ON SPARSELY TOTIENT NUMBERS

by GLYN HARMAN
(Received 1 June, 1990)

1. Introduction. Following Masser and Shiu [6] we say that a positive integer n is sparsely totient if

$$
\begin{equation*}
m>n \Rightarrow \phi(m)>\phi(n) . \tag{1}
\end{equation*}
$$

Here ϕ is the familiar Euler totient function. We write \mathscr{F} for the set of sparsely totient numbers. In [6] several results are proved about the multiplicative structure of \mathscr{F}. If we write $P(n)$ for the largest prime factor of n then it was shown (Theorem 2 of [6]) that

$$
\begin{equation*}
n \in \mathscr{F} \Rightarrow P(n) \leq(1+o(1)) \log ^{2} n, \tag{2}
\end{equation*}
$$

and infinitely often

$$
P(n) \geqslant(2+o(1)) \log n .
$$

It was stated in [6] that the present author could improve (2) by reducing the exponent of the logarithm to $19 / 10+\epsilon$. The proof of this result has never been published and here we shall establish a better result. We shall also discuss the relationship between results of this sort and the problem of the greatest prime factor of an integer in an interval [2]. For $j \geqslant 1$ we write $Q_{j}(n)$ for the j th smallest prime not dividing n, and $P_{j}(n)$ for the j th largest prime dividing n (so $P(n)=P_{1}(n)$). In [6] some results were obtained for these quantities. We shall also improve the bounds for these numbers. Our results are as follows.

Theorem 1. For $n \in \mathscr{F}$ and any $\epsilon>0$ we have

$$
\begin{equation*}
P(n) \ll(\log n)^{2-8 / 65+\epsilon} . \tag{3}
\end{equation*}
$$

Here the implied constant depends only on ϵ.
Theorem 2. We have

$$
\begin{equation*}
\limsup _{\substack{n \in \mathcal{F} \\ n \rightarrow \infty}} \frac{P_{j}(n)}{\log n} \leqslant \frac{j}{j-1} \text { for } j \geqslant 2 \text {. } \tag{4}
\end{equation*}
$$

Also

$$
\begin{equation*}
\liminf _{\substack{n \in \mathscr{F} \\ n \rightarrow \infty}} \frac{Q_{j}(n)}{\log n} \geqslant \frac{j}{j+1} \text { for } j \geqslant 1 \text {. } \tag{5}
\end{equation*}
$$

In the most interesting cases of Theorem $2\left(P_{2}, Q_{1}\right)$ Masser and Shiu had $1+\sqrt{2}$ and $\sqrt{2}-1$ for the right hand sides of (4) and (5) respectively.

The basic idea in the proofs is to replace a factor m of n by another number t with $\phi(t)<\phi(m)$ and t not dividing n. If we write

$$
r=\left[\frac{m}{t}\right]+1
$$

([] denotes integer part) then $n r t / m>n$, while if $r-m / t$ is sufficiently small we have $\phi(n r t / m)<\phi(n)$. This shows that $n \notin \mathscr{F}$. The difficult part is to show that $r-m / t$ is

Glasgow Math. J. 33 (1991) 349-358.
small. This reduces to a problem in Diophantine approximation; essentially we must show that

$$
1-\epsilon<\left\{\frac{m}{t}\right\}<1
$$

for some sufficiently small ϵ. This argument was also used in [6], but we are able to prove stronger results in Diophantine approximation and so obtain our results.

We note that if we write

$$
R(n)=n \prod_{p \mid n} p^{-1}
$$

then a slight alteration to the proof of Theorem 1 yields

$$
R(n) \ll(\log n)^{2-8 / 65+\epsilon}
$$

which improves [6, Corollary to Lemma 5].
2. Some preparatory lemmas. It will make the proof simpler if we make use of the following result from [6], rather than working ab initio.

