In particular,
e2p(ioga)dmdadn is right Haar measure on P and AP(man) = e

2pQosa) is the modular
function.

2a. Generalized horocycle spaces. Now we select H = MN, a unimodular
group. The homogeneous space G/H — G/MN is the horocycle space [2]. We
derive, as a consequence of Theorem 2.1, its Plancherel theorem.

THEOREM 2.2. For x = rMN = Ind^w 1, we have the Plancherel formula

(2.5) {tMN(co)ocT,ar)= [(nx(a>)fa,P,)dX, co e
J

where nk is the irreducible principal series representation nk = I n d ^ ^ 1 x k x 1,
k e A, and dk is the Lebesgue measure on A dual to da.

PROOF. We begin with the representation-theoretic computation of a direct integral
decomposition of x. In it, we use induction in stages, and the fact that direct integrals
commute with induction:

r®
MN MAN MN MAN J^

(2.6) = f \ndMANlxkxldk = f nkdk.
JA JA

Now we apply Theorem 2.1 with H = MN and B = Bx = MAN. Then
HDB = H. Therefore we have: qH = lonG;qHnB,H = I on H;qB = AB = e

2p(U>ga)

on B; and qnr\B,B — I on MN. We define qB on G via the Iwasawa decomposition
qB(ank) — AB(ank)AQ1 (ank) = e2p<*°%a); and we choose qHiB on MAN according
to qHB(man) = AMN(man)Au\N(man) = e~2p(Xoga). At this point we observe that
conditions (IHUI) are satisfied.

Next we must identify the quasi-invariant measure on H\B = MN\MAN asso-
ciated to the above choice of qHB. hi fact it is relatively invariant since qH,B = AB~'
is a character on B. We can be even more precise. Since the right Haar measure on
B = MAN is db = ABdmdadn, we have

I f{b)qHB{b)db= I f(man)qHB(man)AB(man)dmdadn
JB JMAN
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/ (man) dmdadn
JMAN

= [ ( [
JA \JM,

f(mna)e-2p(loga) dmdn) da.
IA \J\1N )

Therefore if we identify the homogeneous space MN\M AN to A we see that db =
e-2p(ioga)^a j s t n e reiatively invariant measure on H D B\B = H\B. Consequently
we have

= da.

(This reinforces our previous remark that qHnBB~l(b)db is canonical.)
Now we continue with the application of the general formulas of Theorem 2.1 to

this specific situation. First of all, the Penney distributions collapse to

ft : / - • I fqBX!1qH-XllqH™,H-X dh = f(e).
JHnB\H

Next, we evaluate their smooth form and matrix coefficients to be:

coH(bg)l{b)qB'xl\bg)qH
xl\bg)qHm,B-\b)db

= I coH(.ag)},(a)qB~l/2(ag)da;
JA

= f
JH
f
HC\B\B

A

and

= f f coH(bh)l(b)qB-ll2{b)qH
ll2(h-xbh)qHnB,B-x(b)qHnB,H-X(h)dbdh

JHnB\H JHnB\B

= I (oH(a)X(a)e-pa°sa) da.
JA

The proof of Theorem 2.2 follows as a consequence of the Plancherel formula on A.
Indeed,

= f (
JA JA

^a) dadk

= cop
H(e) where cop

H is the test function ofH(a) = coH(a)e~p(Xoga)

-coH(e),

which establishes formula (2.5).

As explained in [6], the map co ->• Q. = coH maps 3>(G) onto S>(G, H), and so
Theorem 2.2 supplies the intertwining operator for the direct integral decomposition.

https://doi.org/10.1017/S1446788700000069 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000069


[8] Plancherel formulae for horocycle spaces and generalizations 49

COROLLARY 2.3. The map Q(g) -> {£}\(g)}XeA where

(2.7) Qx(g)= [ Q(ag)i(a)qB-l/2(ag)da, tt
J

extends uniquely to a unitary operator L2(G, MN) -*• f® L2(G, B, k)dk which
effects the direct integral decomposition (2.6).

