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1. Introduction. Following Masser and Shiu [6] we say that a positive integer n is
sparsely totient if

)>(t)(n). (1)
Here <j> is the familiar Euler totient function. We write SF for the set of sparsely totient
numbers. In [6] several results are proved about the multiplicative structure of ^F. If we
write P(n) for the largest prime factor of n then it was shown (Theorem 2 of [6]) that

, (2)

and infinitely often

It was stated in [6] that the present author could improve (2) by reducing the exponent of
the logarithm to 19/10 + e. The proof of this result has never been published and here we
shall establish a better result. We shall also discuss the relationship between results of this
sort and the problem of the greatest prime factor of an integer in an interval [2]. For j's* 1
we write Qj(n) for the y'th smallest prime not dividing n, and Pj{n) for the /th largest
prime dividing n (so P(n) = Pi(n)). In [6] some results were obtained for these quantities.
We shall also improve the bounds for these numbers. Our results are as follows.

THEOREM 1. For n e 8F and any e > 0 we have

P(n)«(logn)2-m5+£. (3)

Here the implied constant depends only on e.

THEOREM 2. We have

logn y - 1
n—»oo

Abo

forj&l. (4)

forj&l. (5)
.

In the most interesting cases of Theorem 2 (P2, Q\) Masser and Shiu had 1 + V2 and
y/l — 1 for the right hand sides of (4) and (5) respectively.

The basic idea in the proofs is to replace a factor m of n by another number t with
(p(t) < <l>{m) and t not dividing n. If we write

r = \ —

([ ] denotes integer part) then nrt/m>n, while if r-m/t is sufficiently small we have
(p(nrt/m) < (p(n). This shows that n$&. The difficult part is to show that r - m/t is
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small. This reduces to a problem in Diophantine approximation; essentially we must show
that

for some sufficiently small e. This argument was also used in [6], but we are able to prove
stronger results in Diophantine approximation and so obtain our results.

We note that if we write

p\n

then a slight alteration to the proof of Theorem 1 yields

which improves [6, Corollary to Lemma 5].

2. Some preparatory lemmas. It will make the proof simpler if we make use of the
following result from [6], rather than working ab initio.

LEMMA 1. For j s= 3 we have

lOgrt y - 2
rt—*oo

and

(6)

nes? log n 7 + 1
n—»°°

Proof. See [6, Lemma 7, Corollary].

LEMMA 2. Lef r ̂ 2 be an integer and suppose that \ > rj, 6 > 0 are given. Then for all
sufficiently large x (in terms of TJ and 6), for each integer m with

there are at least

& (9)

solutions to

-y<\ [<i, (io)

where the qt are distinct primes satisfying

1-20=5^1-0. (11)

Proof. This will be established in Section 4.
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LEMMA 3. Let r ̂ 2 be an integer, and suppose that | > 8, r/ > 0 are given. Then, for
all sufficiently large x, for each integer m with

xr+l^m^xr+2 (12)

there are at least

solutions to

where the qf are distinct primes satisfying

1 + 8 ^ ^ 1 + 28. (15)

Proof. See Section 6.

LEMMA 4. Let e > 0 be given. Then there is a K(e) such that for all x, v with x > K(e)
and

v2-ms+£^x^2v2, (16)

there are

v log x

solutions in primes p to

1 ^ 2 < | } < 1 ,
lou Ipi

Proof. See Section 6.

3. Proof of theorems. Suppose that n e 3P and

(18)

with ar = 2-8/65 + e. By (2) we know that P(n) cannot exceed 2(Iogn)2 if n is
sufficiently large. Let px = P(n) and write m = n/p1. We apply Lemma 4 with x=pu

u = logn. It follows that there are »p1/(u2logp1) solutions to (18). Since there are at
most three primes between 2v and 3v which divide n if n is sufficiently large (using (6)) we
can deduce that (18) has a solution with p \ n. If we write r = [pjp] + 1 we then have

<t>(mrp) ^ r<Km)p(l - Up)

" 48̂  +p\ + °(~?
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if n is sufficiently large. Of course mrp >n, and this contradicts our original hypothesis
that n e ? . We conclude that P(n) < (log n)a for all sufficiently large n, which establishes
(3).

