
THE SCHMITTER PROBLEM AND A RELATED PROBLEM:
A PARTIAL SOLUTION

BY R. KAAS

University of Amsterdam, the Netherlands

ABSTRACT

At the 1990 ASTIN-colloquium, SCHMITTER posed the problem of finding the
extreme values of the ultimate ruin probability y/{u) in a risk process with
initial capital w, fixed safety margin 6, and mean /z and variance a2 of the
individual claims. This note aims to give some more insight into this problem.
Schmitter's conjecture that the maximizing individual claims distribution is
always diatomic is disproved by a counterexample. It is shown that if one uses
the distribution maximizing the upper bound e~Ru to find a 'large' ruin
probability among risks with range [0, &], incorrect results are found if b is
large or u small.

The related problem of finding extreme values of stop-loss premiums for a
compound Poisson {X) distribution with identical restrictions on the individual
claims is analyzed by the same methods. The results obtained are very
similar.

1. INTRODUCTION

In a paper presented at the ASTIN-colloquium 1990, HANS SCHMITTER gives a
derivation of an exact algorithm to compute the value of the ultimate ruin
probability ij/{u) for a compound Poisson ruin process with given premium
income c per unit of time, and with claims having a finite number of mass
points. In connection with this paper, he posed the following problem: given
that the individual claims have mean /u and variance a2, which claims
distributions minimize and maximize the ruin probability for a given u ? A
practical justification of the problem can be found in the paper by BROCKETT,
GOOVAERTS and TAYLOR (1991), who also sum up the results of the discussion
of this matter at the colloquia of Montreux and subsequently Oberwolfach.

In the classical ruin model, the non-ruin probability of a compound Poisson
risk process can be shown to have a compound geometric distribution with
geometric parameter depending only on the safety loading 0, and with terms
having a distribution function related to the stop-loss premiums of the
individual claims.

In this note we also describe another problem, very similar to Schmitter's.
Suppose a reinsurer has to determine a stop-loss premium for a risk with the
following properties: the risk has a compound Poisson distribution with known
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parameter k, and the individual claims have known mean fi and variance a2.
To be able to quote a safe premium, the reinsurer tries to determine the claims
distribution leading to the maximum value of the net stop-loss premium. Some
work in this direction was done by KAAS and GOOVAERTS (1986) and
STEENACKERS and GOOVAERTS (1990). See also GOOVAERTS et al. (1984).

A lower bound for both the ruin probability and the compound Poisson
stop-loss premium under these restrictions is attained by the distribution
concentrating all mass at ju, see for instance GOOVAERTS et al. (1990). This
distribution is not actually an element of the set of feasible distributions, which
is not a closed set. We will prove that both our functional, ruin probabilities
and compound Poisson stop-loss premiums, are continuous at this boundary
point. Other functional, like the variance, the skewness and the adjustment
coefficient do not have this property. See Section 2.

In this paper we concentrate on the upper bounds, and indicate how one
may find the diatomic claims distribution leading to the highest ruin probabil-
ity using the algorithm mentioned above. The compound stop-loss premium
can be computed by a very similar formula, based on special properties of the
compound Poisson distribution. See Section 2. We found counterexamples for
Schmitter's conjecture that the maximal ruin probability always is realized by a
diatomic distribution. For the compound Poisson stop-loss premiums, the
optimal diatomic distribution also was not always the overall maximum. See
Section 3.

A useful heuristic approximation to the maximal ruin probability with
diatomic claims is described in Section 4. It is based on maximization of the
most important term of the geometric distribution. Our limited numerical
experience shows that this solution leads to a ruin probability which is
invariably close to the maximal diatomic ruin probability. For small X, this
same diatomic distribution also often leads to near-maximum compound
Poisson stop-loss premiums.

One of the referees remarked that applying this heuristic approach one
actually solves Schmitter's problem optimally for very small values of the initial
capital. More precisely, if the initial capital/the retention is very small (less than
\E\X2\\E\X\), the maximum ruin probability/compound stop-loss premium is
attained for the diatomic distribution with 0 as a mass point.

In any case it can be shown that this heuristic solution is better than many
other choices of the feasible distribution. If xx and x2 are the mass points of the
heuristically found feasible distribution, with x, < x2, any distribution with
least mass point larger than xy leads to lower ruin probabilities and compound
Poisson stop-loss premiums.