Lemma 1. For $j \geqslant 3$ we have

$$
\begin{equation*}
\limsup _{\substack{n \in \mathscr{F} \\ n \rightarrow \infty}} \frac{P_{j}(n)}{\log n} \leqslant \frac{j}{j-2}, \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{\substack{n \in \mathscr{F} \\ n \rightarrow \infty}} \frac{Q_{j}(n)}{\log n} \geqslant \frac{j-1}{j+1} \tag{7}
\end{equation*}
$$

Proof. See [6, Lemma 7, Corollary].
Lemma 2. Let $r \geqslant 2$ be an integer and suppose that $\frac{1}{2}>\eta, \theta>0$ are given. Then for all sufficiently large x (in terms of η and θ), for each integer m with

$$
\begin{equation*}
(x / 3)^{r-1} \leqslant m \leqslant x^{r-1} \tag{8}
\end{equation*}
$$

there are at least

$$
\begin{equation*}
\frac{\eta(\theta x)^{r}}{2(\log x)^{r}} \tag{9}
\end{equation*}
$$

solutions to

$$
\begin{equation*}
1-\eta<\left\{\frac{q_{1} \ldots q_{r}}{m}\right\}<1 \tag{10}
\end{equation*}
$$

where the q_{j} are distinct primes satisfying

$$
\begin{equation*}
1-2 \theta \leqslant \frac{q_{j}}{x} \leqslant 1-\theta \tag{11}
\end{equation*}
$$

Proof. This will be established in Section 4.

Lemma 3. Let $r \geqslant 2$ be an integer, and suppose that $\frac{1}{2}>\theta, \eta>0$ are given. Then, for all sufficiently large x, for each integer m with

$$
\begin{equation*}
x^{r+1} \leqslant m \leqslant x^{r+2} \tag{12}
\end{equation*}
$$

there are at least

$$
\begin{equation*}
\frac{\eta}{2}\left(\frac{\theta x}{\log 2 x}\right)^{r} \tag{13}
\end{equation*}
$$

solutions to

$$
\begin{equation*}
1-\eta<\left\{\frac{m}{q_{1} \ldots q_{r}}\right\}<1 \tag{14}
\end{equation*}
$$

where the q_{j} are distinct primes satisfying

$$
\begin{equation*}
1+\theta \leqslant \frac{q_{j}}{x} \leqslant 1+2 \theta . \tag{15}
\end{equation*}
$$

Proof. See Section 6.
Lemma 4. Let $\epsilon>0$ be given. Then there is a $K(\epsilon)$ such that for all x, v with $x>K(\epsilon)$ and

$$
\begin{equation*}
v^{2-8 / 65+\epsilon} \leqslant x \leqslant 2 v^{2}, \tag{16}
\end{equation*}
$$

there are

$$
\begin{equation*}
\gg \frac{x}{v \log x} \tag{17}
\end{equation*}
$$

solutions in primes p to

$$
\begin{equation*}
1-\frac{x}{16 v^{2}}<\left\{\frac{x}{p}\right\}<1, \quad \text { with } 2 v \leqslant p<3 v \tag{18}
\end{equation*}
$$

Proof. See Section 6.
3. Proof of theorems. Suppose that $n \in \mathscr{F}$ and

$$
(\log n)^{\alpha} \leqslant P(n) \leqslant 2(\log n)^{2}
$$

with $\alpha=2-8 / 65+\epsilon$. By (2) we know that $P(n)$ cannot exceed $2(\log n)^{2}$ if n is sufficiently large. Let $p_{1}=P(n)$ and write $m=n / p_{1}$. We apply Lemma 4 with $x=p_{1}$, $v=\log n$. It follows that there are $\gg p_{1} /\left(v^{2} \log p_{1}\right)$ solutions to (18). Since there are at most three primes between $2 v$ and $3 v$ which divide n if n is sufficiently large (using (6)) we can deduce that (18) has a solution with $p \nmid n$. If we write $r=\left[p_{1} / p\right]+1$ we then have

$$
\begin{aligned}
& \phi(m r p) \leqslant r \phi(m) p(1-1 / p) \leqslant \frac{r p(1-1 / p)}{p_{1}\left(1-1 / p_{1}\right)} \phi(n) \\
& \quad=\phi(n)\left(1-\frac{1}{p}+\frac{1}{p_{1}}+O\left(\frac{1}{p p_{1}}\right)\right)\left(1+\frac{p}{p_{1}}\left(1-\left\{\frac{p_{1}}{p}\right\}\right)\right) \\
& \quad \leqslant \phi(n)\left(1-\frac{7}{48 v}+\frac{1}{p_{1}}+O\left(\frac{1}{v^{2}}\right)\right)<\phi(n) \quad \text { by (18) with } x=p_{1}
\end{aligned}
$$

if n is sufficiently large. Of course $m r p>n$, and this contradicts our original hypothesis that $n \in \mathscr{F}$. We conclude that $P(n)<(\log n)^{\alpha}$ for all sufficiently large n, which establishes (3).

