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CURVATURE PINCHING BASED ON INTEGRAL 
NORMS OF THE CURVATURE 

MIROSLAV LOVRIC 

ABSTRACT. A compact Riemannian manifold (M, g) of dimension 3 or higher ad­
mits a metric of constant (positive or negative) sectional curvature if the following 
conditions hold: the diameter is bounded from above, the part of the Ricci curvature 
which lies below some fixed negative number is bounded in LP norm for p > n/2, 
and the metric is almost spherical or almost hyperbolic in the LP sense. The idea of the 
proof is to obtain stronger (i.e. L°°) pinching by deforming the initial metric using the 
Ricci flow, thus reducing the problem to the theorems of Gromov in the case r8 < 0 
and of Grove, Karcher and Ruh in the case r8 > 0. The reduced curvature tensor 
changes along the flow according to the heat equation, which implies a weak nonlinear 
parabolic inequality for its norm. The iteration method of De Giorgi, Nash and Moser 
is applied to obtain the estimate for the maximum norm of the reduced curvature tensor. 
The crucial step in the iteration consists of controlling the Sobolev constant of the 
appropriate imbedding (which also changes along the flow, but behaves well) by the 
isoperimetric constant, which, in turn, can be bounded in terms independent of the 
particular manifold. 

1. Introduction. Pinching theorems represent one of the possible ways to investi­
gate the relation between the geometry of the manifold and its topology. In general, they 
assume strong properties of the curvature, like bounds on the Ricci or sectional curvature, 
and give precise theorems on the structure of the manifold. Most of the assumptions, in 
one way or another, measure the closeness of the curvature tensor of the manifold to the 
best possible one, namely (in the case of a positive curvature) to the curvature tensor of 
the standard sphere Sn. 

In this paper we consider a compact Riemannian manifold of dimension greater than 
or equal 3 and assume that there are bounds on integral norms of the reduced curvature 
tensor and of the negative part of the Ricci curvature. These assumptions (and one more, 
on the diameter) imply that the manifold admits a metric of constant sectional curvature. 
This result (see Theorem 2.1) is a generalization of Theorem 1 in [M-R 2]. We show 
that the assumption on the upper bound of the sectional curvature is not needed—it is 
only necessary to control the part of the Ricci curvature which is smaller than some 
negative constant. In our case, the evolution inequality for the norm of the reduced 
curvature tensor (Theorem 3.3) is slightly more complicated, since it contains not only 
the norm || Rm || but also its square. De Giorgi-Nash-Moser iteration can still be carried 
out, but the Sobolev inequality used in it represents the obstruction to improving the 
theorem in the sense of replacing the L%+1/ bound by the L* bound. According to [Go 1,2] 
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600 MIROSLAV LOVRIC 

similar result can be obtained with an ZJ bound on the full curvature and a bound on 
the maximum norm of the Ricci curvature (if one imposes an additional assumption on 
the injectivity radius or on the local volume of geodesic balls). Our theorem represents 
an improvement in the sense that we only need the bound on some integral norm of (the 
negative part of) the Ricci curvature. 

I would like to thank my adviser, Prof. Ernst Ruh and Prof. Maung Min-Oo for 
many enlightening discussions which helped me complete this paper. I am grateful to 
Prof. Sylvestre Gallot, whose suggestion enabled me to improve it. 

Before stating the result we are going to introduce the notation and conventions 
used throughout this paper. By (M, g) we denote a compact, Riemannian manifold of 
dimension n > 3; gtj is the Riemannian metric on M and gij its inverse. The induced 
measure on M is d[i = Jdetgïjdx, where dx represents the Lebesgue measure. The 
diameter of M will be denoted by d(M) and V(M) - JM d\i is the volume of M. The 
symbol ||. \\g denotes the norm with respect to the metric g. 