In Section 5 we impose one more restriction on the claims distribution,
namely that the support is contained in an interval [0,b]. One might expect
that the distribution with the largest value of the upper bound for the ruin
probability e~Ru also has a high probability of ruin. It can be shown that the
adjustment coefficient R with the claims distribution is minimal for the
diatomic distribution with b as one of its mass points. Then obviously e~Ru is
maximal. But if the maximum claim b is very large, the ruin probability with
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this distribution is close to minimal rather than maximal. On the other hand,
the adjustment coefficient R is maximal for the diatomic distribution with 0 as
a mass point, but for small values of u this distribution has maximal ruin
probability, in spite of the fact that is has minimal e~Ru. So looking at the
adjustment coefficient leads to the wrong answer, unless b is small and u is
large, say for b < 2u —n, see the previous paragraph and Section 4.

In Section 2 it is shown that the third moment (skewness) of the compound
Poisson distribution is maximal for the diatomic claims distribution with b as a
mass point. So one may expect that for large retentions, this claims distribution
leads to maximal stop-loss premiums. Also in Section 5 we will show that for
small retentions the situation is reversed.

2. SOME THEORY AND NOTATION

In both problems we study, the issue is to find a maximum of a functional Hu,
working on distribution functions Fx of random variables X in a certain set.
More specifically, we may write both problems in the following form:

(1) Maximize HU[FX]

subject to I is a non-negative random variable, with E[X] = ju,
Var [X] = a2.

Here Hu[-] assigns to Fx either the ruin probability y(u) in a compound
Poisson risk process with fixed safety loading 0 and initial capital u, or the
stop-loss premium ns(u) at retention u of a compound Poisson (X) distributed
random variable S, both with individual claims distributed as X. In the
remainder of this section we will give expressions for Hu[] for both problems
in case X has a finite range. Also, we will characterize the feasible random
variables X having a two-point support. Finally, the theory of ordering of risks
is applied to derive results on some integrals over Hu[-].

Consider the classical actuarial ruin model, that is, assume a compound
Poisson process with claims intensity X, non-negative individual claims distrib-
uted as X, premium income per unit time c — (\+0)XE\X\, which means
there is a safety loading 6 (assumed positive), and initial capital u. See for
instance BOWERS et al. (1986, Chapter 12). Let the stochastic process N(t)
denote the number of claims up to time t, and S(t) = A -̂l- ... +XN(t) the
accumulated claims until time ;. Define the maximal aggregate loss as L =
max {S(t) — ct\t > 0}. The ultimate ruin probability y/(u) denotes the probabil-
ity that the insurer's surplus will ever become negative:

(2) y/(u) = P[min{u + ct-S(t)\t > 0} < 0] = \-P[L < u\.

Defining Ll,L2,-- as the amounts by which record lows in the insurer's
surplus u + ct — S(t) are broken, and M to be the number of record lows in the
surplus process, we may write
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M

(3) L =

Then M has a geometric distribution with parameter y/(0). From Theo-
rem III.2.2.3 in GOOVAERTS et al. (1990) we see that the geometric parameter

= (1 + 0)"1, and the distribution function of the Lt equals

(4) f i , W = l

where 7t;r(j) = E[(X—y)+] denotes the net stop-loss premium for X at
retention y, so nx(0) =

From (2) and (3) we obtain the following expression for the ruin probability:

0 £ [ 1 V
(5) y/(u) = P[L>u] = 2 , P[LX+ ...+Lm>u].

1 + 0 «^o I 1+0)

SCHMITTER (1990) gives the following expression for the ruin probability in
case X has finite support {xx,x2, ...,xm}, with associated probabilities
P\,Pl,---,Pm'-

(6) r ( » ) = l - 44fl I ( ^
1 + 0 kuk2,...,km

where z = - ( H - ^ * ! - ... -kmxm)+ .

Similar expressions can be found in GERBER (1990), SHIU (1989), and earlier
TAKACS (1967). The indices kj are assumed to range over 0, 1,.... If all mass
points Xj are strictly positive, j = 1, ...,m, (6) is a sum with only a finite
number of non-zero terms, so it leads to an easily programmed algorithm to
compute i//(u) for discrete claims distributions. If one of the mass points, say
xm, is equal to 0, carrying out the (infinite) summation over km in (6) leads to
the same expression as (6) with m replaced byw— 1, A by ,1(1 — pm), and pj by
PjKl-Pm)J = 1, . . . , /w- l .

In Section III.5 of GOOVAERTS et al. (1990) we find that the distributions
with mean fi and variance a2 that are diatomic with support {x\, x2}, for
xt = fi — e, can be characterized by

(7) xx = fi-s, x2 =

Pi = P[X = Xl] = <72/{<x2 + e2}, p2 = P[X = x2] = 1 - P l .