REMARKS. (5) For the record we recall how to compute qB~l/2(ag)- One writes
the Iwasawa decomposition G = AN K in coordinates g = a(g)v(g)t(g), and then

(6) For emphasis, we remark that Theorem 2.2 and Corollary 2.3 follow com-
pletely from the general monomial PFPF found in [6] and specific semisimple structure
theory. No additional semisimple harmonic analysis is necessary.

Next we observe that, although all the constituent representations nx in the direct
integral decomposition (2.6) are irreducible, they are not pairwise inequivalent. We
rewrite formula (2.5) to take that into account, and to count the multiplicity.

Let A' = [k 6 A : wk + k, Ww e W := Normjr(A)/M}. W is the Weyl group
which acts naturally on M and A. It acts simply transitively on the set A', which is
a dense open co-null subset of A. Two representations nk], TZXI are equivalent if and
only if k\ and k2 are in the same W-orbit. Therefore we have

COROLLARY 2.4.

(WaOa,, aT) = I #(W)(nk(a>)pk, ft) dk, co e 9{G).
JA'/w

In particular, the quasi-regular representation x has uniform multiplicity equal to the
order of the Weyl group.

One big advantage of this method for deriving the Plancherel formula for the
horocycle space is that it does not really depend on the compactness of M. That
is, it works for any parabolic subgroup, not just a minimal parabolic subgroup. Let
P = MAN be any parabolic and set H — MN, x = Ind^ 1. A review of the
preceding proofs reveals that nowhere was the minimality of P (or the compactness
of M) utilized. The exact same arguments apply to yield

THEOREM 2.5. If we write nx = I n d ^ 1 x k x 1 and ft : / ->• f(e), then we
have

(T(a>)aT,aT) = f(jrx(a>)px, px)dk, co e
JA
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Moreover, the map ft(g) —> {ft;JXe,4

(2.8) Qk(g) = [ n(ag)X(a)qB-l/2(ag)da, ft e @(G, MN),

extends uniquely to a unitary operator L2(G, MN) -> f® L2(G, B, X) which effects
the direct integral decomposition of x. The multiplicity is uniformly #(W), where
W = Norm(A)/Cent(A).

REMARKS. (7) The notation in Theorem 2.5 presumes that B — Bx = P =
MAN and g = fi(g)a(g)v(g)t(g), where in the decomposition G — PK, the A
component is uniquely determined. Furthermore, qB(g) = e2p<-Xo%a(g)).

(8) In both the minimal and non-minimal cases, we clearly have that 8X is defined
for all C°° vectors — because the integral collapses. Furthermore, the integral (over
A) expressing nk(co)Bk is convergent for co compactly supported (since AMN = B is
closed in G), and extends to the intertwining operator. But the question of exactly what
the set of functions ft for which the integral (2.8) actually converges is an interesting
question in Fourier analysis.

2b. Generalized flag manifolds. The goal of the paper is the Plancherel formula
for G/H where H is a canonical subgroup of a parabolic group P containing the
nilradical N. In the previous subsection we considered H = MN. The only really
'canonical' group above MN is P itself. But, for P minimal, it is a well-known
fact [4] that the induced representation x = Ind° 1 is actually irreducible — it has
no decomposition. So what would constitute a Plancherel formula? The answer
is as follows. Fix a minimal parabolic group Pi = MANX (the reason behind
the choice of notation will be clear in a moment). Write xx = T>, = Ind^ 1, an
irreducible representation. The point is that it is known that for any other parabolic
P2 = MAN2, associate (and therefore conjugate) to P\, the corresponding induced
representation T2 = xPl = Ind£2 1 is unitarily equivalent to X\. A Plancherel formula
would specify the intertwining operator between the two representations. Such a
formula is well-known [3, ch. VII.4] as a consequence of classical work (of Kunze-
Stein) on intertwining operators. Next, we shall see that those operators emerge from
our framework naturally as well.

We take H - Pu B = P2. Then H D B = MA{NX n N2). The corresponding q
functions are as follows:

qH = qH,G = AMANl = e2»^a)

qB = qB,G = AMANl = e2*^

A _ 2(po-p,)(loga)
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_ AM/t(jy,nW2) _ 2(A)-P2)(loga)
HHf\B,B — 7 — e

Here we write No = Nt fl N2 and p}•, y = 0,1,2 for one-half the sum of the
corresponding positive roots. Now the fact that P\ and P2 are conjugate guarantees
that 2p0 = Pi + p2. Therefore condition (II) is satisfied. But it is unlikely that
condition (I) will hold if the two parabolics are not equal. This is the situation referred
to in Remark 3 in the last section. Nevertheless, we can cope with this problem as
follows.

