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SUMMARY

The aim of this paper is to investigate local spatial dependency with regard to Salmonella

seropositivity in data from the Danish swine salmonellosis control programme and its application

in informing surveillance strategies. We applied inhomogeneous and observed-difference

K-function estimation, and geo-statistical modelling to data from the Danish swine salmonellosis

control programme. Slaughter-pig farm density showed large variation at both the country-wide

and local level in Denmark (median 0.23, range 0.02–0.47 farms/km2). The spatial distribution of

pig farms followed a random inhomogeneous Poisson process but was not aggregated. We found

evidence for aggregation of Salmonella case farms over that of all farms at distances of up to

6 km and semivariogram analyses of Salmonella seropositivity revealed spatial dependency

between pairs of farms up to 4 km apart. The strength of the spatial dependency was positively

associated with slaughter-pig farm density. We proposed sampling more intensively those farms

within a 4 km radius of farms that were identified with a high Salmonella status, and reduced

sampling of farms that are within this radius of ‘Salmonella-free’ farms. Our approach has the

potential to optimize sampling strategies while maintaining consumer confidence in food safety

and also has potential to be used for other zoonotic disease surveillance systems.
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INTRODUCTION

The value of geo-referenced data in veterinary sur-

veillance of both endemic and exotic diseases is im-

mense. Recent examples in the literature show that

these data have been used not only to identify areas

with excess disease [1, 2] and target areas for further

studies [3], but also to produce hypotheses about

means of disease introduction [4], identify likely sites

of incursion of an exotic disease [5] and for predictive

modelling of alternative control strategies [6].

The geo-referenced locations of livestock farms can

be considered a spatial point process [7]. An underly-

ing assumption in the analysis of these processes is

that of stationarity or spatial homogeneity, i.e. the

intensity of the process does not depend on the lo-

cation in space [7, 8]. A point pattern representing

the location of livestock farms will typically not meet

this assumption – farms will probably be distant

from large urban centres and will often be located near

areas that meet their needs for specific inputs, e.g. feed

supply and market access. Furthermore, in developed
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countries legislation now dictates the location of in-

tensive production units due to their effects on the

environment such as emissions of ammonia and phos-

phorus and requirements regardinging the spread of

slurry.

Statistically spatial point patterns can be par-

titioned into first- and second-order properties that

capture their global and local behaviours respectively

[8]. If the pattern shows a global trend (i.e. is non-

stationary or inhomogeneous) then it exhibits a first-

order effect. A second-order effect is due to spatial

dependency and results from the spatial correlation

structure in the data; these are small-scale or local

effects. Somewhat ambiguously, both first- and sec-

ond-order effects produce point patterns that exhibit

local concentrations of points and it can be difficult to

clearly identify one from the other [9].

Specifically viewing slaughter-pig production in

intensive farming areas there are concentrated areas of

pig production within which the distances between

farms can be very small. Denmark, as the world’s

largest exporter of pig meat provides a good example

of intensive pig farming. The first aim of this paper is

to capture the spatial distribution of these farms with

regard to first- and second-order effects using farm

location data from the Danish Central Husbandry

Register in 2003. Our second aim is to investigate

the second-order spatial properties by marking the

locations with disease status and with a random farm-

effect value from a generalized linear mixed model.

We then determined the implications for surveillance.

This methodology could be used on suitable data from

any national disease control programme. We used

data from the Danish Swine Salmonellosis Control

Programme (DSSCP) from 2003. Many other coun-

tries that intensively farm pigs look to the Danish

control programme as a model, e.g. the Zoonoses

Action Plan in the UK [10], Ireland [11] and the

German QS system [12]. The Danish programme was

developed in 1993 in response to an increase in the

incidence of salmonellosis in humans attributable to

consumption of pork [13, 14] and is based around the

random testing of meat-juice samples from slaugh-

tered pigs. All herds that produce >200 finishers per

year are tested and then categorized into one of three

levels of a ‘serological Salmonella index’ for inter-

vention strategies [13]. An in-depth review of the pro-

gramme is given by Christensen [15].

