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1. Introduction
Let X be an infinite dimensional normed linear space over the complex

field Z. X will not be complete, in general, and its completion will be denoted
by X. If @(X) is the algebra of all bounded linear operators in X then T e 2B{X)
has a unique extension TB3S(X) and \T\ = || f ||. The resolvent set of
Te@(X) is defined to be

p{T) = {zeZ:(zI-T)-ie <%(X)};

and the spectrum of T is the complement of p(T) in Z.

Lemma 1.1. If T e <%(X) then o(T) => a( T).

Proof. Let z e p(T); then (zl- T)~le @{X) and

(zI-T)-\zI-T) = (zI-Tfel-T)-1 = /. (1)

Hence, considering the unique bounded extension of (1),

(zI-Ty\zl- T) = (zl- T)(zl-T)-1 = 7.

Thus (z7- Ty1 = (zJ-T)-1 e 3S{X),

and z e p(T), showing that p(T)cp(T), which completes the proof.
Example 1 (§5) shows that we cannot replace inclusion by equality in

Lemma 1.1. Incidentally, this invalidates Problem 5 on p. 311 of (1) and
suggests the following definition. If T e 38(X), T has a single spectrum if
a(T) = o(T). In § 2 an operational calculus is developed for such operators.
Compact operators have a single spectrum and our results are applied to them
in §3. Riesz operators, which form a natural generalisation of compact
operators are considered in § 4, while § 5 consists of a list of the examples of
operators in normed spaces which are referred to in the text.

Before proceeding, we sound a warning note. The definition of the spectrum
of a bounded operator as given in (2) is not equivalent to that given here. In
fact Taylor's definition is so designed that o(T) = a(T) for all Te 3S(X). All
definitions coincide if X is complete.

2. Single spectrum operators
Here we develop a restricted functional calculus for operators of this

type.
u
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Theorem 2.1. / / Te @(X) has a single spectrum then R(z; T) = (zI-T)~i

is an analytic function of z in p(T).

Proof. By hypothesis p(T) = p(T) ; hence p(T) is an open set, neither
empty nor the whole plane. R{z; T)e^(X) if and only if R(z; T)e@(X)
and the uniqueness of the extension shows that

Let zoep(T). If | z-z0 \<\\ R(z0; T)\\-\ then by (1), p. 310

R(z; T)= £ (z-zo)"(K(zo; T))"+i.
n = 0

But z0 E p(T); hence R{z; T) e @(X) and

R(z; T)- £ (z-zo)n(R(zo; T))" + 1

n= 0

= \\R(z; T)- £, (z-zo)"(R(zo; T))"+1

II n = 0
which ->0 as N-+oo.

Hence R{z; T) is an analytic function of z in p(T), and

R(z;T)= E (z-zo)\R(zo;T)T
n = 0

,n+l

Theorem 2.2. / / J E 3§{X) has a single spectrum then

sup {| X | : A e <r(T)} = lim | T" | 1 / n .
n-»oo

Proof. This follows directly from the corresponding formula for T ((2),
p. 263) and the fact that \\ T \\ = || T\\.

Let Te&(X) have a single spectrum. If / i s a function which is analytic
in a neighbourhood of <7(r) then for a suitable contour T surrounding o(T),
/ (T ) is defined by

/(T) = - L f /(z)R(z; T)rfz, (2)

((2), p. 289). / i s called a restricted function of r if/is analytic in some neigh-
bourhood of a(T) and if/(T) has a restriction to A' which we denote by/(7*).
The restricted functions of T form an algebra, written !Fr{T).

Theorem 2.3. If T e ^(A') Aas a single spectrum andfe J%(J) /Aen f{T) is
given by the formula

f(T) =±{ Kz)R{z; T)dz,
2TII J r

for a suitable contour F.
Proof. / (T) in ^(X) is given by (2); hence

>0 (N-^oo),\f(T)~ ± Z /(zn)R(zn; T)(zn-zn
2ni n = 0
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for suitable partitions {z0, ..., riV} of T. Thus

I/CD- ^ £ / W t o , ; T)(Zn-zn+1)|Uo (jv-*oo),
II Z7tl n = 0 ||

and the result follows.
To obtain a spectral mapping theorem we need a further limitation upon

the class of functions we consider. If T has a single spectrum an algebra £?(T)
of restricted functions of T is full if it contains the identity, and if, whenever

fe s4{J) does not vanish on a(T) then l / / e s?{T).

