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Abstract

New nonoscillatory criteria are presented for second order differential inclusions. The theory relies on
Ky Fan's fixed point theorem for upper semicontinuous multifunctions.

2000 Mathematics subject classification: primary 34A60.

1. Introduction

In [1] we initiated the study of nonoscillatory solutions to the differential inclusion

(1.1) (a(t)y'(t))' € F(t, y(t)).

Recall a nontrivial solution of (1.1) is called oscillatory if it has arbitrarily large zeros,
otherwise it is called nonoscillatory. In the single valued case many nonoscillatory
results are available in the literature; see [6-10] and the references therein. In this
paper, by looking at the asymptotic behaviour at infinity, we are able to establish new
nonoscillatory criteria for (1.1). We first discuss (1.1) when f°° ds/a(s) < oo and
we establish the existence of a nonoscillatory solution y (here y > 0) to (1.1) with
linvnx, ,y(f) = 0. Two results will be presented, one where lim,-^ y{t)/n(t) > 0
and the other where lim,_0O-y(f)/n'(0 = oo; here n{t) = ft°°ds/a(s). The theory
relies on Ky Fan's fixed point theorem in the Banach space setting. It is also possible
(and we present this in Section 2) to discuss the case when f°° ds/a(s) is infinity if
we use Ky Fan's fixed point theorem in the Frechet setting.

Solutions to (1.1) will be sought in B[T, oo) and C[T, oo); T > 0 will be suitably
chosen. Recall B[T, oo) denotes the Banach space of all continuous, bounded real
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valued functions on [T, oo) endowed with the usual supremum norm, that is, \u\oo =
sup,6[r>00) | H ( 0 | f° r " ^ B[T, oo). C[T, oo) denotes the space of continuous real
valued functions on [T, oo), the topology being that of uniform convergence on
compact intervals on [7\ oo).

We next sU.te Ky Fan's fixed point theorem [2] and we also state a compactness
criterion [5] in B[T, oo).

THEOREM 1.1. Let Q be a nonempty, closed, convex subset of a Frechet space E
and N : Q -*• CK(Q)an upper semicontinuous, compact map; here CK(Q) denotes
the family of nonempty convex compact subsets of Q. Then there exists x € Q with
x 6 N(x).

THEOREM 1.2. Let E be an equicontinuous and uniformly bounded subset of the
Banach space B[T, oo). If E is equiconvergent at oo, it is also relatively compact.

2. Differential inclusions

In this section a variety of nonoscillation results will be presented for the differential
inclusion

(2.1) (a(t)y'(t))' e F(t, y(t)), t>to>O,

where the function a is single valued and F is a multifunction. Throughout this section
the following conditions will be satisfied:

(2.2) a € C([f0, oo), K+)

and

F : [t0, oo) x K -> CK(R) is an L'-Caratheodory multifunction: by
this we mean

(a) for each measurable u : [t0, oo) ->• K, the map / !->• F(t, u(t)) has
(2 3) , measurable single valued selections;

(b) for a.e. / e [t0, oo), the map u \-y F(t, u) is upper semicontinuous;
(c) for each r > 0, there exists hr e L'[r0, oo) with \F(t, u)\ < hr(t)

for a.e. t e [t0, oo) and all u € OS with |M| < r; here \F(x, u)\ =
sup{|u| : v G F(x,u)}.

In [1] we initiated the study of nonoscillatory solution to (2.1), and we continue this
study here. In particular, different types (that is, different asymptotic behaviour at
infinity than that in [1]) of nonoscillatory solutions are discussed. In our first two
results we will assume /;°° ds/a(s) < oo.
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THEOREM 2.1. Suppose (2.2) and (2.3) hold and in addition assume the following
five conditions are satisfied

(2.4) F : [t0, oo) x (0, oo) -+ CK((-oo, 0])

(2.5) n(t0) < oo where n(t) = '

(2.6)

a(s)

there exists a single valued Ll-Caratheodory function
G : [to, oo) x K -+ [0,oo) with \F(u,z)\ < G(u,z)
for (u,z) e [t0, oo) x (0, oo)

/•OO

(2.7) 3X > 0 with / G(s,Xn(s))ds < oo

tfiere ex/rfs a positive constant M such that if
0 < x < y < X7T(t0), then G(t, x) < MG(t, y)
for t > t0.