Proof of (4). Let pk = Pk(n) for k = 1,2,. . . . Suppose that

for some small positive e. Write

x = \ogn, 6 = r\ = e2, m = f\ Pk- ( 1 9 )

I t t h e n f o l l o w s f r o m ( 1 4 ) a n d ( 1 5 ) w i t h r = j — 1 t h a t t h e r e a r e d i s t i n c t p r i m e s q x , . . . , q r

w i t h

( 2 0 )

By (6) n has «rj~1 prime divisors among the possible q,, whereas the number of solutions
to (20) exceeds

2(log21ogn)r"

Hence, if n is sufficiently large, there is a solution to (20) in distinct primes none of which
divide n.

Let

m

Thens>n, while

-—1).
. . . qT\l

ct>(s) ^ <p(n)(l -
\ m

<4>(n) if e is small enough and n is large.

This contradiction gives

which establishes (4).
The reader will notice that we can prove a slightly stronger result, namely that

https://doi.org/10.1017/S0017089500008417 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008417


SPARSELY TOTIENT NUMBERS 353

Proof of (5). Let pk = Qk(n) for k = l,2,.... Suppose pt-<j(j + 1 + e)~l log/i
for some small e > 0. We define m, 6, r), x as in (19). The proof may then be completed in a
similar manner to the proof of (4). We apply Lemma 2 with r = j + 1 in place of Lemma 3, and
use (7) with (9) to deduce that there are solutions to (10) with qx . . . qr dividing n. Again we
could actually prove the stronger result that

4. Proof of Lemma 2. We first require two standard results, the first of which will
be needed for Section 6 as well.

LEMMA 5. Let $ be a subinterval of [0,1) of length y, and let xn, cn be two sequences
of reals with cn 2s 0. Suppose that L, N^l are given. Then

2 cn=2cn(y + O(L-l)) + o(^mm(Y,h-1) % cne(hxn)\). (21)

Proof. This may be deduced from Chapter 2 of [1]. Here the implied constants are
absolute.

LEMMA 6. Suppose that as, b, are sequences of complex numbers bounded in modulus
by some constant, and that M, N, L are given real quantities exceeding 1. Let m be an
integer greater than 1. Then

/i=i ISM \m

« (log mNL)2LMN(m-m + (LMN/m)'1'2 + M~l/2 + (LN)'1'2). (22)

Proof. Results of this sort are well known. For example (22) may be obtained with a
slight alteration to the argument in Chapter 25 of [4].

Proof of Lemma 2. Let u = [(r + l)/2], v = 1 + u, and write

as= 2 1, b,= 2 1,
q\...qu=s qv...q,=t

where the qh are constrained by (11). We apply Lemma 5 with

N = (l-e)'xr, L = logx, J = (l-ri,l),
and

For JC sufficiently large we easily obtain from the prime number theorem that

dx V v 2 / dx V
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We also obtain from Lemma 6 that

The lower bound (9) for the number of solutions to (10) subject to (11) then follows from
(21) since the number of solutions where the qh are not all distinct is «{xl\ogx)r~x. This
completes the proof of Lemma 2.

5. Further exponential sum estimates. In this section we need to turn to deeper
methods. We put r\ = e2 throughout.

LEMMA 7. Let ch, as, b, be sequences of complex numbers bounded in modulus by
one. Suppose that

v2-a<x«v2, Hx«v2+", Hv£-'>«N«v1-5a-£,

M<A*,=£2A/, N<N}^2N, H<H^2H.

Then

2 as 2 b, 2 c,e(^)«U
1-". (24)

H=z,h<H, \ St /

Proof. This follows from Lemma 9 of [2] with the exponent pair (*r, A) = (j, %) and
= Nv-el2H~1.

LEMMA 8. Let Af < Af, « 2M, N < ty «£ 2N, 0 < a < i

v2~a « u « u2+T)/2, max(u2a+e, ,,(««-»v»+«> u(«

• 2 . <3 W ' ^

Proof. For N^vil2+a+e this follows from the classical estimate of Van der Corput
(Theorem 5.9 of [7]). Since a<z we may therefore suppose that N<v1~2a~e in the
following. We now need to adapt the proof of Lemma 5 in [2]. We put

T V V ( u

M<m«Af! N<n^N^ \rnrl

Then (see (21) of [2]) for any positive integer Z we have

2 i--=-

where n* indicates the conditions

max(iV, 2vm~l) ^n,n + k< min(A/1,
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We choose Z = v
2a+e/6, so that 1 « Z « Nv~e/2 by (25). Put

