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PRIMITIVE GENERATORS FOR ALGEBRAS
STANLEY O. KOCHMAN

1. Introduction. Let H be a graded commutative algebra with a nice
set of algebra generators. Let H also be a comodule over a Hopf algebra
A. In Section 2 we give conditions under which certain of these generators
of H can be rechosen to be primitive. In addition we give explicit
formulas expressing these primitive generators in terms of the original
set of generators.

In Section 3 we apply the theory of Section 2 to the mod p homology
of the Thom spectra MO, MU and MSp. In particular we give two
explicit descriptions of the image of the Hurewicz homomorphism for
MO. One of these makes explicit the recursive computation of E. Brown
and F. Peterson [1].

In Section 4 we give a variation of the theory of Section 2 which com-
putes primitive generators of certain Hopf algebras. This theory is applied
to study the primitive elements of H*(BU) and H(SO; Z.).

Other applications of the theory of Section 2 will appear in [3] and [4].

2. A change of generators theorem. Let H = R[Y;, ..., V,, ...]
be a graded polynomial algebra which is a comodule over a Hopf algebra
A. It may happen that G = R{1=Y,, ..., Y,, ...} is a subcomodule of

H. This may occur because there is a: X —» W with 4 = E.E and
ay: EyX — EL W the inclusion of G into H. Or, we may have made a
clever choice of polynomial generators. (See [4].) Write

¢(Yn) = ;60",;5 ® Y.

We then ask whether it is possible to choose new polynomial generators
of H so that some are primitive and the non-primitive ones span a sub-
comodule of H. This will split H = H; ® H, as algebras and comodules
with H, primitive. The following theorem accomplishes this change of
generators under two assumptions. We require that {¥,|n € S}, which
we wish to replace by a set of primitive generators, spans a subcomodule
R{Y,n € S} of H. We also require analogues ¢, in (H, y) of the 6,
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in (4, A). That is,
n
A(en,k) = Z O, @ 01
i=k
by coassociativity and we need to be able to choose the ¢, ; with

‘/’(q"n.k) = ;en,z Q ¢ix-

Note that it is possible for the subset S of Z* to be finite or all of Z*.

THEOREM 2.1. Let R be a commutative ring, and let A be a Hopf algebra

over R. Let H = R[Y,,...,Y,,...JorH=E(Y,...,Y,...),R=2,.
Let YVo=1land deg V, = a, where 0 = ay <a; £ ... S, £ .... Let
H be an A-comodule whose coproduct Y is an algebra homomorphism. A ssume
that:

(@) The R-submodule of H spanned by {Y, ..., Y, ...} s a sub-

comodule of H. Write

Y(Vo) = D 6,k ® Vi with 0,5 € Agyeay-
k=0
(b) There are ¢,,x € Hapay, for 0 = k < n such that

¢(¢nk) = Zken,i ® i

(c) There is a set of positive integers S such that 6, . = 0 for n € S and
ka S k>0.Inaddition 6,0 = 0 and ¢, = V,.
Then there is a Hopf algebra structure with coproduct A on H, and there are
DPn € Hy, for n €S, Qu € Ha,, for m & S such that:

() A(F) = 3= 60x ® Vi

(i1) The P, are primitive under both ¢ and A.
(iii) Qo = 1 and for m > 0:

1//(Qm) = E¢S Om,: ® Qi;

ism, i

AQn) = 2 i ® Qi+t 0no L

0<ism, i

@iv) {Pun € S} \J {Qn|m ¢ S} is a set of algebra generators of H.
(V) Yo =Pi+ 2 ¢uiPi forn€ S;
k<n

Yi=0Qu+ 2, uiPr formég S
k<m,keS

(Vl) Pn = Yn + ]; X(¢n.k)yk f07’n € S;

On="Yu+ 2, x(ni)¥i formd S;
k<m,k€S

where x is the conjugation of H.
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Assume now that H = R[V,|n 2 1].
(vii) If A is a free R-module then PyH = R[P,|n € S].
(viii) Assume that char R = v 1s either 0 or a prime. Let
T = {m ¢ S|Qn is A-primitive}.
Then PraH is R-free with basis

V@, pYin € S,me T,r =0} ify > 0.