(2.8)

Then there is a nonoscillatory solution y of(a(t)y'(t))'€ F(t, y{t)), a.e. t > T, with
lim^oo y{t) = 0 and y{t)/n{t) € [X/2, X] for t > T; here T is chosen as in (2.9).
We also have

' 1 ^ = C o € L 2 "
REMARK 2.1. If G is nondecreasing in the second variable (that is, if 0 < x < y

implies G(t, x) < G(t, y) for t > t0 ) then clearly (2.8) holds with M = 1.

PROOF. From (2.7) there exists T > t0 with

(2.9) I G{s,Xn(s))ds<^-.
JT 2M

We wish to apply Theorem 1.1 with E = (B[T, oo), | • 1̂ ) and

Q = [y € B[T, oo) : Xn{t)/2 < y{t) < Xn(t) for t > T).

Define a mapping N : Q —* £?(E) (the power set of E) by (here y e Q),

x r°° ds f°° i r
= - I / / F(u, y{u))duds for t >T.

2 J, a(s) J, a(s) JT

Note [4, Proposition 1.1, page 777] guarantees that N : Q ^ C(E); here C(E)
denotes the family of nonempty, convex subsets of E. We first show that

(2.10) W : Q - • C(Q).
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For notational purposes for any ye Q, let

&(y) = [u e Ll[T, oo) : u(t) e F(f, y(0) for a.e. t e [T, oo)}.

Let y e Q, and take w e N(y). Then there exists r € ^(y) with

X Z"00 rfs f°° 1 Z"1
w(t) = - —-- -rr r(u)duds for r > T.

2 J, a(s) J, a(s) JT

From (2.4) we have immediately that

k f00 ds k
w(t)>- / — = -n(t) for t>T.

2 J, a(s) 2

Also (2.6), (2.8), (2.9) and y e Q implies

w(t) < £ n(t) + [ - J - / G(u, y(«)) d« rfj
2 J, a(i) Jr

/

OO 1 /-OO

/ G(u,kn(u))duds
a(s) JT

k f00 ds _
2 alsl~

-
2

kn(t) for t > T.

As a result kn(t)/2 < w(t) < kn(t) for t > T for each w G N(y). Thus (2.10)
holds. Next we show

(2.11) TV : Q - • C(<2) is a compact map.

To see this we will use Theorem 1.2. Take any y € Q and u; e A^(y). Then there
exists r € ^(y) with

u;(0 = - / / / r(u)duds for t >T.
2 J, a(s) J, a(s) JT

Thus
k [°° 1 / "

lw(')l £ ~ ?r(0 -\- M I / G(u, kn(u)) du ds < kn(t)
2 J, a(s) JT

for t > 7", and so for each w e N(y) we have \w\oo < kn(t0). Thus the set

Y = {Ny • y € Q] is a uniformly bounded subset of B[T, oo).

Since for each t > T we have \w(t)\ < kn(t) for w e N(y), then the set Y is
equiconvergent at oo. Next if t\, t2 e [T, oo) with t\ < t2 we have

- w(tx)\ < ̂
2

ds r'2 i r
2 y,, a(i) X, a(s) 7/-
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for w € N(y). Now Theorem 1.2 guarantees that Y is relatively compact in B[T, oo),
and as a result (2.11) holds. Essentially the same reasoning as in [1] implies that

(2.12) N : Q -*• CK(Q) is an upper semicontinuous map.