The relevant //-invariant Penney distribution (on the space of r2) is

(2.9) & : / - » / " fqB
l/2QH-l/2qHnB,H~ldh=[ fdhu

J HC\B\H JN0\N,

because all the q functions live only on A. Moreover, the integral (2.9) clearly
converges for any C°° vector / . Indeed, if we write V for the nilradical of the
opposed parabolic to P2, and we realize T2 = Indp21 in L2(V), then any C°° vector
will be a Schwartz function on V. Therefore it will be Schwartz on N0\Ni and
convergence is assured. Finally, we remark that condition (III) is trivially satisfied.

Next we evaluate the smooth form of /?2:

coH(bg)qB-l/2(bg)qHl/2(bg)qHnB,B~1(b)db
HHB\B

= /
JNO\N2

Then we observe that the irreducibility of Ti and T2, together with [10, Thm. 3.3],
implies that (up to scalar) the matrix coefficients of at = aT] and (}2 must coincide.
Therefore, for an appropriate choice of Haar measures, we have

(Ti(tw)Q!i,ai> = (T2(ft))/S2, # , } .

This is the PFPF and thus, by the discussion after Theorem 2.1, the intertwining
operator between x^ and r2 is formally

The left N2-invariance of qB is clear from its definition. The conclusion is (see [3, ch.
VII.4])
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THEOREM 2.6. The intertwining operator giving the unitary equivalence between
Ti and T2 is specified by

(2.10) Zi(g) -> e-^^"2^ f n(n2g)eMlosaAni8))dh2
JNO\N2

REMARK. (9) Formula (2.10) differs slightly from [3] because of different setups
— we have built the equivariance condition into the group action (see (2.2)), whereas
Knapp builds it into the function space. Also, although the distribution integral
(2.9) converges, we encounter the usual convergence difficulties with the intertwining
integral (2.10).

3. Polynomial spectrum

We take now as our basic frame of reference the generalization of [6] found in [8].
The new assumption is that generically the spectrum of x consists only of polynomial
representations, that is, those induced from finite-dimensional representations. We
retain the same notation as in Section 2, except we write a instead of x, that is, a is a
finite-dimensional representation acting on a space Jf?a. We still have the inclusions
C™{G, B, a) C L2(G, B, a)°° C C°°(G, B, a) for the spaces on which na = Ind^ a
acts; but the functions in these spaces are Jfa -valued instead of scalar-valued. The
statements of conditions (I) and (II) are unchanged, but (III) is stated in the form

(III) (r\HnB contains a fixed vector.

As in the transcription of the key results in [6] to Theorem 2.1, we capture all the
basic results of [8] in a single statement.

THEOREM 3.1. Let § e Jfa beao{H n B)-invariant vector.

(i) The distribution

(3.1) & : / -> / (|, f(-))qB
1/2qH-1/2qHnB,H-1 dh,

J HC\B\H

f e C°°(G, B, a)

is well-defined and relatively invariant under the action of H with modulus
qH-X'2.

(ii) The smooth vector-valued function (or smooth form) 7Ta(co)^ is given by

= I coH{bg)a{bylH [qB-l/2(bg)qH
m(bg)qHnB,B-l(b)] db,

J Hr\B\B
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CO 6 9{G).

(iii) The matrix coefficient {na(co)^, fa) of fe is given by

I f a)H(bh)(i;,o(b)t;)qB-l/2(b)qHl/2(h-lbh)x
JHDB\H JHnB\B

for co e 3>+{G).

Next we shall consider canonical subgroups between N and P without any M
component. But to preserve the polynomial spectrum hypothesis, we shall require
that M be compact. So in the next two subsections P = MAN will be a minimal
parabolic subgroup.

3a. Rossi-Vergne spaces. In this subsection we shall consider H = AN. We
G

ANstart with the representation-theoretic decomposi t ion of r = xAN = h\dG
AN 1. In fact

= h\AG
MAN Y^(dimo-)(CT x 1 x 1) (by the Peter-Weyl Theorem on M)

oeM

= yj(dimor) Ind^ANa x 1 x 1.