The Levi-Civita connection on (M, g) is described by the Christoffel symbols T^ = 

{^(dl^M + JlSiq ~ foT&j) i n a l o c a l coordinate system (xu .. .,xn). The Riemann 

curvature tensor of type (0,4) is given by Rm - Rijki = giqR
q
ijk, where R^ = j^Xji ~ 

Jïru + r*qTji ~ Fjq^ir T h e R i c c i t e n s o r i s d e f i n e d by Rc = Rik = glRijik and the scalar 
curvature is the contraction R = glkRik- The average scalar curvature is denoted by 
r = y^j: JMRdfd. The sectional curvature of the plane a = a{v, w} spanned by the 
vectors vl and wl is defined by K(a) = p r ^ r S r & û , where R(u, v, w>, z) = Rijkiu

lvjwkzl. 

The average integral of a function/ is denoted by y~r $Mfdn = j-Mf d[i. Sign 
convention for the Laplace operator is A8 = ~gpqdpdq. 

By C(- • •) we denote positive constants (possibly different) whose value depends only 
on the arguments listed. 

2. The result. In order to measure the deviation of metric g from a constant sectional 
curvature metric, we use the reduced curvature tensor 

Km = Kijui = Kijki TZgijkl-
J J n(n— 1) J 

The tensor gykl = gjkgu — gjigik is the curvature tensor of the sphere Sn equipped with the 
canonical metric and r(0) is the average scalar curvature of g. The g-trace of Rtjkl is the 
reduced Ricci tensor 

~ ~ r(0) 
Rc = Rtj = Rtj g^. 

n 
In our situation all curvature tensors will evolve with time but the average scalar curvature 
will always be measured using the initial metric. Define 

RicJC(v) = E ^ ( v , ^ ) | | v | | ^ 
i=2 
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where x G M, v G TXM and {et} is an orthonormal basis of TXM such that £1 = v/1| v|| 
Let 

Ric,(v) 
p(x) = inf 

( / i - l ) | | v | |2 v G r,M, v ^ 0 

and p_(x) = sup{—p(jc), 0}. The integrand in assumption (b), Theorem 2.1, where/+(*) = 
sup{/*(jc), 0}, describes the part of the Ricci curvature which lies below — (n — l)a2\r\. 
Our goal is to prove the following statement. 

THEOREM 2.1. Let (M, g) be a compact Riemannian manifold of dimension n > 3. 
For a>0, D>0, 0<i/<\ there exists an e depending onn^v^a and D only, such 
that ifr^O and 

(a) d(M)2\r\ <D 

(b> vk Mfàr- D ? d\i < A(#i, i/, a, D) 

M vmSAtWRmW^" dii<e\r\n^ 
then M admits a metric of constant sectional curvature equal to 

n(n-\)' 

The constant A in (b) is given by A(n, v, a, D) = I(^(«^)aD — l) l^ where B(n, v) is 
a constant (see [Ga 2]) which depends on n and v only. 

We now present main ideas and concepts used in the proof. 

(a) DECOMPOSITION OF THE CURVATURE TENSOR. The space of curvature tensors of 
a Riemannian manifold M of dimension n > 4 splits orthogonally into 3 irreducible 
subspaces: for the tensor Rtjki there is the decomposition 

D 

(1) Rijkl = -} TTgijld + Zijkl + Wijkh 
n(n — 1) 

where (n — 2)Zijki - Zjkgn + Zugjk — Ztkgji — Zjigik is the traceless Ricci tensor with 
Zij = Rij — ̂ gij, and W^/ is the Weyl conformai curvature tensor. In dimension 3 the 
Weyl tensor vanishes, and the corresponding decomposition is Rtjki = ^gijki + Z(/*/. 

(b) Ricci FLOW. The idea of "deforming the metric in the direction of its Ricci 
curvature" has been successfully used in a number of occasions. It gives a system (2) of 
quasi-linear second order partial differential equations which can be integrated for some 
(maximal) time on any compact manifold, with curvature increasing beyond any bounds 
if that time is finite (see Theorem 3.1). 