Proof of (4). Let $p_{k}=P_{k}(n)$ for $k=1,2, \ldots$. Suppose that

$$
p_{j}>\frac{j \log n}{j-1-\epsilon}
$$

for some small positive ϵ. Write

$$
\begin{equation*}
x=\log n, \quad \theta=\eta=\epsilon^{2}, \quad m=\prod_{k=1}^{j} p_{k} . \tag{19}
\end{equation*}
$$

It then follows from (14) and (15) with $r=j-1$ that there are distinct primes q_{1}, \ldots, q_{r} with

$$
\begin{equation*}
1-\eta<\left\{\frac{m}{q_{1} \ldots q_{r}}\right\}<1, \quad 1+\eta \leqslant\left\{\frac{q_{t}}{x}\right\}<1+2 \eta, \quad 1 \leqslant t \leqslant r \tag{20}
\end{equation*}
$$

By (6) n has $\ll \eta^{-1}$ prime divisors among the possible q_{t}, whereas the number of solutions to (20) exceeds

$$
\frac{\eta^{j}(\log n)^{r}}{2(\log 2 \log n)^{r}}
$$

Hence, if n is sufficiently large, there is a solution to (20) in distinct primes none of which divide n.

Let

$$
s=\frac{n}{m} q_{1} \ldots q_{r}\left(1+\left[\frac{m}{q_{1} \ldots q_{r}}\right]\right)
$$

Then $s>n$, while

$$
\begin{aligned}
\phi(s) & \leqslant \phi(n)\left(1-\sum_{k=1}^{r} q_{k}^{-1}+\sum_{k=1}^{j} p_{k}^{-1}+O\left(x^{-2}\right)\right)\left(1+\frac{\eta q_{1} \ldots q_{r}}{m}\right) \\
& \leqslant \phi(n)\left(1-\frac{(j-1)}{x(1+2 \eta)}+\frac{j-1-\epsilon}{x}+O\left(x^{-2}\right)\right)\left(1+\frac{\eta}{x}\right)
\end{aligned}
$$

$$
<\phi(n) \text { if } \epsilon \text { is small enough and } n \text { is large. }
$$

This contradiction gives

$$
p_{j} \leqslant \frac{j \log n}{j-1-\epsilon}
$$

which establishes (4).
The reader will notice that we can prove a slightly stronger result, namely that

$$
\liminf _{\substack{n \in \mathcal{F} \\ n \rightarrow \infty}} \sum_{k=1}^{j} \frac{\log n}{P_{k}(n)} \geqslant j-1 .
$$

Proof of (5). Let $p_{k}=Q_{k}(n)$ for $k=1,2, \ldots$ Suppose $p_{j}<j(j+1+\epsilon)^{-1} \log n$ for some small $\epsilon>0$. We define m, θ, η, x as in (19). The proof may then be completed in a similar manner to the proof of (4). We apply Lemma 2 with $r=j+1$ in place of Lemma 3, and use (7) with (9) to deduce that there are solutions to (10) with $q_{1} \ldots q_{r}$ dividing n. Again we could actually prove the stronger result that

$$
\limsup _{\substack{n \in \mathscr{F} \\ n \rightarrow \infty}} \sum_{k=1}^{j} \frac{\log n}{Q_{k}(n)} \leqslant j+1 .
$$

4. Proof of Lemma 2. We first require two standard results, the first of which will be needed for Section 6 as well.

Lemma 5. Let \mathscr{I} be a subinterval of $\left[0,1\right.$) of length γ, and let x_{n}, c_{n} be two sequences of reals with $c_{n} \geqslant 0$. Suppose that $L, N \geqslant 1$ are given. Then

$$
\begin{equation*}
\sum_{\substack{n \leqslant N \\\left\{x_{n}\right\} \in \notin \mathcal{D}}} c_{n}=\sum_{n \leqslant N} c_{n}\left(\gamma+O\left(L^{-1}\right)\right)+O\left(\sum_{h \leqslant L} \min \left(\gamma, h^{-1}\right)\left|\sum_{n \leqslant N} c_{n} e\left(h x_{n}\right)\right|\right) . \tag{21}
\end{equation*}
$$

Proof. This may be deduced from Chapter 2 of [1]. Here the implied constants are absolute.