Theorem 2.4. / / T e ^(A1) //as a .r/ng/e spectrum and jrf(T) is a full algebra
of restricted functions ofT thenfe sf(T) implies that f(T) has a single spectrum.

Proof. Since / is a restricted function f(T) e @(X). Let \x e a(f(T)) and
suppose that/(z) — n has no zeros on o(T). Defining h(z) = (^ —/(z))"1 on
a suitable neighbourhood of a(T) we have /J(Z) e j ^ ( r ) . Thus /J(T) e

h{T)(nl-f(T)) = (nl-f(T))h(T) = 7

by the operational calculus for T; hence

h{T){pil-f{T)) = W-f(T))h(T) = /.

Thus /* e p(f(T)), which is a contradiction, giving

But, by the spectral mapping theorem for T,

K°{T)) =f(a(T)) = a(f(T)) =
Thus we have

and the result follows from Lemma 1.1.
In the course of the above proof we have obtained our spectral mapping

theorem.

Corollary 2.5. Under the hypotheses of Theorem 2.4 if fe stf(T) then
= f{a{T)).

3. Compact operators
The linear operator T in X is compact if it maps each bounded set into a

relatively compact set. Equivalently ((1), p. 311) T is compact if for any
bounded sequence (xn) in X the sequence (Txn) has a cluster point in X. If
^(X) denotes the set of compact operators in X, (£{X) is an ideal of 0)(X)
and Te ^(X) implies that Te <#(X) ((1) Chapter XI). If X is complete (£(X)
is closed in the uniform topology of 33(X). Example 2 shows that this is not
true in normed spaces.

Theorem 3.1. If T e (€{X) then T has a single spectrum.

Proof. Given in (1), p. 321.

The Riesz theory of compact operators is valid in normed spaces (see
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(1), (2)). This fact combined with Theorem 3.1 allows us to deduce results
for the Laurent expansion of R(z\ T) in a punctured neighbourhood of a
non-zero eigenvalue of T corresponding to those for R{z; T).

Theorem 3.2. If Te ^(X) and X is a non-zero eigenvalue of T then the
associated spectral projection is given by the formula

P(X; T) = - ^ f R(z; T)dz,
2 i )

where y is a sufficiently small circle of centre X.

Proof. P(X; T) e 0&{X) by (1), p. 319 and as the corresponding formula for
P(X; T) is well known the result follows as in Theorem 2.3.

It is known that in the situation of Theorem 3.2 X has a finite index v
relative to Tand that v is also the index of A relative to T((l), p. 321). Also X
is a pole of order v of R(z; T) ((1), p. 319). The next theorem shows that
this is also the case for R{z; T).

Theorem 3.3. IfTe ^(X) and if X is a non-zero eigenvalue of T with index v
then X is a pole of R(z; 7") of order v.

Proof. In a punctured neighbourhood of X

R(z; T) = £ AJiz-XT+ £ A^z-Xy,
n = 0 n = 1

where An, A_ne &(X). It will be sufficient to show that we can choose Bn,
B_n e 3s{x) satisfying _

Bn = An (« = 0, 1, ...), (3)

and B~= A_n (n = 1, ..., v). (4)

For, then, by the usual method

R(z; T) = £ Bn(z-A)"+ £ B.n{z-Xy,
n = 0 n = 1

in a punctured neighbourhood of X.
Firstly, using the results of (2), § 5.8, we shall express the An's in terms

of the spectral projection P(X; T). Thus

A.x = P(X; T)

and ^ _ n _ ! = {T-XTfA.^ = (T-XI)"P(X; T) (n = 0, ..., v-1).

Hence (4) is satisfied on putting

£_„_, = {T-XI)«P{X; T) (n = 0, .... v-1) .