In Denmark the number of human salmonellosis

cases due to pork consumption has substantially re-

duced from 1444 in 1993 to 164 in 2004 [16]. This

reduction in the number of human cases provides some

indication that interventions that have been applied

have been effective but raises questions about where to

go to next in terms of resource allocation within the

programme [17]. There have been a number of recent

stochastic models, both Danish [17] and from else-

where [18, 19] which have addressed the question, with

variable results. The North American model found

higher cost–benefit ratios for improvements in the

post-slaughter phase [19], while both the Danish [17]

and the Dutch [18] models identified both pre- and

post-slaughter interventions as being efficient.

In terms of pre-slaughter interventions little con-

sideration has been given to small-scale spatial risk

factors. Work on the Danish programme has de-

scribed a strong first-order spatial effect with a higher

prevalence of farm-level seropositivity in the north

and south of Jutland, and in the west of the country

compared with the east [14, 20, 21]. Our recent work

[21] has identified that case farms tend to be spatially

aggregated, but we are not aware of any work

specifically investigating the second-order properties

of the data. Both increased pig density within a region

[22] and small distances to other pig farms [23, 24]

have been identified as risk factors for Salmonella in-

fections. Survival times of bacteria are lengthy in the

environment [25] and contaminated faecal matter can

act as a reservoir [26], so processes acting locally, such

as sharing contaminated agricultural machinery or

poor biosecurity between farms, make the small-scale

spatial structure worthwhile investigating. This has

the potential to inform models that may lead to im-

proved resource allocation in the Danish and other

similar programmes.

MATERIALS AND METHODS

The dataset

Two extracts of data from 1 January 2003 to 31

December 2003 were obtained from the DSSCP [13,

14]. These extracts comprised pig- and farm-level

data. We chose data from 2003 for analysis since this

was the period with the highest proportion of geo-

referenced farms in our dataset (96.2%).

Data were managed using a relational database

(Microsoft Access 2002 for Windows; Microsoft

Corporation, USA) and spreadsheet software (Micro-

soft Excel 2002 for Windows; Microsoft Corpor-

ation). Statistical analyses were performed using the R

statistical package version 2.2.0 (R Foundation;
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http://www.r-project.org) and WinBUGS version

1.4.1 (Imperial College and MRC, UK). R packages

spatstat [27], geoR [28], splancs [29] and sm [30] were

used.

Pig-level data

There were 578 268 individual finisher-pig meat-juice

results. Each included the date of sampling, the cen-

tral husbandry register number identifying the farm of

origin, and the result of the Danish-mix ELISA. A

result of >20 OD% was classified as positive. This is

the cut-off for positivity that has been used by the

DSSCP since 1 August 2001 [13].

Farm-level data

Of the 10 571 farms for which individual pig results

were available, 10 166 had easting and northing co-

ordinates of the farm house. This represented 96.2%

of the contributing farms. The 405 farms without co-

ordinate information were excluded from the analy-

ses. Each farm had its central husbandry register

number which included a number indicating within

which of the 15 Danish counties the farm was located.

Because they contributed very few farms, the two

counties that constituted the county of Copenhagen

were merged.

Spatial analyses

To investigate the spatial distribution of slaughter-pig

farms we used three techniques: kernel estimation,

nearest-neighbour distance and the inhomogeneous K

function.

We calculated kernel density estimates [31] of farm

locations to visualize the broad scale variability in

farm density. Spatially adaptive smoothing was im-

plemented by weighting the global bandwidth at each

data-point with weights derived from a pilot estimate

(J. C. Marshall and M. L. Hazelton, unpublished ob-

servations). Regions that are data rich (e.g. Jutland),

therefore receive less smoothing so as to preserve fine

detail, whereas regions where the data are sparse (e.g.

Zealand) receive more smoothing. A linear boundary

kernel, with a Gaussian base was used to reduce

boundary bias, and a global smoothing bandwidth of

17 km was chosen using the normal optimal method

[30].

For each county we calculated the distance from

every farm location to its nearest neighbour.

We estimated a non-stationary analogue of the

standard K function, the inhomogeneous K function

[32] to investigate for evidence of local aggregations of

pig farms after allowing for their non-uniform den-

sity. The K function is defined as the expected number

of further points within a distance r of an arbitrary

point, divided by the overall density of the points [33].