Theorem 1.1 guarantees that there exists y e Q with y e N(y). That is for every
t > T, we have

x f°° i r
y(t) e - n(t) - / — - / F{u, y(u)) du ds.

2 J, a(s) JT

Also since y € Q we have y(t)/n(t) G [X/2, A.] for f > T, and lim^oo y(t) = 0 since
(2.5) implies

M f 4 T / G(u, Xn(u)) du ds
J, a(s) JT2

< Xn(t) ->• 0 as t ->• oo.

Now there exists r e ^ ( y ) with

so

= -n(t)+ I -— I [-T(u)]duds for t>T,
2 y, a(s) J r

2 i-»oo jt ds/a{s)

REMARK 2.2. Minor adjustments in the analysis are needed if (2.4) is replaced by

(2.13) F : [t0, oo) x (0, oo) -> CK([0, oo)).

We leave the details to the reader.

THEOREM 2.2. Suppose (2.2)-(2.6) hold and in addition assume the following
conditions are satisfied

f00 1 fs

(2.14) 3A. > 0 with / / G(u, X) du ds < oo
J,o a(s) Jl0

I there exists a positive constant M such that ifO < x < X,
( ' } [then G(t, x) < MG(t, X)fort > t0.
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Then there is a nonoscillatdry solution y of(a(t)y'(t))' € F(t, y(t)), a.e. t > T with
lim^oo y(t) = 0 and y(t) < kfor t > T; here T is chosen as in (2.20). If in addition

(2.16)
there exists a single valued L' -Caratheodory function
G, : [t0, oo) x R -* [0,oo) with \F(u,z)\ > G\{u,z)
for (II, z) € [to, oo) x (0, k),

there exists a positive constant Mi such that if 0 < x < y < k,

then G\{t, x) < M\G\(t, y)fort > to

and
/»OO

(2.18) / G,(s,fin(s))ds = oo for all fi > 0

hold, then l im,.^ y(t)/n(t) = oo.

PROOF. Choose \x > 0 so that

(2.19) Ii[l+Jt(to)]<k

and choose T > t0 so that

f°° 1 fs M
(2.20) / / G(u,k)duds< .

yr a(s) JT 2M
Let £ = B[T, oo), Q = {;y e fi[7, oo) : ixn(t)/2 < y(t) <k for t >T] and let

be (here _y e Q),

= $ — - - -— F(u,y(u))duds for t>T.
2 J, a(s) J, a(s) JT

It is easy to see from (2.4), (2.6), (2.15), (2.19) and (2.20) that

(2.21) N:Q-+C(Q).

Similarly as in Theorem 2.1 one can also deduce that Af : Q —• CK(Q) is an upper
semicontinuous, compact map. Theorem 1.1 guarantees that there exists y € Q with

u r°° l r
y(t)e-n(t)-\ / F{u,y(u))duds for t > T.

2 J, a(s) JT

Also since y e Q we have y(t) e [fj.n(t)/2, k] for t > T, and lim,.^ y(t) = 0 since

u f i r
\y(t)\<-n{t) + M / / G(u,k)duds -+0 as / ->• oo.

2 X a(s) A
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Next suppose (2.16)—(2.18) hold. We now show that

lim = oo.
t-t-oo n(t)

To see this notice there exists r G ̂ (y) with

y(t)

Thus

u f i r
= —7r(O + / / [-r(u)]duds for / > T.

2 7, a(j) 7r

= ^ + lim\- f r(u)du\

> —h lim / G\(u, y(u)) du
2 '^°°JT

> - + -— l i m / G , ( « , -7T(M)jfi?M = OO.
2 M| <->°°JT V 2 /

REMARK 2.3. There is also an analogue of Theorem 2.2 if (2.4) is replaced by
(2.13). We leave the details to the reader.