(c) EQUIVALENCE OF THE SOBOLEV AND THE ISOPERIMETRIC CONSTANTS. One of 

the crucial ingredients in our proof is the manifold-independent version of the Sobolev 
inequality, which is obtained in Theorem 4.1. We use [Ga 2] to estimate the Sobolev 
constant from above in terms of the isoperimetric constant, which, in turn, depends only 
on the parameters appearing in assumptions (a) and (b) of the Theorem 2.1. 
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(d) DE GIORGI-NASH-MOSER ITERATION. This powerful technique is used to estimate 
the maximum norm of a subsolution v of a certain type of partial differential equations on 
a subdomain D' Ç D in terms of its LP norm on D for p > 1. The idea is to obtain integral 
inequalities (like the one of Lemma 5.2) from where one can estimate JJ \dv\2 dxdt and 
max, JM V2 dx from above in terms of JJ v2 dx dt with constants depending on the geometry 
of the region. Then the Sobolev inequality is used to estimate JJ v2k dxdt{With k> 1) in 
terms of JJ v2 dxdt, so that one obtains an integral estimate for a higher power of v. The 
estimate for the maximum norm is then obtained by repeating this process. The ideas of 
the method carry over to our setup without any problems, since the Sobolev inequality 
holds globally on compact manifolds. 

The proof of the theorem is given in several stages. We deform the initial metric on 
the manifold using the Ricci flow, compute the heat equation for the curvature tensor 
Rm and then the evolution inequality for its norm (Section 3), which involves functions 
on M only, and is therefore easier to work with. We then apply the iteration technique 
of De Giorgi, Nash and Moser twice: first to get the LP estimate (for some p > n) of 
the norm || Rm \\ in terms of its L^+u norm, and then to obtain the L°° bound of || Rm || 
using that LP bound. Thus the proof is reduced to the results given in [Gr] and [G-K-R]. 
In Section 4 we show that in our framework the Sobolev constant can be bounded from 
above by the isoperimetric constant. The proof of the theorem is completed by showing 
that for some small initial time interval the appropriate LP norm of the reduced curvature 
tensor and the Sobolev inequalities are well behaved. 

3. Evolution of the reduced curvature. Let (M, g) be a compact rc-dimensional 
Riemannian manifold. The initial metric g(0) = g on M is deformed according to the 
equation 

(2) ^-g(t) = -2Rc(t) = -2Rc(t) + ^ * ( f ) . 
dt n 

Existence of such flows of metrics is guaranteed by the following Theorem [Ha]: 

THEOREM 3.1 (R. HAMILTON). Let (M, g) be a compact Riemannian manifold. The 
evolution equation (2) has a unique solution on a maximal time interval 0 < t < T < oo. 
If T < oo then lim^r(maxM || Rm(t) \\g(t)) = oo. • 

The equation we use differs from Hamilton's: we determine the average scalar cur­
vature using g(0) and not g(t). Consequently the volume of the manifold could change 
during evolution: it could shrink or blow up. 

THEOREM 3.2. The reduced Riemann curvature tensor satisfies the following evolu­
tion equation: 

(3) (h+A)kiikl = ~Qm+^r (kijki ~ ~^\Zijki ~2Wijkl) ' 
where Q^i is quadratic in the components ofRyu, Z^i is the traceless Ricci tensor and 
Wijki the Weyl conformai curvature tensor 
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PROOF. The time derivative of Rtjki is computed to be 

d . ~ 2r(0) . . . . 
~Rijkl = Bijki + _ (Rjkgil + Rilgjk — Rikgjl — Rjlgik) 

gqP(gijqlRkp — gijqkRpl) ~ g^i^ijqlRkp ~ RijqkRpl), 
n{n — 1) 

where B^i = d,d//^ — djdiRik — d/d /̂fy + djdkRu. Furthermore, 

A/?//*/ = — #/,*/ + Qijki Rijki + -j—~rz(Rikgji — Rugjk — Rjkgn + Rjigik), 

where 

QyJW = ^ f l (RibRjakl ~ RjbRiakl) + 2 g a g™"{RimjbRknla + RimkbRjnla ~ RimjbRlnka ~ RimlbRjnka)-