For 0 <xx < x2 < oo, we must have 0 < x{ < fi, so 0 < e < fi. Note that x2

increases with jq for xx e [0, n).
Inserting (7) in (6) with m = 2, we see that y/(u) is continuous for diatomic

distributions as a function of s at e j 0. So there is a sequence of feasible
diatomic distributions, whose ruin probabilities converge to the one of the
claims distribution with P [X = ft] = 1, or £ = 0.
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The compound Poisson stop-loss premium can be written in the form

(8)
«=o

If the range of the claims is finite, there is an expression for the compound
stop-loss premiums similar to (6). If S has a compound Poisson (X) distribution
with individual claims distribution as in (6), and Nj counts the number of
occurrences of claim size Xj, such that S = x{-Ni+ ... +xm-Nm, then it is
well-known that the Nj are independent Poisson (Xpj) distributed random
variables. So the stop-loss premium of S at retention u can be written as:

(9) ns(u) = E[(S-u) + ] = E[S]-u + E[(u-S) + ]

= E[S]-u + X (llmJ+fl
k,,k2, ...,km j=\ kj\

It is evident that ns(0) = A//, ns(co) = 0, y/(0) = (l + O)"1 and i//(oo) = 0
do not depend on the actual choice of the feasible distribution. We will show
that this holds for the integrals over ns(u) and y/(u) as well; the weighted
integrals over uns{u) and uy/(u), however, are minimal/maximal when the
third moment of the individual claims is.

We will use the following identities, valid for non-negative random variables
7 with E[Yj+2] < oo, and which can be proved by partial integration:

f
Jo

(10) | yJnY(y)dy= I yJ [\-FY(y)]dy;
7+1

f
Jo 7+1

Using (10) and familiar properties of moments of compound distributions, we
may deduce for every feasible distribution of the individual claims:

(11)
f00

I M M
Jo

y/{u) du = E[L] = E[M] £[L,] = - f [1 -FLi(u)] du
o ^ Jo

1 r
O/i Jo 2 6fj.
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The following relations for weighted integrals hold:

(12) f uns{u)du = | 3 ^f
Jo _

uV(u)du = \E\L2\ = $E[E[L2\M]]I0

= \E\M\ E[L2] + ±E[M(M- 1)] {E[Lx]f

E[^\ + (ElLtf E[X\ + ^ £ . .
29 62 60/z 40 V

So the fatter the tail of the individual claims X (measured by their skewness, or
what is the same since fi and a2 are given, by their third moment), the larger
the integral over uy/(u) and uns{u).

In the theory of ordering of risks as described in GOOVAERTS et al. (1990),
one compares stop-loss transforms or distribution functions of risks over the
whole interval [0, oo). In our case it is sufficient if these functions are ordered
only on the interval [0, u]. Suppose that for instance X has lower stop-loss
premiums than Y on the interval [0,«]. If Z is another independent risk, we
have

(13) E[(X+Z-u) + ]= i E[(X+Z-u) + \Z =
'of
Jo

= f E[(X-(u-z)) + ]dFz(z)
Jo

< f E[(Y-(u-z)) + ]dFz(z)= E[(Y+Z-u) + ].
Jo

From this porperty we see directly that if XX,X2,... and Yx, Y2,... are
sequences of independent risks distributed as X and Y respectively, and X
has lower stop-loss premiums than Y on [0, u], then we have
E[{XX+ ... +Xm-u)+] < E[(Y{+ ... +Ym-u) + ] for all m = 1,2,... Using
(8), we see that a compound Poisson distribution with X as claims distribution
has a lower stop-loss premium in u than one with Y. Using (4) and (5), we see
that ruin probabilities are lower as well.

3. MAXIMIZING THE FUNCTIONALS NUMERICALLY

It is easy to maximize the ruin probability numerically over the diatomic
feasible distributions. This can be accomplished using algorithm (6), together
with (7) to characterize the feasible diatomic distributions. It involves merely a
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one-dimensional maximization over the interval xx e [0, fi]. To do this, one first
computes (6) at a number of values of xx to detect the interval in which the
maximum is to be found, and subsequently uses a method like golden section
search to determine the maximum more exactly. A reference for numerical
techniques to compute a maximum of a function over an interval is PRESS et
al. (1986). In Figure 1 we give graphs depicting the diatomic ruin probability
y/(u; X|, x2,Pi,P2)= w(w, *i) as a function of xx e [0, / /] , where xx, x2,px, P2
are related by (7). We took fj. = 3, a2 = 1, 9 = 0.5, and u = 1.5,4.5 and 9
respectively. In these graphs, the scale in the j-direction varies.