K(r)=
N(r)

l
, (1)

In equation (1) K(r) is the standard K function, N(r) is

the expected number of neighbouring farms within a

distance r of an arbitrary farm and l is the farm den-

sity. Inhomogeneous K-function analysis was per-

formed using five large, approximately square, areas

that included 82% of the sampled farms (Fig. 1).

Square areas were chosen to avoid the instability

that may be associated with unusual window ge-

ometry [34]. Analysis of the whole of the country was

prevented by computational and geographical con-

straints. To reduce the instability due to edge effects

Ripley’s isotropic corrections were implemented [34].

One hundred simulated realizations of an inhomo-

geneous Poisson process were generated and the in-

homogeneous K functions of these were calculated to

produce an envelope around the observed data. This

provided a way of testing if the observed pattern of

farms is aggregated even after allowing for its

non-uniform density. The practical value of the in-

homogeneous K function over the standard K func-

tion is that the former permits a more global measure

of aggregation as it allows for spatial inhomogeneity

of the pattern (a varying l).

To investigate if there were spatial aggregations

of case farms over that of all farms the observed-

difference K function was calculated. A farm was de-

fined as a case if it had a proportion of positive pigs

o0.4. We chose this cut-off as it is the cut-off between

levels 1 and 2 of the serological Salmonella finisher

index. If herds are in levels 2 or 3 there are require-

ments placed upon them, e.g. pen faecal samples must

be collected from the herd and there are penalty

‘Salmonella deductions’ reducing payments to these

producers. Approximately 3% of herds were in levels

2 or 3 during 2003.

For each county separate K functions at distances r

were calculated for both case farms, Kcase(r), and for

all farms, Kpop(r), and the observed difference func-

tion D(r) was calculated as follows:

D(r)=Kcase(r)xKpop(r), (2)
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The null hypothesis was of no extra aggregation of

cases over that of the population corresponding to

the cases being a random sample from the population.

This permits the use of randomization tests which

do not require the underlying point process to be

stationary [9]. Upper and lower permutation envelopes

were produced by 99 random relabellings of the cases

and population. Values of the observed-difference

function were calculated for each permutation to in-

vestigate if there was any significant deviation of the

observed-difference function from zero [35].

Our second approach to determine if there were any

second-order effects was to investigate the hypothesis

that geographically close farms were more similar

than those geographically distant. The relationship

between the outcome response (the proportion of pigs

positive per farm) and the effect of herd size and farm

was examined by fitting a generalized linear mixed

model as follows:

log
pij

1xpij

� �
=b0+b1xij+Ui (3)

Ui � Normal (0, s2)

In Equation (3) the logit of the observed probability

of the jth pig from the ith farm being seropositive,

pij, was estimated as a function of a binary variable

representing large herd-size category and a random

effect term, Ui, which was normally distributed with a

mean of zero and variance s2.

The model was applied to all farms in Denmark that

had easting and northing coordinates supplied and

were producing pigs for slaughter in 2003. The model

was sequentially run for all Danish pig-producing

counties as computational constraints prevented mod-

elling all farms at once.

Model parameters were estimated using a Bayesian

approach, implemented in WinBUGS version 1.4.1.

Markov Chain Monte Carlo (MCMC) methods were

applied to the observed data to simulate values from

the joint conditional distributions of the unknown

quantities. We chose non-informed prior and hyper-

prior distributions for all model parameters : for the

fixed-effects we chose Normal(0, 0.000001) and for s2

(the variance of the farm random-effect term), we

chose inverse Gamma(0.1, 0.001). Three chains were

run and convergence was judged to have occurred on

the basis of visual inspection of time-series and

Gelman–Rubin plots [36]. The length of the chain was

determined by running sufficient iterations to ensure

the Monte Carlo standard errors for each parameter

were <5% of the posterior standard deviation. A

total of 30 000 iterations were run with a ‘burn in’ of

5000 iterations.