Combining the above two formulas we get 

( — + AjRtjki = Qijki ~ -^-(Rijki) + , _ ^(ZgjkRu + 2gaRjk ~ 2gikRji + 2gjiRik) 

~ 2r(0)~ 2r(0) / Â \ 
= Qijki ~RiJkl +

 n(n _ !) V(w ~ 2 )Zv*' + ngiJkl)' 

since g,*/?// = g/*fe/ + f £//)• Using the decomposition (1) to replace gyu and the formula 
R = R — r(0) we obtain the statement of the theorem. • 

We now derive a weak parabolic inequality for the norm of the reduced curvature 

tensor. With little extra work we could compute the actual equation (see [Ha] or [Hu] for 

the case of Rm). The norm of a (time dependent) tensor T(t) will be denoted by ||7XO||g(o 

or just | |7 | | , keeping in mind that it is taken with respect to the metric g(t). We are also 

going to drop the indices and write Rm instead of R^y, Q instead of Qijku and so on. 

Computing the scalar product of (3) with Rm , using the identity 

A(r?r) = -2||vr||2 + 2(r7Ar) 

(which holds for any tensor field T9 with Laplacian defined by A = —gpqdpdq), and 

orthogonality of the decomposition of Rm we obtain 

- ( — + A ) II Rm ||2 +||V#ra||2 = (Q,Rm) + (Re *Rm,Rm) 
2 \dt J 

2 * 0 ) f„ Î ^ I . , 2 AU)/1 
n V 

+ - ^ - H Rm 
n-V 

where the term Re * Rm, quadratic in curvature, comes from the derivative of the inner 

product. Therefore for any r(0) ^ 0 

(4) ( — + A ) II Rm ||2 +2 | |Wm| | 2 < ^ i | K 0 ) | || Rm ||2 +A2 || Rm 

where A\ and A2 are positive constants depending on n only. 

|3 

https://doi.org/10.4153/CJM-1993-031-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-031-1


604 MIROSLAV LOVRIC 

THEOREM 3.3. The norm of the reduced curvature tensor satisfies the following weak 

parabolic inequality: 

(5) ( — + A) II Rm \\<A{\r(0)\ || Rm || +A2 || Rm ||2 . 
\dt / 

PROOF. We start with formula (4), use the chain rule and the second Kato inequality 

(which is true in the sense of distributions, see [Bé]): 

(Rm.ARm) >\\ Rm\\A\\Rm\\ 

and then divide both sides of the inequality by || Rm ||. • 

4. Sobolev and isoperimetric constants. We are going to show that under as­

sumptions (a) and (b) of the main theorem (Theorem 2.1) the Sobolev constant of the 

imbedding W\(M) -̂> U(M) with 2 < r < %~^, 0 < v < 1 can be made independent 

of the particular manifold (i.e. it will depend on n, v, a and D only). 

For a compact manifold M, we define [Ga 2, p. 201] 

(6) Ar2(M)= inf f "V/"2 , X 

where C°°(M) denotes the space of smooth functions on M. 

THEOREM 4.1. Let (M, g) be a compact n-dimensional Riemannian manifold, a and 

D positive constants and 0 < v < 1. Assume that 

(a) diam(M) < D 
n+v 

<b> vm J""(£ - 1)+
2 du < A(n, u, a, D). 

Thenfor2<r<^ 

2 

(7) (fM
frdX ~ c^^^D)(jM\df\2d^+jMf2d^). 

(see Section 2 for the value of the constant A). 