Equations 5.8-5 and 5.8-7 of (2) give

(T-X1)AO = I-A., = I-P(X; T), (5)

and ( f - A / K + 1 = An (« = 0, 1, ...). (6)
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To solve these equations we write N(X; T) and F(X; f) for the range and null-
space of P(X; T) respectively. Then

X = N(X; T)@F(X; T),

and *P(X; T) = 7@0,

using an obvious direct sum notation for operators. In this notation (5) reads

(T-Xl)A0 = 0©/.

By the Riesz theory T-Xl restricted to F(X; T) is a homeomorphism, thus the
solution of this equation is

Ao = 0®(T-Xlyl.
Similarly, from (6) _

An = OQiT-lIy-1 (n = 0, 1, ...).
Write N(X; T)zndF(X; T) for the range and null-space of P(X; T). Then

X = N(X; T)®F(X; T)
and P(X; T) = /©0.

T—XI restricted to F(X; T) is a homeomorphism ((1), p. 319) so we may put

Bn = oecr-A/)-""1 in = o, i , . . . ) .
The Bn's satisfy (3) and this ends the proof.

We end this section by giving an example of a full algebra of restricted
functions of T for Te

Theorem 3.4. Let Te <€(X). @(<r(T)) the algebra of rational functions on
<T(T) is a full algebra of restricted functions ofT.

Proof. Each fe ${o(T)) is of the form / = p/q where p, q are polynomials
and q{z) does not vanish on a{T). Since p is a restricted function of T and the
product of two such functions is also a restricted function it suffices to show
that r = l/q is restricted.

Since X is infinite dimensional, 0ea(T); thus q{z) = ao+<7i(z) where
a0 # 0 and q^T) e <€(X). Since r(z) is analytic on a(T),

Thus -a o
e P(9 i ( T ) ) = P(0i(r))- B u t 9iCn has a single spectrum, being in

); hence -a0 e piq^T)) and

This last operator is clearly a restriction of r(T).

4. Riesz operators
A Riesz operator in $8{X) is one which possesses a Riesz spectral theory

commonly associated with the compact operators. For the case of Banach
spaces the class of Riesz operators has been examined in (3). However the
Riesz theory does not depend on the completeness of the underlying space,
and here we sketch a theory of Riesz operators in normed spaces.
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Let Ke SS{X). A Riesz point of a(K) is a point X e o(K) such that

X = N(X; K)@F(A; K)

where N(X; K) is a finite dimensional subspace of X and f'(A; K) is closed, Af
is invariant under K and XJ—K restricted to N is nilpotent, while F is also
invariant under K and XJ—K restricted to F is a homeomorphism. AT is a
Riesz operator in A" if each non-zero point in o(K) is a Riesz point. The class
of such operators will be written Jf(X).

Theorem 4.1. If Kec^{X) the non-zero points of a(K) are the same as
those ofa(K).

Proof. Let A(# 0) e a{K). The definition above implies that X is an
eigenvalue of K and hence of K. Thus X e <r(/C). As a{K)^>a(K) (Lemma 1.1)
the result follows.

If T is an operator in X we denote the range and null-space of T by R{T]
and A^{r) respectively. We shall need the following result.

Lemma 4.2. IfTe ®(X) then R{T} is dense in R{ T).

Proof. Clearly R{T}c=R{T}. We shall show that R{T}cc\R{T} (the
closure of R{T] in X). If 3c e R{T] there is a y eX such that fy = x, and
there exists a Cauchy sequence (yn) in A' such that yn-+y. Putting xn = Tyn

we have x,,->3c, and as xn e R{T} for each n, this gives 3c 6 cl R{T] which
completes the proof.

If k is a Riesz point of o(K) for Ke@(X) the spectral projection /"(A; K)
of A associated with K has range Af(A; X) and null-space F{1; K).

Theorem 4.3. If Kerf{X) and 1(# 0) e a(K) then I Is a Riesz point of
(x(K), X is isolated in a{K) andP{X; K) = P{X; K).