Lemma 6. Suppose that a_{s}, b_{t} are sequences of complex numbers bounded in modulus by some constant, and that M, N, L are given real quantities exceeding 1 . Let m be an integer greater than 1. Then

$$
\begin{gather*}
\sum_{h=1}^{L}\left|\sum_{\substack{s \leqslant M \\
t \leqslant N}} a_{s} b_{t} e\left(\frac{s t h}{m}\right)\right| \\
\ll(\log m N L)^{2} L M N\left(m^{-1 / 2}+(L M N / m)^{-1 / 2}+M^{-1 / 2}+(L N)^{-1 / 2}\right) . \tag{22}
\end{gather*}
$$

Proof. Results of this sort are well known. For example (22) may be obtained with a slight alteration to the argument in Chapter 25 of [4].

Proof of Lemma 2. Let $u=[(r+1) / 2], v=1+u$, and write

$$
a_{s}=\sum_{q_{1} \ldots q_{u}=s} 1, \quad b_{t}=\sum_{q_{v} \cdots q_{r}=t} 1,
$$

where the q_{h} are constrained by (11). We apply Lemma 5 with

$$
N=(1-\theta)^{r} x^{r}, \quad L=\log x, \quad \mathscr{I}=(1-\eta, 1)
$$

and

$$
c_{n}=\sum_{s t=n} a_{s} b_{t} .
$$

For x sufficiently large we easily obtain from the prime number theorem that

$$
2\left(\frac{\theta x}{\log x}\right)^{r}>\sum_{n \leqslant N} c_{n}>\frac{2}{3}\left(\frac{\theta x}{\log x}\right)^{r} .
$$

We also obtain from Lemma 6 that

$$
\sum_{h \leqslant L}\left|\sum_{s, t} a_{s} b_{t} e\left(\frac{s t h}{m}\right)\right| \leqslant(\log x)^{3} x^{r-1 / 2}
$$

The lower bound (9) for the number of solutions to (10) subject to (11) then follows from (21) since the number of solutions where the q_{h} are not all distinct is $\ll(x / \log x)^{r-1}$. This completes the proof of Lemma 2.
5. Further exponential sum estimates. In this section we need to turn to deeper methods. We put $\eta=\epsilon^{2}$ throughout.

Lemma 7. Let c_{h}, a_{s}, b_{t} be sequences of complex numbers bounded in modulus by one. Suppose that

$$
\begin{gather*}
v^{2-\alpha}<x \ll v^{2}, \quad H x \ll v^{2+\eta}, \quad H v^{\epsilon-\eta} \ll N \ll v^{1-5 \alpha-\epsilon}, \tag{23}\\
M<M_{1} \leqslant 2 M, \quad N<N_{1} \leqslant 2 N, \quad H<H_{1} \leqslant 2 H .
\end{gather*}
$$

Then

$$
\begin{equation*}
\sum_{M \leqslant s<M_{1}} a_{s} \sum_{\substack{N \leq t<N_{1} \\ 2 v \leqslant s t<3 v}} b_{t} \sum_{H \leqslant h<H_{1}} c_{h} e\left(\frac{x h}{s t}\right) \ll v^{1-\eta} . \tag{24}
\end{equation*}
$$

Proof. This follows from Lemma 9 of [2] with the exponent pair $(\kappa, \lambda)=\left(\frac{1}{2}, \frac{1}{2}\right)$ and $Q=N v^{-\epsilon / 2} H^{-1}$.