PROOF. Let / , =f-v?m JMfdn and 5 = ^ . Then 

ll/||s<ll/ï||s + VW-%| | 2 , 

by the the Holder inequality, and therefore 

(8) V(M)*-i \[f\\s < KlMWh + \\fh 

by definition (6). Applying the theorem of S.Gallot [Ga 2, Theorem 6(iv)] with 

yields 

l _ i _ i 
n+u 2 s 

, C(n, i/) 
\ 1 W < 7 7 ^ 7 , < C(n, i/, a, D), /s(n, v, M) 
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where Is(n, z/, M) denotes the isoperimetric constant 

Is(n. v, M) = inf : r- , 
« lmin[V(ft), V(M - Q)]l~^ V(M)^ J 

the infimum being taken over all domains Q C M with regular boundary. The result 
now follows from (8) and from the inequality \\f\\r < V(M)^~^\\f\\s which holds for 
2 < r < s. m 

5. De Giorgi-Nash-Moser iteration. As usual, (Mn,g) denotes a compact 
«-dimensional Riemannian manifold. Let t i—• g(t) be a family of smooth Rieman-
nian metrics defined for 0 < t < T < 1, where T > 0 and g(0) = g. We study solutions 
of the weak inequality 

(9) ( — + A8(t))u(x, t) < Aiu{x, t)+A2u(x, tf 

where u: M x [0, T] —> R is a positive smooth function with square integrable first partial 
derivatives and Aj and A2 are constants. Let 2 < r < 2{^+l^ with 0 < v < 1. 

n+u-2 

LEMMA 5.1. For q > 1 and a smooth positive function u satisfying (9) 

< qAx 4 uqdp(f) + qA2 -f uq+l dp(t) + -f "q\R\ <W0 
JM JM JM 

(10) U-f- u"dfi(t)) + 4{q l) -f \d(ui)\2dfi(f) 
at\JM ) q JM 

where R = R — r(0) is the reduced scalar curvature. m 

LEMMA 5.2. Let u be a positive smooth solution of (9) and assume that 

(ID (£fd»(t)y < cr{£\df\2dLi(t) + £f2d»(t)) 

for t G [0, T\; Cr is a positive constant andf is smooth function on M. 
(A) Suppose that 

1 un+l/ dp,(t) <eand 4- \\ Rm(f) \\n+Z dfj,(f) < e 
J M J M * 

hold for t e [0, T}. Then for q>\,te[0,T] and C5 = C(n, v, e, Cr,Au A2) 

(12) UiuUn(t)) + ̂ ^ 1 I \d{uh\2dti(t) < C5q"+l iuUnit). 
dt\JM J q JM J M 

(B) Suppose that 

-I u^+l/ dp(t) < E and -I \\ Rm(t) || j ^ dfi(t) < e 

hold for any t G [0,7] with e~^ < (QCr(n + A2)} , for some Q > | . Then for 
l<q<Q,te [0,T}andC6 = C(n,is,CnAuA2,Q) 

<13> Uiyd^)) + 2(q~l) 4\d(u2)\2dp(t) < C6q
n+l 4-uqdp{t). 

dt\JM J n J M J M 
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PROOF. We have to estimate the terms on the right side of (11). Using the Holder 
inequality and the inequality lab < Xa2 + jb2 with À > 0 we obtain 

The remaining terms are estimated similarly, and thus 

!-(-/y^(/))+^—-f \d{uh\2d^t)<Clf-uU^t)+c2(-f u"^dn(t))~, 
at\JM J q J M J M \JM ) 

where C\ = qA\ +ne~^ + jr£^(n + qA2) and C2 = ^£~^<(n + qA2). Applying the Sobolev 
inequality (11) with/ = m gives 

—(4 u?dii(t)) + C3 4 \d(iâ)\2d^(t) <C44 uqd[i{i), 

where C3 = ^ ^ - CrC2 and C4 = Q + C2Cr. 