0 30 60 90 km

N

Nordjylland

Viborg

Arhus

Ringkobing

Vejle

Ribe

Sonderjylland

Fyn

Frederiksborg

KobenhavnVestsjalland

Roskilde

Storstrom

Bornholm

Fig. 1. Map of Denmark showing the location of counties and of the five areas used in the investigation of inhomogeneous

K-function estimation.
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The farm-level random effects from the model were

plotted on to county map outlines in an initial inves-

tigation into the presence or otherwise of second-order

spatial effects. Then omni-directional binned semi-

variograms were plotted. These illustrate the differ-

ence between pairs of data-points (farm-level random

effects) within a given spatial lag (the distance between

pairs of farms) [37]. If there was spatial dependency

between farms we would expect an upwards trend in

the variogram. Conversely, little or no spatial auto-

correlation would produce an essentially flat vario-

gram. Directional semivariograms at angle sizes of 0x,

45x, 90x and 135x (tolerance of¡22.5x) were plotted to

investigate if the spatial structure was anisotropic.

The significance of the spatial autocorrelation was

determined by permuting the data values on the spa-

tial locations to produce simulation envelopes. As

permuted data should not exhibit spatial dependency

any points lying outside these simulation envelopes

indicate significant spatial autocorrelation. The mag-

nitude of the spatial autocorrelation was determined

by calculating the ratio of nugget to total semivari-

ance. The nugget semivariance is the point at which

an extrapolated fitted line would cross the vertical

axis. A nugget to total semivariance ratio of <25%

indicated strong spatial dependence, between 25%

and 75% indicated moderate spatial dependence, and

>75% indicated weak spatial dependence [38].

As we were interested in small-scale spatial depen-

dency for both K function and semivariogram analy-

sis the maximum distance investigated was 10 km.

RESULTS

There were 10 166 farms sampled in 2003 in the

Danish programme with coordinate information.

Figure 2 is the edge-corrected kernel-smoothed map

of the farm density. Smoothed farm density was nor-

mally distributed with a mean of 0.20 and a standard

deviation of 0.09 farms/km2. The range of smoothed

densities varied throughout the country from zero in

Copenhagen to 0.47 per in Viborg.

Figure 1 shows the location of counties and the

five areas used in the investigation of inhomogeneous

K-function estimation. Table 1 gives the area, number

of farms and farm density for each of the five areas

selected for inhomogeneous K-function analysis. In

total the areas encompassed 8286/10 166 farms sam-

pled for 2003. Over all five areas there was a wide

range of farm densities from a median of 0.30 (range

0.03–0.38) farms/km2 in North Jutland to 0.14 (range

0.01–0.30) in Zealand.

Jutland

N

Zealand 0·4

0·3

0·2

0·1

Bornholm

Fyn

0 30 60 90 km

Fig. 2. Kernel-smoothed map showing variation in Salmonella meat-juice-tested slaughter herd densities across Denmark.
The Jutland peninsula and main islands are labelled. Herds that produced <200 pigs for slaughter annually were not tested.
Units are farms/km2.
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The inhomogeneous K-function analysis of all large

square areas showed that the observed pattern of

farms was not aggregated (not shown). The median

nearest-neighbour distance was 0.77 km (IQR 0.69,

range 0.01–11.56 km).

Using the cut-off of o40% meat-juice, ELISA-

positive pigs in a herd produced 272 case farms. The

case incidence risk was 3%. Figure 3 shows the ob-

served-difference K function between case and popu-

lation farms for the counties of Nordjylland, Arhus,

Ringkobing and Sonderjylland. Nordjylland, Ring-

kobing and Arhus show evidence of local spatial ag-

gregation of case farms over that of all farms. The

extent of the aggregation was 1 km for Nordjylland

and 4 km for Arhus. For Ringkobing it was statisti-

cally significant at 6 km with points beyond the

simulation envelope. Together these three counties

represented 40% of the Danish pig population in

2003. The results for the remaining counties were

similar to that of Sonderjylland showing no evidence

for local spatial aggregation of case farms over that of

all farms.

When the farm-level random effects were plotted by

their coordinates there were no apparent aggregations

of similar-sized random effects. This pattern was seen

in all counties. However, semivariograms (Fig. 4) for

most large pig-producing counties showed evidence

of spatial dependency with an upwards trend in the

variogram at up to 4 km distance. Although most

counties had all points lying within the simulation en-

velopes, the four main pig-producing counties Nor-

djylland, Viborg, Arhus and Sonderjylland had points

below the envelopes indicating significant spatial

autocorrelation from 2 km to 4 km. Together these

four counties represented 50% of the Danish pig

population in 2003. The nugget to total semivariance

ratios of these four counties was y70%, indicating

moderate spatial autocorrelation. The strength of the

dependency was proportional to slaughter-pig density

with the exception of Fyn.