Proof. Basic spectral properties valid in normed spaces show that

K-KP(X; K)eX-(X),
and that

G(K-KP(ATK)) = cx(K)\{X}.
Hence by Theorem 4.1

o(K-KP(XrK))\{0} = o(K)\{0, X). (7)
By Lemma 4.2 N(X; K) is dense in R{P(X; K)}; hence, as N(X; K) is finite dimen-
sional, they are equal. Thus P(A; K) decomposes X into

X = N(X; K)@M

where XI — K restricted to N(X; K) is nilpotent, and restricted to the closed
subspace M is, by (7), a homeomorphism. Thus X is a Riesz point of a(K).
Hence by (3) Theorem 2.1 X is isolated in a{K) and is thus isolated in o(K).
The uniqueness of the spectral projection of X associated with K gives

P(A; K) = P(A;K).

The main result follows at once.
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Corollary 4.4. IfKeJf(X) then K has a single spectrum and K e tf (X).

Proof. Theorems 4.1 and 4.3 combine to give the first part of the result.
To see that K has a single spectrum all we need is the fact that 0 e a(K). Since
K 6 yf (X) this follows from (3), Theorem 3.3.

Let A be a non-zero point of a(K) where Ke3f(X); then the arguments of
(1) and (2), which are independent of completeness, show that there is a positive
integer v = v(X; K) called the index of X such that

N(X; K) = N{(U-KY},

and F(X; K) = R{(XI-K)V}.

The eigenspace of X associated with K is

E(X; K) = N{kl-K}.

Theorem 4.5. IfKe jf(X) and X is a non-zero point of o(K) then

(i) E(X; K) = E(X; K);

(ii) N(X; K) = N(X; K);

(iii) F(X; K) is dense in F(X; K);

(iv) v(X; K) = v(X; K).

Proof. Part (ii) has been demonstrated in Theorem 4.3 and a similar
argument disposes of (i). F(X; K) is the range of the projection f—P(X; K);
hence (iii) follows from Lemma 4.2 and Theorem 4.3. The respective indices
are the same since, by the arguments of parts (i) and (ii), the null-spaces of
(Xl—K)k and (XI— K)k are equal for any integer k ^ 1.

We remark that Theorem 3.3 is obviously true for Riesz operators.
If Te <€(X) it is known that R{ 7} cz X ((1), p. 314). Example 3 shows that

this is not true for Riesz operators.

5. Examples
Example 1. Take X to be the space of complex sequences with only a

finite number of non-zero terms in the I1 norm. Then X = / ' . Let T be the
shift operator in X defined by

x = (xux2, ..., xk, 0, 0, ...),

Tx = (0,Xi,x2, ...,xk,0, ...).

For any complex X the point (1, 0, 0, ...) is not in the range of XI—T; hence
<r(T) is the whole complex plane. However Tis the shift operator in /L; hence
<r(T)= {X:\X\S 1} ((2) p. 266).

Example 2. Take A" to be as in Example 1. If x = (xr) e X define T to

•®be the operator Tx = I — I, then Te&(X). Also define the operators Tn

in Jfby

,1 2
E.M.S.—B
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Then Tn is of finite rank, and thus compact, for each n and || Tn—T || ->0 (n-+ oo).
Now consider the sequence of points yn in X given by

This is a bounded sequence in X as || yn || ^ — {n = 1, 2, ...)• However the
6

sequence (JOO has only one cluster point

and this is not in X. Thus T is not a compact operator.

Example 3. Take X to be the space of infinite sequences of complex
CO

numbers x = (xr) such that ]T | xr | <oo. Under the norm

X is incomplete with completion /2.

I f X = (.*!, X2, X3, X4, ^5, •••)>

and Qx = ( 0 , ^ , 0 , ^ 3 , 0, ...),

the operator g defined for each x in X is in ^(Z) and its bounded extension Q
is defined similarly for each x in X. Now Q2 = 0; hence for A # 0

(A/- Q)(A/+ fi) = A2/ = (A/+ 0(A7- 0 ;

thus A e p ( 0 and c;(0 = {0}. Hence Q e JiT(X). Choose 3c = (- J e X, then

M 1 - —
and £ is divergent. Hence Qx £ A'; thus R{ Q) is not contained in X.

1 2r—1
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