Choose A = 4C7 ! e-^ (n + qA2)~
l qjL. It follows that C3 = ^ ^ and C4 < C5q

n+\ 
where C5 = C(w, v1 e, Cr, Ai, A2). This proves (A). Statement (B) is proved similarly. • 

COROLLARY 5.3. Let u satisfy (12) or (13) and let 0 < t < t' < T. Then 

(14) 4- uqd[i(t') < e^1'^ 4- uqd[i(t) 
JM JM 

holds ifq > \ (then C8 = C5q
n+l) orif\<q<Q (then C8 = C6q

n+l). m 

In Lemma 5.2 we showed that for the positive smooth solution u.M x [07 T] —* R, 
0 < T < 1 of (9) there is the inequality 

(i5) U±rfd»(t)) + ^-z}l 4\d(Ui)\2d^t) < ciq
n+l 4yd^ 

dt\JM J q J M J M 

where C-j is a constant and q > | . 

THEOREM 5.4. Lef w satisfy (15) and assume that for every t E [0, 7] 
2 

(16) (-£/ rd/x(0) r < Cr^jM\df\2d^t)+jMf2d^(t) 

where Cr is a constant, f is a smooth function on M and 2 < r < n"*^2 w^tn 0 < z/ < 1. 
| . Then for any 6, 0 < 6 < ^ (A) Létf g > \. Then for any 6, 0 < 8 < - ^ , and C13 = C(n, 1/, Cr, C7, Q) 

(17) max u(xj)<CnT~è(l 4 uQ du(t)Y. 
MxtfT] W773./M p w 7 

(B) Let Q > Q' >\ and assume that inequality (15) holds only for q satisfying 
Q>q>Q'- Then at the time t = Ç and for hi = 1+8 with 0 < 8 < ^ 

(18) {£»QM2T/3))h < Cl4T-è^)(£3 f^dmf, 

where C14 = C(n, 1/, Cr, C7, <2, Q') and C\$ = C(ft, 1/, Q, <2')-
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PROOF. The iteration method of De Giorgi, Nash and Moser (see [Mo]) on the 
compact manifold M x [0, T] will be applied. We use the following notation: 

Hq(t)= i j - uqd\i(t)dt, 

Dq(i) = i I \d(u2)\2d(i(t)dt, and 
Jt JM 

MM) = max -I uq du{t). 
q [tj\ JM 

STEP 1. For ~ < t < t' < ^f and q > \ there are estimates 

(19) Mq(t') < 2T(c7q
n+l + ~ ) W and 

(20) Dq(t') < 9- (Ciq
n+X + ~)Hq(t). 

These estimates are proved as in [M-R 2], [Go 2] and [Ya 1]. 
The next two steps represent the crucial moment of the iteration - getting the estimate 

for H at some time t' in terms of certain power of H (bigger than 1), computed at some 
earlier time t. Let AC = 1 + 6 with 0 < 6 < -~. 

— n+i/ 

STEP 2. For t <G [0, T\ and q > \ there is the inequality 

(21) HqK(t) < CrMq(tf(Hq(t) + Dq(t)). 

PROOF. We combine the Holder inequality (with ^ + <5 = 1) and (16). 

STEP 3. Let f < t < t' < f and q > §. Then 

(22) HqK(tf) < C9r~l (cm
n+x + ^—^Hq{tf. 

PROOF. Combining the inequalities (19), (20) and (21) we get 

HqKtf) < CrMq(t'f(Hq(t')+Dq(t
f)) < C9-f(cm

n+l + - A - ) \ ( / f , 

where C9 = C(Cr) and d o = C(C7). 

STEP 4. For y > 0 define tj• = y - f i and qj = (W (so that t0 = ^too = ~,q0 = Q 
and ôo = oo). Inequality (22) with q- qj,t' = tj+\ and t = tj gives 

HqjK(tJ+l) < CnT'qf+V)KKiKHqi(tj)\ 

where Cn - C(Cn C7, K). Let L(^, /,•) = (H^tj))^ forj > 0 . Then 

= c\T~'iq^\ 'KV*'UOj-utj-i) 