Proof. Define the Hopf algebra structure on H by the formula in (i).
Then define the P, and Q,, inductively on their degree so that (v) holds.
Clearly P, = Y, and Q,, = V,, modulo decomposables, so (iii) is valid.
We check (ii) and (iii):

V(&) = (V) — ; Y () ¥ (Pr)

=Zan,i® Yi“‘EEHn,iQ@ ¢i,kpk=1®yn“‘zl®¢n,kpk

i<n k<n i=k k<n

i—1

n—1
+;en,i®[yi_Pi—Z¢i,kPk] =1®Pn-

k=1

Similarly, A(P,) = P, @1+ 1 Q P,.
¥(0n) = ¥(Vn) = 2 ¥ (9nn)¥(Pr)

kesS

Z Bm,i ® Yi - Z Z em,i ® ¢1,kPk

ism k<m i=k
kES
=1Q Vn—2.1Q® ¢usiPs
ek

+ D b ® [Yi - P, — ; ¢i,kPk]
k<i

i<m
€S

+ ;0,,“ ® [Yi - ¢,~,kPkJ =1® Qn+ ;om,f ® Q.

¢S kES i¢S
Similarly,
0<i<m,1¢8S

We now prove (vi). Let A be either a fixed Q,, or P,. Let N — 1 be
the cardinality of the set {k € Slay < a,}. Then the equations in (v)
include NV linear equations with coefficients in H and with unknowns
{A} U {Pilax < an}. Observe that the matrix of coefficients is lower tri-
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angular with ones on the diagonal. We solve such a system of equations
in a general setting in Lemma 2.2. This solution gives the formulas in (vi).

Clearly PyH and P,H contain the R-modules which we assert they
equal. If Z € H then we can write Z as a polynomial in the P, and Q,,.
If Z ¢ R[P,|n € S] then choose a monomial summand of Z,

aP, .. Py Qpft ... Qpft

withe € R, >0and 0 < b; < ... < b, Assume that we have chosen
the monomial with ¢ least and among such monomials (e, ..., e;) is
least in the lexicographical order. Then ¢(Z) contains

er_1 —
aelebt,ﬂ ® Pal v })aszle1 v Qb;_lobtet !

as a nonzero summand, and hence ¥ (Z) is nonzero. This proves (vi). If
Z has a summand

aPu oo PoQep oo QouQni . Op,

witha € R, t>0,0<b; <...<b,{bs,...,b,} C T then choose the
monomial with ¢ least and among such monomials let (e, ..., e;) be
least in the lexicographical order. Then A(Z) contains

ady, » @ P/u coee QIf;:inet
as a nonzero summand for some 0 < b < b,. Thus

PAH = PAR[mePnlm € T, n € S]
= ]{{erz7ryPn7 |1’L € S,m S T, r = 0}

LeEmMA 2.2, Let H be a commutative Hopf algebra. Let b;;, 1 £ 4,7 < n
and ¢;, 1 £ 1 = n, be elements of H. Let B = (by;), C = (¢1,...,¢)7
and Z = (21, ...,2,)7. Consider the n equations in n unknowns BZ = C.
Assume that:

(i) B 1s lower triangular.
(ii) The diagonal entries of B are all ones.

(iii) A(bi,f) = Lfbf,s ® by
Then

k—1

2y = Cp + Zx(bk.i)ci f01’1 é k é n.
i=1

Proof. By Cramer’srule, z, = det By/det B = det By where B, = (b3;)
is the £ X k matrix with b;; = b,; for j < k and b% = ¢;, We expand
det B; by minors of the last column to obtain:

k—

1
Zr = Cg + Z <—1)i+kCidet Bk.’i'
i=1
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Observe that By ; has the shape:
1 — 1 k—1

1 0
i—1 . 0

Thus
k—1

2y = Cx + Z (—I)H-kci det B]i,i.
im1

The matrices By ; have the form:

B 1
Ba1 B 1 0
B =
. 1
.Bu~1,1 T Bu—l,u—l 1
‘Bul . ﬁu.u-—l Buu

Observe that

u—2

detB=72 2 (=18, 0Brier - Baya By

e=0 1<q1<...<ge<u
Thus

k—1 k—i—2

2y = Cg + Z Z Z (_1)e+16ibk’qe P bql‘i'

=1 =0 i<q1<...<ge<k

The following lemma applies to show that

E—1
2= ¢+ Zlcix(bk,i)-
=

LeEMMA 2.3. Let H be a connected Hopf algebra with ¢ = 1 and J®
the kth iterated reduced coproduct. Define

v (V) = :_Za 2 (=DM via

where
Jm)(y) - Z VP%®...0 V¥,
Then ¥ = x.
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Proof. We prove ¥ (V) = x(¥) by induction on the degree of V. By
coassociativity,

YY) = -V - Z YRw(Y3) = =V — 3 Vix (V)
= x(¥).