Table 2 shows the farm-level prevalence unadjusted

for herd size, proportion of farms in the large herd-

size category, odds ratios for large herd size and the

variance of the random effects with 95% Bayesian

credibility intervals for each county. The unadjusted

farm-level prevalence was highest at y5% in the

north of Jutland (Nordjylland and Arhus) and lowest,

at y1%, in the east of Denmark (Bornholm and

Roskilde). All counties in Jutland and Fyn had

o43% farms in the large herd-size category. Odds

ratios for Nordjylland, Fyn, Ribe, Vejle and Viborg

were significant suggesting that pigs in these counties

were at more risk of being seropositive if herd size was

large (>2000 finishers produced annually) than if it

was medium (between 200 and 2000 finishers pro-

duced annually). The variance of the random effects

was greatest in Sonderjylland indicating that farms in

this county showed the most variation in farm-level

prevalence of Salmonella.

DISCUSSION

Slaughter-pig farm density showed large variation

both at the country-wide and at the local level in

Denmark in 2003. The areas of highest farm density

are Viborg and Nordjylland on the Jutland peninsula

(0.47 farms/km2) ; the lowest are on the island of

Zealand. The distribution pattern of farms followed

a random inhomogeneous Poisson process and al-

though farms had near neighbours they did not

spatially aggregate. With regard to Salmonella sero-

positivity we found consistent evidence for spatial

dependency at distances of y4 km. The strength of

the spatial dependency varied throughout the country

being proportional to farm density. Our findings

were in accord with those reporting short distances

Table 1. Area, number of farms, number of case farms and farm density

for the five approximately square regions used in K-function analysis

Location
Area
(km2)

No. of
farms

Farm density (farms/km2)

Median* Range*

North Jutland 2645 832 0.30 0.03–0.38
Central Jutland 15 960 4232 0.23 0.06–0.39

South Jutland 8712 1623 0.17 0.02–0.32
Fyn 3248 738 0.23 0.05–0.36
Zealand 5625 859 0.14 0.01–0.30

* Calculated using the spatstat library in R.
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between farms [23], being a neighbour of an infected

farm [24] and pig density [22] as potential risk factors

for Salmonella infection in pigs.

This local spatial dependency adds to the current

knowledge of the epidemiology of subclinical Sal-

monella in Danish slaughter-pig farms and can inform

future strategies aimed at optimizing the control pro-

gramme. For example, more intensive sampling of

farms within a 4 km radius of identified problem

farms, such as those in levels 2 or 3, on the Jutland

peninsula is likely to capture more positive results,

leading to interventions that may result in enhanced

food safety. Similarly, we propose the concept of re-

duced sampling of farms that are near neighbours of

‘Salmonella-free ’ farms. ‘Salmonella-free ’ refers to

farms enrolled in the ‘risk-based’ scheme which has

been running since July 2005. This scheme requires

one sample per month to be taken from herds with

a Salmonella index level of 0 and a minimum of 10

negative meat-juice samples in the last 6 months. To

date 50% of herds meet these criteria. Our study has

identified that when spatial dependency is present,

such as in Jutland, there are farms that provide

essentially redundant information that could poten-

tially be eliminated from the surveillance programme.

Spatial sampling optimization for groundwater moni-

toring has been achieved using the variogram [39, 40]

and we propose using it to optimize sampling in the

DSSCP. If spatial dependency is present in other dis-

ease programmes, both within and beyond Denmark,

then these strategies could be applied to these pro-

grammes. For example, evidence for spatial depen-

dency has been found between bulk milk tanks titres

for Salmonella Typhimurium in Texas dairy herds [3]
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Fig. 3. Observed-difference K function between case and population farms for Nordjylland, Arhus, Ringkobing and
Sonderjylland. The open symbols (#) represent the difference between the two K functions and the dashed lines ( - - - ) the

simulation envelope based on 99 random relabellings of the cases and population. A farm was defined as a case if in 2003
the proportion of positive results was >40%.
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and between cattle herds in Denmark with regard to

Salmonella Dublin infection [41].