If we don't assume the condition n{t0) < oo, then it is also possible to obtain an
analogue of Theorem 2.1 and Theorem 2.2. The idea here is to work with C[T, oo)
instead of B[T, oo). For our next theorem, for notational purposes, let R[t, x] =
J'x ds/a(s) and R(t) = R[t, t0].

THEOREM 2.3. Suppose (2.2)-(2.4) and (2.6) hold and in addition assume the

following conditions are satisfied

(2.22) 3 f, > ?0 and k > 0 with / G(s, XR[s, tx])ds < oo

and
| there exists a positive constant M such that if 0 < x < X, then

( ' } \G(t,xR[t,tl])<MG(t,kR[t,tl])fort>tl.

Then there is a nonoscillatory solution y of(a(t)y'{t))' € F(t, y(t)), a.e. t > T with

lim ^p- = co e (0, X]-
' - » R(t)

here T is chosen as in (2.24).

REMARK 2.4. (i) If G is nondecreasing in the second variable (as in Remark2.1)
then clearly (2.23) holds with M = 1.

(ii) There is also an analogue of Theorem 2.3 if (2.13) replaces (2.4).
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PROOF. Choose T > tt so that

f°° X
(2.24) / G(s,XR[s,tl])ds< —.

JT 2M
Let E = C[T, uo),

Q = \y eC[T, oo) : - R[t, T] < y(t) <XR[t,u] for t > T

and let N : Q -> &>(E) be (here y € Q),

f ds f 1 r
N(y)(t) = k — - + / - — / F(M,y(«))rf«^ for/>7.

JT a(s) JT a(s) JT

It is easy to see from (2.4), (2.6), (2.23) and (2.24) that

(2.25) N:Q^ C(Q).

A slight modification of the argument in [3, Theorem 1.1, page 1293] guarantees
that N : Q —• CK(Q) is an upper semicontinuous, compact map. Theorem 1.1
guarantees that there exists y e Q with

y(t)€X — - + / — - / F{u,y(u))duds for t > T.
Jr a(s) JT a(s) JT

Now there exists r € &(y) with

y(t)= U + / r(u)du Ids for t>T.
JT a(s) I JT J

There are two cases to consider, namely /°° ds/a(s) < oo and f°° ds/a(s) = oo. If
f°° ds/a(s) < oo then

0 < / \ k + I z(u)du Ids < X I
JT a(s) I JT J JT

a(s)
so

,. y(t) f™[X + f;z(u)d
lim

00 ds
< oo,

— Cn.

Notice that c0 € (0, X] since

/•oo | r ps -l poo j r ^ -i

/ \X+ / r (M)dMrf5>/ A . -W rf5
JT a(s) I JT ] JT a(s) [ 2A/J

X f°° ds
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and so

(X/2)f™ds/a(s) Xf™ds/a(s)
r°° — - c° - r°° J i , x -

k fh ds/a(s)
Iff

sol'

ds/a(s)

Hopital's

= oo then

,00 j r

JT a(s) [_

rule implies

lim
/—•oo

r

y(0
R(0

ds
= oo,

a(s)

/*00

= X+ I r(u)du = co.
JT

Notice that X/2 < c0 < X since A. + /7°° r(«) du > A. - M(X/2M) = X/2. •

THEOREM 2.4. Suppose (2.2)-(2.4) and (2.6) hold and in addition assume the
following conditions are satisfied

< oo
/•OO j ,s

(2.26) 3A.>0 wilA / / G(u,X)duds
J a(s) J,o

and
I there exists a positive constant M such that if X/2 < x < X, then

(2.27) \G(t,x) < MG(t,X)fort >t0.

Then there is a nonoscillatory solution y of(a(t)y'(t))' 6 F(t, y(t)), a.e. t > T with
Hindoo y(t) = coe [X/2, A.]. Here T is chosen as in (2.28).