3. Applications to Thom spectra. Recall [5] that

H*(MO,ZQ) = ZQ[I)], ey b,” .. ]
where
H*(MO(].),ZQ) = H*(RPOO, ZQ) = ZQ{I, b(), bl, . o ,()m . }

and
b, € H,(MO; Z,).

Hy(MO; Z,) is a comodule over the dual of the mod 2 Steenrod algebra
Ny and Hyu(MO(1); Z,) is a subcomodule. By [8] the component of
¢/(b,,) in ?,I* ® bgs_l is

2;_5 024 bzs__l lf’ﬂ =2t —1

and is zero otherwise. Thus Theorem 2.1 applies to Hy(MO; Z,) with
S ={n>0] ns#2"—1}. The coproduct A which Theorem 2.1 imposes
upon H,(MO; Z,) is not of geometric origin. It is not induced from

1A7AL

HZy N MOSHZy A S A MO =22 L 57z, A MO A MO.

Also neither of the canonical H-space structures on BO induces A via
the Thom isomorphism. Nevertheless, A is the key to unravelling
problems of geometric relevance about H«(MO; Z,). Note that con-
clusions (i)-(vi) of the following theorem were derived by E. Brown and
F. Peterson [1].

THEOREM 3.1. There is a Hopf algebra structure on Hy(MO; Z,) and
there are V, € H,(MO;Z,) for n # 2 — 1 and ¢, € Hom 1(MO; Z,)

such that:
(1) The V, are primitive under both  and A.

(i) ¢(fm) = ZE,H ® ¢ and  A(fn) = Zs“ . ® ¢

(i) He(MO; Zy) = Zo[V,| n#2'—1]1® Zo[t1, -+ Emy - - -)-
(iv) Image [h: My — Ho (MO; Zy)] = Zo[V,| n # 28 — 1].
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(V) bn = Vn + Z d’n,ka forn # 2! — 1;
k<n

bom_y = ¢ + Z bom—1,:Vi;
k<21
F25—1

bop=0+0+...+6+ .. ) forn=k=0.
vi) F(V,) = U, and F({n) = &n where F is the Liulevicius isomor-
phism [5]:
F: Hy(MO; Zy) = Ay @ Zo[Uy| n# 2" —1].

(Vii) Vp = by + D x (i)l form = 2' — 1;
k<n

$m = bom_y1 + Z X(¢2m—1,k)bk§
k<am—1
k=25—1

X(dni) = L+ xG0) + ...+ xC) + .. 00k
= A 4m~+ ... +may+.. )

in the notation of T heorem 3.2.

(Vlll) A(bn) = Z bni @ by.
k=0

(ix) H*(MO; Z,) 2 A @ T[V,*| n # 2" — 1] as Hopf algebras.

There is an analogue of Theorem 3.1 where b,, V,, &, is replaced by
My Bry X (£,), respectively. Here m, is the coefficient of X"*! in the inverse
power series of X + 0, X2 + ... + b, X¥1 4+ . ... Then

H*(MO; Zg) = Zg[ml, N (2T ]
To define the 8, we consider the Liulevicius map [7]

G: Hy(MO; Z2) % %y ® Hy(M0; 22) 128 90, ® Zo[U,| n = 2°—1]

where ¢ is the algebra homomorphism induced by g(m,) = U, if
n # 2° — 1 and g(me—;) = 0. Then G is an isomorphism of Z,-algebras
and Ay-comodules. Define B, as the primitive element G—1(U,). A.
Liulevicius [7] computes

Ym) = > x(&) ®m>

$2k 4 2h—1=n

Thus {1, m;, ms, ...} is not a subcomodule of H,(MO;Z,). Thus
Theorem 2.1 does not seem to apply to relate the m, and 8,. However,
this first impression is erroneous.

THEOREM 3.2.
(i) He(MO; Zy) = Zo[Ba] n #2° — 1] ® Zo[tr, -+ -y &6 - ]
(ii) Image [h: Me — He(MO; Z5)] = Zo[B,] n # 2° — 1].
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(1“) Map = ;8271-

(iv) moe_1 = x(§5)-
(V) Mmop—1 = Bop—1 + X; m2k—16§f‘k(2p+l)~l
k=
where n # 2% and 2n = 2°(2p + 1).
(Vi) Bon—1 = Ma,—1 + 21 g‘kmgf—k(2p+1)-l
k=

where n # 2% and 2n = 2°(2p + 1).