Lemma 8. Let $M<M_{1} \leqslant 2 M, N<N_{1} \leqslant 2 N, 0<\alpha<\frac{1}{7}$,

$$
\begin{equation*}
v^{2-\alpha} \leqslant u \ll v^{2+\eta / 2}, \max \left(v^{2 \alpha+\epsilon}, v^{(46 \alpha-1) / 11+\epsilon}, v^{(62 \alpha-5) / 6+\epsilon}\right) \leqslant N . \tag{25}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{M<m \leqslant M_{1}}\left|\sum_{\substack{N<n \leqslant N_{1} \\ 2 v \leqslant m n<3 v}} e\left(\frac{u}{m n}\right)\right| \ll v^{1-\eta-\alpha} . \tag{26}
\end{equation*}
$$

Proof. For $N \geqslant v^{1 / 2+\alpha+\epsilon}$ this follows from the classical estimate of Van der Corput (Theorem 5.9 of [7]). Since $\alpha<\frac{1}{6}$ we may therefore suppose that $N<v^{1-2 \alpha-\epsilon}$ in the following. We now need to adapt the proof of Lemma 5 in [2]. We put

$$
T=\sum_{M<m \leqslant M_{1}}\left|\sum_{\substack{N<n \leqslant N_{1} \\ 2 v \leqslant m n<3 v}} e\left(\frac{u}{m n}\right)\right| .
$$

Then (see (21) of [2]) for any positive integer Z we have

$$
T^{2} \leqslant M\left(1+N Z^{-1}\right) \sum_{M<m \leqslant M_{1}|k| \leqslant Z} \sum\left(1-\frac{|k|}{Z}\right) \sum_{n^{*}} e\left(\frac{u}{m}\left((n+k)^{-1}-n^{-1}\right)\right),
$$

where n^{*} indicates the conditions

$$
\max \left(N, 2 v m^{-1}\right) \leqslant n, n+k<\min \left(N_{1}, 3 v m^{-1}\right)
$$

We choose $Z=v^{2 \alpha+\epsilon / 6}$, so that $1 \leqslant Z \ll N v^{-\epsilon / 2}$ by (25). Put

$$
T_{k}=\sum_{M<m \leqslant M_{1}} \sum_{n^{\bullet}} e\left(\frac{u}{m}\left((n+k)^{-1}-n^{-1}\right)\right) .
$$

Continuing to follow [2] we apply Lemma 3 of [2] to T_{k}. We require some further notation to do this. For the function of two variables $f(x, y)=f_{k}(x, y)=u\left((y+k)^{-1}-\right.$ $\left.y^{-1}\right) / x$ we write

$$
H(f)=H(f ;(x, y))=\frac{\partial^{2} f(x, y)}{\partial x^{2}} \frac{\partial^{2} f(x, y)}{\partial y^{2}}-\left(\frac{\partial^{2} f(x, y)}{\partial x \partial y}\right)^{2}
$$

Let \mathscr{D} be the domain of summation of (m, n) in T_{k} and write

$$
\Delta=\left\{\left(\frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y}\right):(x, y) \in \mathscr{D}\right\}
$$

For $\mathbf{v} \in \Delta \cap \mathbb{Z}^{2}$ let $\mathbf{x}(\mathbf{v})$ denote the solution (which in the present context can be shown to be unique) of

$$
\left(\frac{\partial f(\mathbf{x})}{\partial x}, \frac{\partial f(\mathbf{x})}{\partial y}\right)=\mathbf{v}
$$

Now write

$$
\begin{gathered}
H_{*}(\boldsymbol{v})=H(f ; \mathbf{x}(\mathbf{v})) \\
U_{k}=\sum_{\mathbf{v} \in \Delta} H_{*}(\mathbf{v})^{-1 / 2} e(f(\mathbf{x}(\mathbf{v}))-\boldsymbol{v} \cdot \mathbf{x}(\boldsymbol{v})),
\end{gathered}
$$

(\because denoting scalar product), and

$$
B_{k}=u v^{-1}|k| N^{-1}
$$

Working as in [2] we obtain

$$
\begin{align*}
T^{2} & \ll v^{2} Z^{-1}+v Z^{-1} \sum_{1 \leqslant|k| \leqslant Z}\left|T_{k}\right| \\
& \ll v^{2-2 \alpha-\epsilon / 6}+v Z^{-1} \sum_{1 \leqslant|k| \leqslant Z}\left|U_{k}\right|+v Z^{-1} \sum_{1 \leqslant|k| \leqslant Z}\left((N+M) \log v+B_{k}^{11 / 12}+v B_{k}^{-1}\right) \\
& \ll v^{2-2 \alpha-\epsilon / 6}+v Z^{-1} \sum_{1 \leqslant|k| \leqslant Z}\left|U_{k}\right|+v Z^{-1} \sum_{1 \leqslant|k| \leqslant Z}\left(v B_{k}^{-1}+B_{k}^{11 / 12}\right) . \tag{27}
\end{align*}
$$