(23) < C £ " ' T L ' « ( n ? , - - i ) « L ' « -L(<7o,?o). 
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STEP 5. To prove (A), let y —-> oo in (23). All sums and the product converge; in 
1 _ _L particular, £ f x = ?L Hence, with C n = C(n, i/, Cr, C7, G) 

max w(x, t)<C\3T~&(-f -f uQ d\i{t) dt 
y f ^ T i W773 J M Mx[f ,7] "~ VJr/3 JM 

STEP 6. To prove (5), first choose J to be the smallest positive integer such that 
Q'KJ > Q. For 0 < j < J define t}r = f - f i and ^ = Q V (SO that r0 = f, 
tj -~ — ̂ n~J < ^ , <?o = (?' and <7y > g), and continue using (23) and (19). • 

6. Proof of Theorem 2.1. Consider the Ricci flow t t—» g(f) of metrics (2) on 
(M, g = g(0)). The initial metric g can be rescaled (all assumptions of the theorem are 
scale invariant), so that \r\ = |r(0)| = 1. The evolution equation for the curvature implies 
the following weak parabolic inequality (see Theorem 3.3): 

W ) ' (24) ( ^ + A ' ( ° ) I' Rm{t) \\^)<M || Rm(t) \\git) +A2 || Rm(t) 

where A\, A2 depend on n only. 
Let [0, r), r > 0 be the maximal interval such that 
(i) equation (2) has a solution 

(ii) (hifdjifr < WCMM\df\2dii + iMf2dii) 
(iii) iM II Rm(t) | | J ;< 10e 

hold on [0, r). In (ii) 2 < r < %£& with 0 < v < 1 and Cr = C(n, z/, a, D), and in 

assumption (iii) e = e(n, 1/, a, D) < (2nCr(n + A2)) n+2". 
It is possible to find such r since by Theorem 3.1 the Ricci flow exists for at least a 

short (universal) period of time, assumptions (a) and (b) of Theorem 2.1 with the metric 
g rescaled so that \r\ = 1 and Theorem 4.1 imply (ii), and assumption (c) of Theorem 2.1 
implies (iii). We can assume that r < 1. 

LEMMA 6.1. Assume that properties (i)-(iii) hold on the (maximal) time interval 
[0,r).Then _ 

(iv) maxM || Emit) \\g{t)< C 2 0 r 1 + C 2 1 e^ 
holds for every t G (0, r), where C21 = C(n1 v,oc,D) is a positive constant. 

PROOF. Take any t E (0, r). We are going to use the De Giorgi-Nash-Moser iteration 
twice: first to obtain the estimate for some LP norm of the reduced curvature (for p > n) 
in terms of its L^+1/ norm, and then to estimate its maximum norm in terms of that LP 
norm. 

Letw =|| Rm(t) \\g(t). For the first iteration, choose the interval [0, 71 = [0, tj 2], and let 
QI _ n±2v^ Q _ «j^(i + -^-)J >n + v (where / denotes the smallest positive integer for 
which this is true). Properties (i)-(iii) and the choice of e, together with Lemma 5.2, part 
(B) guarantee that the assumptions of Theorem 5.4 are satisfied. Hence by Theorem 5.4 
part (B) 
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withCi6 = C(n, i/, a, D) and K; = 1 + -~^. For any s, ^ < s < tit follows by Corollary 5.3 
that, with Cn, Cig = C(rc, z/, a, D), 

[£uQd^(s)f < eec"is-V(£uQdrtt/3) 

< clsr
l+K~J£^ 

For the second iteration we let [0, T] = [t/3, t]. Part (A) of Lemma 5.2 and properties 
(i)-(iii) imply that the assumptions of Theorem 5.4 are satisfied, with Cj = C(n, z/, a, D). 
Therefore, according to part (A), Theorem 5.4, by choosing S = -^ we conclude that 

max u(x,f) < Ci9r^K~J(-f •/ uQ dfi(t))6 

fy\2i t] \J5t/9 J M ) Mx[7ij) V./5f/9 

- l + « T y - -J _ 2 _ 
n+2u n F n+2u < c20r

l+K ^K £ 

and therefore 
max K(JC, 0 < C2ot~l+C2] £^, 

where C2i = ~^;^~J > 0- All constants depend on AZ, Z/, a and D. m 

REMARK. From Corollary 5.3 it follows that for 0 < t < r 

£ || Rm\t) \\\;; d/x(0 < ^22f /M II ^ 0 ) llJ(+o) ^M(O). 