Local farm density is a well recognized risk fac-

tor when investigating epidemics of animal disease

[42–45]. The density of neighbouring herds was as-

sociated with so-called ‘neighbourhood infections’

during the 1994 classical swine fever epidemic in Bel-

gium [42] and ‘local ’ spread accounted for 79% of

means of spread in the first 5 months of the 2001 foot-

and-mouth disease epidemic in Great Britain [45].

High farm density implies that the distance between

farms is short ; in these examples a neighbourhood

was an area of 1 km radius around an infected herd

and local meant within 3 km of an infected place.

Although we are less familiar with farm-density

investigation in relation to a subclinical endemic in-

fection such as Salmonella in Danish finisher-pig

herds there are compelling reasons to investigate it. If

Salmonella is not already present, or if a novel serovar

is in circulation, then pig herds are at risk from its

introduction through many routes, the two main

routes being the introduction of infected pigs and

contaminated feed [46]. The latter is thought to be of

minor importance as there are stringent controls on

animal feed in Denmark; where in 2005 the preva-

lence of Salmonella in animal feed was low. There is

much support for the theory that the introduction of

infected pigs is a likely source of Salmonella for

Danish pig farms [23, 47–49]. It is common farming

practice to purchase stock from a geographically close

supplier and this could lead to small-scale spatial de-

pendency in the data. Denser farming areas probably

offer more choice of supplier. Lo Fo Wong et al. re-

ported that the odds of seropositivity increased sig-

nificantly if greater than three suppliers were used

[47].
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The other ‘external ’ sources of Salmonella such

as visitors [50], vermin [22, 51] and sharing of con-

taminated equipment [24] can also be farm density-

dependent. Rodents and flies have been found to

carry Salmonella [52, 53] and the small distances be-

tween many of the Danish pig farms are well within

the range of the brown rat [54]. In addition airborne

spread is possible at least over short experimen-

tal distances [55, 56]. Our findings of spatial depen-

dency between farms with regard to Salmonella

seropositivity, and aggregation of Salmonella case

farms over that of all farms at distances of up to 4 km

could be due to these locally acting processes or the

contagious nature of the disease. Temporal studies

would help elucidate this.

The inhomogeneous K function is a relatively new

technique. It has been used to highlight significant

differences in the spatial aggregation of vacuoles

in mice brains infected with different transmissible

spongiform encephalopathies [57]. The use of the in-

homogeneous K function to summarize the spatial

pattern of farms seems sensible. It allows for the spa-

tial variation in intensity of the underlying point pat-

tern which is likely to occur in animal production

systems and is clearly seen in pig farm density in

Denmark. By allowing for the non-uniform intensity

of the spatial locations of farms it permits hypothesis

testing for aggregation. Our results support the hy-

pothesis that the farm distribution pattern follows a

random inhomogeneous Poisson process with no ag-

gregation beyond that.

Even though our dataset was effectively a census

of Danish finisher swine herds in 2003 there was

potential for selection, misclassification and con-

founder bias in our study. Selection bias may have

occurred when we excluded 405 of 10 571 (4%) of

farms because coordinate information was unavail-

able. As our database was drawn from herds regis-

tered in March 2004 the 10 571 farms with available

coordinate information were still in production then

and were likely to be different from the 405 that no

longer were. However, this is likely to be of little

importance as this group of farms represents only 4%

of the total.

Further selection bias may have occurred in select-

ing the five large areas for the inhomogeneous K-

function analysis. These were approximately square

and excluded some areas of pig farms (notably

Bornholm) and restricted the sites for consideration

to those on large land masses. Nonetheless, we believe

the coverage of farms within the five areas was suit-

ably representative of all pig farms tested in 2003;

82% were included and the case incidence risk (3%)

was the same as that for all farms.