Now the last sum in (27) is

$$
\begin{align*}
& \ll v Z^{-1} \sum_{1 \leqslant 1 k \mid \leqslant Z}\left(v^{2} u^{-1}|k|^{-1} N+(u|k| /(v N))^{11 / 12}\right) \\
& \ll v^{2} Z^{-1}\left(v u^{-1} N \log v+v^{11 / 6+\eta-1-11 / 12} Z^{1+11 / 12} N^{-11 / 12}\right) . \tag{28}
\end{align*}
$$

The first term in the brackets of (28) is much less than 1 since $N<v^{1-2 \alpha-\epsilon}$. The second term in the brackets is much less than

$$
v^{\eta-1 / 12} Z^{23 / 12} N^{-11 / 12}
$$

which is much less than 1 , using $N>v^{(46 \alpha-1) / 11+\epsilon}$. Thus

$$
T^{2} \ll v^{2-2 \alpha-\epsilon / 6}+v Z^{-1} \sum_{1 \leqslant|k| \leqslant Z}\left|U_{k}\right| .
$$

We estimate $\left|U_{k}\right|$ by the method of exponent pairs as in [2] and obtain, for any exponent pair (κ, λ), that

$$
\begin{aligned}
v Z^{-1} \sum_{1 \leqslant|k| \leqslant Z}\left|U_{k}\right| \ll & v^{2} Z^{-1}\left(u^{\lambda} v^{-1-\lambda} Z^{1+\lambda} N^{1+\kappa-2 \lambda}\right. \\
& \left.+u^{\lambda-1} v^{1-\lambda} N^{\kappa+1-2 \lambda} Z^{\lambda}+N Z / v+v N u^{-1} \log v\right) \\
= & v^{2} Z^{-1}\left(A_{1}+A_{2}+A_{3}+A_{4}\right) \text { say. }
\end{aligned}
$$

We have

$$
A_{1} \ll v^{\lambda-1+2(1+\lambda)(\alpha+\epsilon / 6)} N^{1+\kappa-2 \lambda} .
$$

In the present context $(\kappa, \lambda)=(1 / 9,13 / 18)$ is an efficient choice (see Section 5.20 of [7] for a brief discussion of exponent pairs). This gives $A_{1} \ll 1$ if

$$
N>v^{(62 \alpha-5) / 6+31 \epsilon / 36}
$$

The hypothesis (25) thus ensures that the contribution from A_{1} is of a suitable size. Also

$$
A_{2} \ll v^{\lambda-1+2 \lambda(\alpha+\epsilon / 6)} N^{1+\kappa-2 \lambda}
$$

so the bound for A_{1} holds a fortiori for A_{2}. The terms A_{3} and A_{4} may be bounded in a satisfactory manner also, using $N<v^{1-2 \alpha-\epsilon}$. This completes the proof of this lemma.

Lemma 9. Let c_{h}, a_{s}, b_{t} be sequences of complex numbers, bounded in modulus by one. Suppose that

$$
\begin{array}{lll}
x^{r}<M N<(3 x)^{r}, & N<N_{1} \leqslant 2 N, & M<M_{1} \leqslant 2 M, \\
x^{r / 4}<M<X^{3 r / 4}, & x^{r+1} \leqslant m \leqslant x^{r+2}, & 1 \leqslant H \ll \log x .
\end{array}
$$

Then there exists a $\delta(r)>0$ such that

$$
\sum_{N \leqslant s<N_{1}} a_{s} \sum_{M \leqslant t<M_{1}} b_{t} \sum_{1 \leqslant h<H} c_{h} e\left(\frac{m h}{s t}\right) \ll x^{r-\delta(r)} .
$$