PROOF. Choose T >t0 with

/•OO j ^..v /.OO J rs ^

(2.28) / — - / G(u,X)duds< —- / G(u,X)duds<—.
JT a(s) JT JT a(s) J,o 2M

Let E = C[T, oo), Q = [y € C[T, oo) : A./2 < y(0 < A. for t > T] and let
N : Q ->• ^»(£) be (here >> € (2),

= A.+ / / F(u,y(u))duds for t>T.
JT a(s) JT

It is easy to see from (2.4), (2.6), (2.27) and (2.28) that

(2.29) N-.Q-+ C{Q).
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Also (as in Theorem 2.3) we have that N : Q —>• CK(Q) is an upper semicontinuous,
compact map. Theorem 1.1 guarantees that there exists y e Q with

y(t)ek + f — [ F(u,y(u))duds for t > T.
JT a(s) JT

Notice that y(t) e [A/2, X] for t > T. Now there exists r 6 ^(y) with

y(t) = k+ / r(u)duds for t > T.
JT a(s) JT

Since y is monotonic, lim,-^ y(t) exists and

lim >>(*) = A.+ / / r(u)duds. •
'^°° Jr a(s) JT

REMARK 2.5. (i) There is an analogue of Theorem 2.4 if (2.13) replaces (2.4).
(ii) In Theorem 2.4, it is possible to replace (2.6), (2.26) and (2.27) with

f°° 1 r
/ /

J o(s) J,o

f 1 r
(2.30) 31 >0 with / / sup \F(u, w)\ du ds < oo,

J o(s) J

and the result is again true. The proof only involves a slight modification of the above
argument.

THEOREM 2.5. Suppose (2.2)-(2.4) and (2.6) hold and in addition assume the
following conditions are satisfied

< oo
/

°° / r dx \
G[s,u + X / I ds

\ J,o a{x)J
and

(2.32) for 0 < x < y we have G(t, x) < G(t, y) for t > t0.

Then there is a nonoscillatory solution y of{a{t)y'{t))' € F(t, y(t)), a.e. t > T. Here
T is chosen as in (2.34).

If, in addition,

f°° I fx ( Cu dx \
(2.33) / — - / Gl^fi + k -—)duds = oo,

JT a(s) Js \ Jl0 a(x)J

then lim,^oo y(t) = oo.

PROOF. Choose T > t0 so that

(2.34) / G[s,n + k f —)ds <k.
JT \ J,o a(x)J
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Let E = C[T, oo),

Some nonoscillation criteria for inclusions 11

/ :

dx
Q = v e C[T, oo) : n < y(t) </x + k / — for t > T j

and let A7 : (2 - • <?(E) be (here y e Q),

N(y)(t) = ti+ I U + / F(u,y(u))du\ds for / > T.
JT a{s) I JT J

It is easy to see from (2.4), (2.6), (2.32) and (2.34) that

(2.35) N : Q -> C(Q).

Also (as in Theorem 2.3) we have that N : Q -> CK{Q) is an upper semicontinuous,
compact map. Theorem 1.1 guarantees that there exists y e Q with

y(t) en+ [ -L\k+ [ F(u, y(u)) du] ds for t > T.
JT a(s) I JT J

Now there exists r e ^(y) with

y(t) = ix+\ \k+ / i(u)(fu ds for r > T.
JT a(s) \_ JT J

Suppose (2.33) holds. Then

f 1y(t) >
*(*)

f G[u,n + X [ — )du+ [ T(u)du]ds
JT V Jt, a(x)J JT J

du

- I G(u,y(u))du Ids

f i r r°° ( {" dx \
H+ — / G[u,n + kl ~-)du

JT a(s) UT \ J,o a(x)J

oo. n

REMARK 2.6. (i) There is an analogue of Theorem 2.5 if (2.13) replaces (2.4).
(ii) Notice that if /r°° (/v°° G(u, n)du)ds/a(s) = oo, then (2.33) holds since

(2.32) guarantees that G(s,/x + X f*o dx/a(x)) > G(s, /z) for s >T.
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