Proof. (i)-(iv) are known; see [7]. To prove (v) it suffices to show by
induction on 7 that

Bop—1 = Mop_1 + ]; X(fk)ﬁ§f~’f<2p+l)—l
is primitive and that G(Bs,-1) = Us,—1:
Y (Bhuo1) = ¥(Moy_1) + I; Yx () (1 ® Bie-rapsn—1)
= k_z% X(Ek) ® mgﬁ—k(zﬁ-l)_l
k 'l
+ ZO X(E) ® xE0) (1 ® Ble-r@pin-1) = 1 ® Bher
+ Z x (&) ® [mze k(2p+1)—1 T Z x(¢5) nﬁgz.jﬁ”k(2p+l)—l:| =1Q B
e—1i ok
+ Zx(ék) ® [mze k@p+1)—1 T ZX(? )526 J=k(2p1)— 1] =1Q B

e—1i 2k
+ Zx(ék) ® [mze keprn—1 T Bae-k@prn—1 + Zx(ﬁ'g)ﬁze i=k(@pt1)— 1]

= 1 ® 6’275—1-
G(ﬁén—l) = (1 ® g) o ‘p(ﬁén—l) =1 ® g(ﬂén—l)

=1® glmy1) + LZ} 1 ® gx(6)gBre-rpsn—1)= 1 @ g(ma, ).

To prove (vi) observe that we have the following ¢ 4+ 1 equations in the
¢ + 1 unknowns Béi-—s(ml)_l, 0Ls=Ze:

e~k
oh +k

k k k
(*) mae-kaprno1 = Bre-kaprn + 2 x ()" Bre ikt (0 Lk e,
h=1

Observe that the coefficient matrix is 4 = (a;;) with a;; = x(¢;)®™

https://doi.org/10.4153/CJM-1982-030-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1982-030-4

462 STANLEY O. KOCHMAN

for 0 £ j <1 = e. Hence
Aay) = AxGEe)® = x® x) 0 To Al ™ ™

| 2ed ] ; te—i
= (X ® X) o T(ZO f%ij—s ® g's) = ;{)X(g‘s)w“l ® (g'i—j—s)z

i—=J J
= Zai,i_.s ® Qimg,j = Z aq, ® Ay, where t = 1 — s.
§=0 t=1

Thus Lemma 2.2 applies to the system of equations (*) to give:

ok oh+k (O é k é e)-

e—k

ok 2k

Bre-k@prn—1 = Mae—kprny + D Ca” Mae h—kappn)1
h=1

We now let & = 0 to obtain (vi).
Theorem 3.1 has an analogue where we replace MO, 2, b,, RP” by

MU, p prime, a,, CP%, respectively. Then
Ay, Vn € [{zn(]l[l]Y Zp) and g‘m € Hz(pm_l)(MU; Zp)

Conclusions (i), (iii), (iv), (v) are identical. For p odd we get conclusion

(ii) and for p = 2 we now have

¥(n) = 2 21 ® ¢
(vi) becomes F(V,) = U,, F(n) = & for p odd and

Conclusion
F(¢,n) = £,2 for p = 2 where F is the Liulevicius isomorphism [6]:

F:Hy(MU; Zp) > Zplé1, ooy by - ) ® Z,[U,| n 5= pt — 1]
for p odd,

ol
® Zs[U n # 20 — 1] for p = 2.

F: Hoe(MU; Zo) — Zo[£1?, .
Theorem 3.1 has another analogue where we replace MO, b,, RP” by

MSp, d,, HP®, respectively. Then
dm Vn E H4n(MSP; Zg) and g‘m E H4(2m_1)(MSp; Zg)

Conclusions (i), (iii), (iv), (v) are identical. Conclusion (ii) becomes

() = 285 ® G
Conclusion (vi) becomes
F(V,) = U, and F(¢p) = &!

where F is the Liulevicius isomorphism [6]

N S

F: Ho (MSp; Z5) — Zs[&", . 1® Z,[U,| n =2t —1].

4. Applications to Hopf algebras. A commutative Hopf algebra H
with coproduct A becomes a comodule over H with coproduct ¢ (V) =

https://doi.org/10.4153/CJM-1982-030-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1982-030-4

PRIMITIVE GENERATORS 463

A(Y) — Y @ 1. Then y-primitives are the same as A-primitives. How-
ever, Theorem 2.1 does not apply to this situation because ¢ is not an
algebra homomorphism. In Theorem 4.1 we consider a special case when
an analogue of Theorem 2.1 holds. We apply Theorem 4.1 to study
PH*(BU) and PH,(S0; Z,).