Proof. This may be obtained by using the Cauchy-Schwarz inequality in conjunction with Theorems 5.9, 5.11 and 5.13 of [7].
6. Proof of Lemmas 3 and 4. Lemma 3 follows quickly from a combination of Lemmas 5 and 9. To prove Lemma 4 we need to employ Heath-Brown's generalized Vaughan identity [5], whereby, for any function $f(x)$ with $|f(x)| \leqslant 1$ and any $\alpha \in(0,1 / 7)$,
the sum $\sum_{2 v \leqslant n<3 v} \Lambda(n) f(n) \quad$ (here $\Lambda(n)$ is the von Mangoldt function)
may be decomposed into $\ll(\log v)^{6}$ sums of the form
or

$$
\begin{equation*}
\sum_{M<m<M_{1}} a_{m} \sum_{\substack{N<n<N_{1} \\ 2 v \leqslant m<3 v}} b_{n} f(m n), \quad b_{n} \equiv 1 \text { or } \log n, \quad N>v^{(1-\alpha) / 2-\epsilon / 2} \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{M<m<M_{1}} a_{m} \sum_{\substack{N<n<N_{1} \\ 2 v \leqslant m n<3 v}} b_{n} f(m n), \quad v^{\alpha+\epsilon} \ll N \ll v^{1 / 3} . \tag{II}
\end{equation*}
$$

Here a_{m}, b_{n} are real numbers with $\left|a_{m}\right|,\left|b_{n}\right| \ll v^{\eta}$ for any $\eta>0$, for both types of sums. (See the proof of Lemma 2 in [3], where α here corresponds to 2γ there).

We complete the proof by appealing to Lemma 5 with $c_{n}=\Lambda(n)$ and $L=16 v^{2} x^{\eta / 2-1}$. We use Lemma 8 to bound sums of type (I) (applying partial summation if $b_{n}=\log n$) and Lemma 7 to bound sums of type (II). We are able to do this since

$$
\begin{align*}
& \frac{1-\alpha-\epsilon}{2}>\frac{62 \alpha-5}{6}+\epsilon, \tag{29}\\
& \frac{1-\alpha-\epsilon}{2}>\frac{46 \alpha-1}{11}+\epsilon
\end{align*}
$$

and

$$
1-5 \alpha-\epsilon>\frac{1}{3}
$$

We also use the fact that the prime powers give a contribution

$$
\ll v^{\frac{1}{2}}=o\left(\frac{x}{v \log x}\right) .
$$

We note that it is (29) which sets the limit of the method. The $(1-\alpha-\epsilon) / 2$ term here arises naturally from Heath-Brown's identity, while the ($62 \alpha-5$)/6 comes from the exponential sum estimates.

Finally we mention the connexion this problem has with the greatest prime factor of an integer in an interval. If

$$
1-\beta<\left\{\frac{y}{p}\right\}<1
$$

then there is a number in the interval $(y, y+\beta p)$ which is divisible by p. By altering the proof we have given one can deduce that for all large x there is an integer in the interval

$$
\left[x, x+x^{1-1 /(2-\alpha)}\right)
$$

with a prime factor of size approximately $x^{1 /(2-\alpha)}$, for any $\alpha<8 / 65$. By using similar arguments to [2] it can be shown that the interval contains an integer with a larger prime factor, but this is not helpful in the present context since the size of prime factor we need is linked directly to the interval length.

REFERENCES

1. R. C. Baker, Diophantine inequalities, London Math. Soc. Monographs N.S. 1 (Oxford Science Publications, 1986).
2. R. C. Baker, The greatest prime factor of the integers in an interval, Acta Arith. 47 (1986), 193-231.
3. R. C. Baker and G. Harman, On the distribution of αp^{k} modulo one, Mathematika, to appear.
4. H. Davenport, Multiplicative number theory, second edition revised by H. L. Montgomery (Springer, 1980).
5. D. R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan identity, Canad. J. Math. 34 (1982), 1365-1377.
6. D. W. Masser and P. Shiu, On sparsely totient numbers, Pacific J. Math. 121 (1986), 407-426.
7. E. C. Titchmarsh, The theory of the Riemann zeta-function, second edition revised by D. R. Heath-Brown (Oxford, 1986).

School of Mathematics
University of Wales, College of Cardiff
Senghenydd Road
Cardiff CF2 4AG.