Continuing to follow [2] we apply Lemma 3 of [2] to Tk. We require some further
notation to do this. For the function of two variables f(x,y) =/*(*, >0 = u((y + k)~v —
y~x)/x we write

Let 3) be the domain of summation of (m, n) in Tk and write

For v e A fl Z2 let x(v) denote the solution (which in the present context can be shown to
be unique) of

/3/(x)

l~;—>"
\ oxNow write

veA

('.' denoting scalar product), and

Working as in [2] we obtain

+ Bk
m2). (27)

Now the last sum in (27) is

«vZ~l 2 (u2M~1| ' tr1^ + (M|A:|/(u^))11/12)

lsifcî Z

« V2Z-\VU~XN log U + ^11/6^-1-11/1221 + 11/12 -̂11/12) ( 2 g )
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The first term in the brackets of (28) is much less than 1 since N <u1~2*~c. The second
term in the brackets is much less than

t) - l/12223/12^y-11/12

which is much less than 1, using N>t/4 6 a r - 1 ) m + £ . Thus

T2«v2-2a-£l6 + vZ-1 2 \Uk\.
ls|*|=sZ

We estimate |C4| by the method of exponent pairs as in [2] and obtain, for any exponent
pair (K, A), that

vZ'1 2 \Uk\«v2Z-\ukv-1-xZ1+kN1+K-2^

+ uk-lv1~i-NK+1-2XZx + NZ/v + vNu~l log v)

= v2Z~\A1+A2 + A3 + A4) say.

We have

A «vk~1+2(-l+k^a+e'®N1+K~2A

In the present context (*r, A) = (1/9,13/18) is an efficient choice (see Section 5.20 of [7]
for a brief discussion of exponent pairs). This gives Ax « 1 if

The hypothesis (25) thus ensures that the contribution from AA is of a suitable size. Also
A «u A - 1 + 2 A (a+e/6)^l + K-2A

so the bound for Ax holds a fortiori for A2. The terms A3 and AA may be bounded in a
satisfactory manner also, using N < vx~2a~e. This completes the proof of this lemma.

LEMMA 9. Let ch, as, b, be sequences of complex numbers, bounded in modulus by
one. Suppose that

xr<MN<(3x)r, N<N

xrM<M<X3rt\ xr+1^

Then there exists a d(r)>0 such that

e[ —
\ St

Proof This may be obtained by using the Cauchy-Schwarz inequality in conjunc-
tion with Theorems 5.9, 5.11 and 5.13 of [7].

6. Proof of Lemmas 3 and 4. Lemma 3 follows quickly from a combination of
Lemmas 5 and 9. To prove Lemma 4 we need to employ Heath-Brown's generalized
Vaughan identity [5], whereby, for any function f(x) with |/(JC)| =£ 1 and any a e (0,1/7),
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the sum 2 Mn)f(n) (here A(n) is the von Mangoldt function)

may be decomposed into «(log v)6 sums of the form

2 am 2 bnf{mn), bn = \ox\ogn, N > v{1~a)/2~e/2; (I)

or

(II)

Here am, £>„ are real numbers with |am|, \bn\ « u t ) for any JJ >0 , for both types of sums.
(See the proof of Lemma 2 in [3], where a here corresponds to 2y there).

We complete the proof by appealing to Lemma 5 with cn = A(n) and L = 16v2xr>a~1.
We use Lemma 8 to bound sums of type (I) (applying partial summation if bn = log n) and
Lemma 7 to bound sums of type (II). We are able to do this since

1-a-e 62a - 5
—2— > ~6- + C ' ( 2 9 )

1 — a — e 46a — 1

and
l - 5 o r - e > i

We also use the fact that the prime powers give a contribution

v log*

We note that it is (29) which sets the limit of the method. The (1 - a - e)/2 term here
arises naturally from Heath-Brown's identity, while the (62a-5)/6 comes from the
exponential sum estimates.

Finally we mention the connexion this problem has with the greatest prime factor of
an integer in an interval. If

then there is a number in the interval (y,y + fip) which is divisible by p. By altering the
proof we have given one can deduce that for all large x there is an integer in the interval

with a prime factor of size approximately jc1/(2~a), for any a < 8/65. By using similar
arguments to [2] it can be shown that the interval contains an integer with a larger prime
factor, but this is not helpful in the present context since the size of prime factor we need
is linked directly to the interval length.
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