Table 2. Unadjusted farm-level Salmonella seroprevalence, odds ratios, proportion of farms in the large

herd-size category and variance of the farm-level random effects for Danish pig-producing counties in 2003

County
Prevalence, %
(95% CI) OR (95% CI)

Proportion of

farms in large
herd-size category*

Variance of the

random effects
(95% CI)

Nordjylland 5.9 (5.5–6.3)# 1.15 (1.01–1.32)$ 0.40 1.3 (1.2–1.5)
Bornholm 1.0 (0.7–1.3) 0.92 (0.48–1.77) 0.18 2.3 (1.7–3.3)

Sonderjylland 3.3 (2.8–3.8) 1.04 (0.80–1.36) 0.50 3.7 (3.2–4.2)
Fyn 3.6 (3.3–4.0) 1.25 (1.03–1.52) 0.46 1.6 (1.4–1.8)
Viborg 3.5 (3.2–3.9) 1.27 (1.07–1.52) 0.44 2.0 (1.8–2.3)

Storstrom 1.4 (1.2–1.7) 1.33 (0.95–1.85) 0.32 2.0 (1.6–2.5)
Ribe 2.0 (1.6–2.5) 1.66 (1.14–2.41) 0.43 2.8 (2.3–3.5)
Ringkobing 3.5 (3.2–3.9) 0.92 (0.77–1.10) 0.48 2.0 (1.8–2.2)

Arhus 4.9 (4.5–5.4) 1.09 (0.91–1.30) 0.48 1.7 (1.5–1.9)
Roskilde 1.1 (0.7–1.7) 1.65 (0.75–3.75) 0.42 1.7 (1.0–3.2)
Vejle 2.9 (2.5–3.3) 1.34 (1.05–1.70) 0.48 2.2 (1.9–2.5)
Vestsjalland 1.8 (1.5–2.1) 1.01 (0.76–1.34) 0.30 1.8 (1.4–2.1)

Frederiksborg 1.5 (0.8–2.3) 0.87 (0.34–2.26) 0.26 1.6 (0.8–3.2)

OR, Odds ratio ; 95% CI, 95% Bayesian credible intervals.
* Farms with >60 pigs tested in 2003 (equates to an annual slaughter of >2000 finishers).
# Unadjusted farm-level prevalence.

$ Interpretation: In Nordjylland the odds of a pig being seropositive was increased by a factor of 1.15 (95% Bayesian CI
1.01–1.32) if the pig was from a large (>2000 finishers produced annually) herd than if it was from a medium (between 200
and 2000 finishers produced annually) herd.
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The use of the farmhouse locations over that of the

actual polygonal boundaries of the farm may poten-

tially lead to an over-estimation of the distance be-

tween farms (misclassification bias). This would be of

great significance in extensive sheep or beef cattle

farming systems if farm sizes are large. However, it is

likely to be of little consequence in intensive pro-

duction systems such as the Danish pig farms we are

investigating in the present study.

The adjustment for herd size in the geostatistical

model was made as a number of earlier Danish studies

[20, 48] and a recent Canadian study [58] have re-

ported large herd size as a risk factor for increased

seropositivity in slaughter-pig herds. However, later

studies in Denmark [59] and throughout Europe [47]

showed no association and a Dutch study [60] showed

that large herd size was protective. In this study

the effect of herd size was not investigated per se,

but adjusting for herd size was undertaken in the

context of its effect on spatial dependency. The odds

ratios reported suggest increased risk in some counties

as herd size increases. The reason for this may be

that there are local practices, such as more move-

ments of pigs between farms or higher within-farm

pig density, which make large herd size more of a

risk for increased Salmonella seroprevalence in these

counties. Nevertheless these results must be inter-

preted with caution as the effect of herd size is prob-

ably confounded by other covariates, such as feeding

and biosecurity practices that we have no information

on.

Distance can be defined in different ways; Eu-

clidean, time of travelling or in terms of social net-

works [61]. Ideally all three definitions should be

considered in the spatial epidemiological investi-

gations and we should not constrain ‘ locality ’ to only

imply spatial proximity. However, this study focused

on Euclidean distance between farmhouses but future

studies in relation to social networks would appear to

be a logical next step. This could be particularly

helpful in tracing the dissemination of infected pigs.

We have outlined an approach to combine geo-

referenced farm location information and routinely

collected control programme data using techniques

from spatial point patternandgeostatistical analy-

sis. This has extended the current knowledge of the

epidemiology of subclinical Salmonella in Danish

slaughter-pig farms. Furthermore, we have demon-

strated howour approach has the potential to optimize

sampling strategies while maintaining consumer con-

fidence in food safety. These techniques could be

readily applied to data from other programmes in dif-

ferent countries.
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