For the typical o, the representation n" = Ind^AW a x l x l will be irreducible; but
not for all o. A perfect example is supplied by G — SL(2, K). M contains two
elements, and for or = 1, n" is irreducible, but for a ^ 1, it is not. We shall ignore
the reducibility of the decomposable representations n". We give our Plancherel
formula in terms of the principal series representations n". Further decomposition
into irreducibles is determined by the R-groups [3, ch. XIV.9], and we leave that
(fairly sophisticated) portion of the semisimple theory to the interested reader.

There is still the matter of equivalences — which indeed may occur. In fact,
it" = na> if and only if 3w € W 9 w • a = a'. Let us assume that a cross-section for
MlW in M has been selected. We abuse notation by purposefully confusing M/W
with the cross-section. Denote Wa = {w e W : w • a = a], a e M/ W. Then

©

(3.2) xAN = ]T(dimo-)#(Wa)7r'T

M/W

gives us a direct sum decomposition into inequivalent representations of G with
multiplicity counted. Now, bearing in mind that some of the iza may break up —
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but that such a break up is always finite and multiplicity-free (the R -groups are finite
abelian) — formula (3.2) does specify the multiplicity, if not the precise spectrum.

Let us describe the q functions in this scenario. We have: H = AN, B = MAN,
H fl B = H. Therefore H n B\B = M (with its normalized Haar measure).
Clearly qH{g) = qnig) = e2p(loga), if g = ank. Furthermore, qHr\B,H = 1, and
qHnB.B = <JAN,MAN = 1 also. In particular, conditions (I)—(III) hold here.

Now for any fixed a, let %°,..., %%ima be an orthonormal basis in Jf?a. Then from
Theorem 3.1, the Penney distributions, smooth form and matrix coefficients are:

JM

<7r*(a>)%,&;) = f
J M

Then, by the (matrix coefficient version of the) Peter-Weyl Theorem on M, we have

dim a dim a

/ ™()<*/' ( ) * / > d m

aeM 7=1 <reM 7 = 1 JM

= (oAN{e).

Hence we have proven the following.

THEOREM 3.2. We have

dimo"

(rAN(eo)aT,aT) = ^ ^(7rff(o>)/3f;

CTG/V/ J=l

dim<T

7 = 1

Moreover, the intertwining operator is £2(g)

^ dm, « € ^ ( G , AJV).

3b. Whittaker Spaces. The final canonical subgroup we investigate is H = N.
The abstract Plancherel theory for the Whittaker space G/N is contained in the
following computation.
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© /•©

= lndMAN Y^ dim a I a x k x Idk

OEM

/•©

I a

/•©

/ nldk,

where 7r̂  = I n d ^ ^ a x k x 1 is a general principal series representation. Now we
are back in the situation of generic irreducibility. If we restrict k to lie in A', it does
not matter if a is fixed by any elements in the Weyl group — the representation n°
will still be irreducible. Therefore, we have

rN = Ind£ 1 = I VVdimo)#{W)na
x dk.

The next order of business is the q functions. We have H = N, B = MAN,
H n B = H. Then clearly

qHG = qH = 1 and qHnB.H = 1. on G and H, respectively.

We choose the other two q functions as in Section 2a, namely

qB,G = e2p(loga), for g = ank, and

One verifies readily that qH,B~l(b)db — dmda. Conditions (I)—(III) are satisfied.
We select the vectors $J as in Section 3a. Then the Penney distributions become

The smooth form and the matrix coefficients are computed to be:

<&.* / (« )= f coN(mag)k(a)a(myli;°[qB-l/2 (mag)] dmda;
JMA

JM
, a ( m ) ^ ) e

) dmda.
MA

If we sum over j and a, integrate over A'/ W, and use the technique that occurs at the
end of the proof of Theorem 2.2, we obtain

THEOREM 3.3.

(rN(co)aT, az) - / #(W)
J

https://doi.org/10.1017/S1446788700000069 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000069


56 Ronald L. Lipsman [15]

We leave it to the reader to write down the intertwining operator.
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