Therefore 

£ II / M O n|(;; JM(O < 5̂  < ioe 

whenever t < ^ = C(rc, z/, a, D). • 

We have to show that the Sobolev constant does not change much as we follow the 
flow for some short time. This will be accomplished by combining the inequalities of the 
next two lemmas. The fact that the exponent of t in (iv) is bigger than —1 plays a crucial 
rôle. 

LEMMA 6.2. For a smooth function f on M and t G (0, r) 

2 2 

( £ \f\rdrtt))T < exp(C24^)(£ \f\rdfi(0))\ 

where 2<r< %&zl, 0 < v < 1 and C2i, C24 = C(n, v, a, D). 

PROOF. From the chain rule and Lemma 6.1 it follows that 

jl£]f\rdnit))' < -2nmax || RrMt) \\s(t) (£\f\rd»{t))~r 

<c23r
,+c-[£\f\rd^t))\ 

where C23 = C(/Î, z/, a, D). m 
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LEMMA 6.3. For a smooth function f on M and 0 < v < 1 the following estimate 
holds for any t E (0, r), with C21, C21 = C(n, v, a, D): 

£ \df\2dfi(t) + £f2dn(t) > exp(-C27rC21)(-£ \df\2d^O)+£f2dfi(0)). 

PROOF. Since |j|rf/|2 = -2Rc(df, df) it follows that 

i ljdf\*dn(t) > - 2 0 i m a x || FMf) \\g(t) -f \df\2dfi(t) 
J M at M J M 

and therefore 

d-(l\df\2d»{t)+fMf2d»{t)) 

> -C2 5max || Fto(t) \\g(l) U \df\2 d,x(t) + i f dfi(t)) 
M \JM J M J 

> -c26r1+c- ( £ |rf/|2d/i(0 + £/2dM0), 

where C25, C26 = C(n, 1/, a, D). • 

REMARK. From Lemmas 6.2 and 6.3 and the Sobolev inequality (7) with Cr = 
C(n, v,a,D) we obtain 

(j-u\f\rdti(t)y < exp(C24f
C2')(£l/T^(0))7 

< Crcxp(C24tC2t)(£t\df\2d^0)+-fMf2d^0)) 

< Crexp((C24 + C21)f» ) ( £ Idf\2 dn(t) + jj2 <//*(*)). 

Consequently, 

2 

(£ i /r<w) 7 < \ocr[jM\df\2d^t)+jMf2d^t)) 
whenever r < (~ ln^ )C21 . • 

— W 4 + ( - 2 7 

LEMMA 6.4. Le* 7b = 7b (n, 1/, a, D) = m i n ( ^ , ( ^ ^ 7 ) ^ ' )• rfcen T > 7b. 

PROOF. Suppose not, i.e. let r < 7b. Since the norm of the curvature tensor is 
bounded as t —-> r, it follows that the evolution equation (i) has a solution on some [0, f ] 
for r < f < To. But (ii) and (iii) still hold on [0, f], which means (by Lemma 6.1) that 
(iv) also holds on [0, f], thus contradicting the maximality of r. Therefore, r > 7b. • 

END OF THE PROOF OF THEOREM 2.1. Since r > 7b it follows that 

(25) max || RmjTo) \\g{To)< C 2 ^ c ^ e ^ , 
M 

where C21, C28, 7b = C(n, i/, a, D). Hence, after following the flow for some time, we 
obtain stronger pinching assumption. The theorem now follows from [Gr] in the case 
r < 0 and from [G-K-R] in the case r > 0. • 
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