THEOREM 4.1. Let H be a graded connected commutative cocommutative
Hopf algebra over a commutative ring R. Let H have a set of algebra generators
Y, € Hypy m = 1, such that

YVo=1 and A(V,) =2 V,® Y, .
=0

Then there are P, € Ha,, n = 1, such that:

(1) The P, are primitive.

(i1) If R is a field of characteristic zero, then { Py, P, ...} generates H.
(iii) nY, = P, + Y, Y, iP
0<k<n
(iv) Po=nY,+ 2, x(Yui)kV,
0<k<n
V) x(¥,) = > (=)t e )Vt Y
e1+2e2+...+nen=n
where (ey, . .., e,) denotes the multinomial coefficient.
: Pn — -1 e1+...+ent1 n(ely L) en) Ye1 o Yne".
(VI) e1+2ez+;+ner.=n ( ) €1 + RN + [ !

Proof. We make H into a comodule over H by ¢(V) = A(Y) — Y ® 1.
Then Theorem 2.1 almost applies to this situation with 6, ; = V,_;. The
only problem is that ¢ is not an algebra homomorphism. In the proof
of Theorem 2.1 we only used this property of ¢ in verifying (iv). Thus
in our case we have

‘p(on.lcPk) = A(Onk)(l ® Pk) + ‘l’(enh) (Pk ® 1)
instead of
\b(en'kpk) = 'l’(on,k)(]- ® Pk)

which we had in Theorem 2.1. To take advantage of this new situation
we replace YV, by Y, in the formula which defines P,. Then

Yy(nY,) = ,; kY) ® Vo + Z% Vi ® (n— k)Y, s

Thus the P, defined inductively by (iii) are primitive. Now the proof of
Theorem 2.1 applies to prove (i)-(iv). Observe that P, can replace Y,
as an algebra generator of H if and only if # is a unit in R. (v) follows
from Lemma 2.3. We combine (iv) and (v) to obtain (vi).
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Recall that H*(BU; R) = R[Cy, ..., Cy, .. .] with

A(C,) = ’;] Ce @ Cope

Thus Theorem 4.1 applies to H = H*(BU; R) and derives Newton's
formula, Corollary 4.2 (iii), and Girard’s formula, Corollary 4.2 (vi). See
[9, p. 195]. In addition we obtain a formula for P, in terms of the C; and
x(Ci) as well as a formula for x(C,).

COROLLARY 4.2. There are P, € H*(BU; R) = R[Cy, ..., Cy, .. ]
such that:
(i) The P, are primitive.
(i1) If R s a field of characteristic zero then

H*(BU;R) = R[Py, ..., P, ...
(iii) nC, = Py + 2, CoPr.
0<k<n
(v) Py = nCy + 2 x(Coi)kCy.
0<k<n
) x(G) = " +Z+ (_l)el+m+en(€1y N 1O A O
€1 €2+ ... tnen=n
. Pn — -1 e1+...+ent1 n(61, s e yen) er Cne"-
(Vl) el+222-§2~+nen=n ( ) elv+ e + €n Cl

Note that there are analogues of Theorem 4.2 for H*(BO; Z,),
H*(BSp; R), Hy(BU; R), Hx(BO; Z,) and Hy(BSp; R). Next we apply
Theorem 4.1 to H,(SO; Z,). This is the only example in this paper which
is not a polynomial algebra. Recall from [2, pp. 17-10] that

Hy(SO;Zy) = E(Uy, ..., Uy .. )

where

degU,=n and ¢(U,) = 2. U; ® U,_..
i=0

COROLLARY 4.3. There are P,, € Hzn_l(SO; Z2) = E(Ul, ey Un, .. .),
n = 1, such that:
(i) The P, are primaitive.

(ii) U1 = Pu+ D, UspiPs

0<k<n
(“1) UZn = Z UZn—2k+1P7c-
0<k<n
(iv) Py = U1 + Z X (Usp—21) Ugie—1.
0<k<n

(V) X(Um) = Uy,.
(Vl) Pn = U2n—l + Z Uﬁn—2kU2k—l-

0<k<n
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Proof. Theorem 4.2 defines a primitive in every degree. However, the
primitive P,” in an even degree 27 is zero by induction on 7z because

P, = 2nU,, + OZ Usn—ox1Pr = 0

<k<n

by (vi). This explains (iii). Note that (v) follows immediately from the
formula for ¢ (U,). Then (iv) combined with (v) gives (vi).

This corollary is not a deep result because the formula in (vi) is known
[2, pp. 17-11] and (i)-(iv) follow easily from (vi).
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