As announced, the ruin probability is minimal and continuous at xx | fi. In
Figure 1 we see that for small u (u = 1£) the maximum ruin probability is
found taking xx = 0. A close inspection reveals that the ruin probability does
not depend on xx if xx > u. Indeed in (6) one sees that the ruin probability
does not (directly) depend on mass points larger than u. It also follows from (4)
and (5). For large u{u = 9), y/{u) is very nearly constant for small to moderate
values of xx, then increases, and next decreases steeply to its minimal value at
* i 1 >

For intermediate u (u = 4.5), the situation is rather unclear: there are some
local maxima. For this specific situation we were able to find a three-point
distribution with a larger ruin probability than the one corresponding to the
maximizing diatomic distribution. In fact, for

x, = 1.56592, x2 = 2.67226, x3 = 5.182086,
Pi = 0.071198, pi = 0.766835, p3 = 0.161967

the ruin probability is 0.279271, which, although (probably) not the optimal
solution, is higher than the maximal diatomic ruin probability 0.279185, found
at xx = 2.5597, x2 = 5.2712.

Although we tried a lot of combinations of /u, a2, 9 and u, we rarely found a
randomly generated three-point distribution better than the best diatomic
distribution; if we did, the difference was never substantial.

We did not try to optimize systematically over all three-point spectra. First,
this is not a trivial task: if the number of mass points is m, the number of free
variables equals 2 m - 3, being the number of support points Xj plus the number
of probabilities pj, minus the number of restrictions. So to find the maximal
ruin probability over all three-point spectra involves solving a three-
dimensional maximization, with borderline conditions pj > 0. Second, even
supposing we successfully optimized over three-point distributions, there is still
no guarantee that for instance a 15-point support might not be better.

The fact that for small u the ruin probability is maximal at xx = 0 can be
explained as follows. By relation (11), one sees that neither ^(0) and y/(oo),
nor J y(u)du depend on xx. By (12), however, we see that the weighted
integral increases (linearly) with the third moment of the claims distribution. So
the weighted integral is minimal for the diatomic distribution with xx = 0,
which means that taking xx = 0 gives the smallest integral over uy/ (u). So at
small values of u,y/{u) should be large for xx = 0. By similar reasoning, one
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FIGURE 1. y/(u; xt) as a function of x,, /i = 3, a2 = 1, 6 = \ ; u = \\, 4J, 9.
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explains that for large u, a large value of xx leads to maximum y/(u). For too
large values of xx, we obtain low ruin probabilities (close to the minimal
value), as explained in the following section.

For the same reasons, one can expect a similar pattern to arise in the case of
compound Poisson stop-loss premiums. This is indeed the case: see Figure 2.
In this figure, we took X = 2, fi = 3 and a2 = 1. At small u (u = 2), the
stop-loss premium is virtually constant over xx, but it is maximal at xx = 0. At
large u — 20, we see that the stop-loss premium is practically constant for x,
from 0 (where it equals 0.0109) to very close to /x. Then it increases very steeply
to its maximum value 0.0522, and for xx f fi, it decreases continuously to its
minimal value of 0.0088. For intermediate u = l, with increasing xx,ns{u)
increases slightly and irregularly at first from 1.3373 to the maximal value
1.3954, and then for xx f fi, it decreases again to its infimum 1.3008. For this
case we found again an example where the maximal diatomic distribution was
not a global maximum over all feasible claims distributions. The maximal
diatomic distribution is at xx = 2f, where ns(u) = 1.3954, but a larger
stop-loss premium of 1.3995 is attained by the triatomic distribution

x, = 0, x2 = 2.8, x3 = 5.7143, px = 0.0286, p2 = 0.8754, p3 = 0.0961.

In fact, as one of the referees pointed out, it can be proven that the diatomic
distribution with xx = 0 as a mass point is optimal for very small values of u
(u < \E[X2]IE[X]). The proof goes as follows.

From Theorem III.5.2.3 of GOOVAERTS et al. (1990) we see that uniformly
for all u < $E[X2]/E[X] = %(ji + a2//i), the maximal stop-loss premium over
the feasible distributions is attained for a random variable Xo having mass
points 0 and fi + o2/n, see (7). As a consequence of (13), we have immediately
that if H is the distribution function of Xo and X is a feasible claim size, then
F$" has smaller stop-loss premium in u than H*n for n = 2, 3 , . . . , too. In view
of (8), we have then found that H is the claims distribution maximizing the
compound Poisson stop-loss premium, when the retention u < ^(ju + a2/fi).

Using (4), we can deduce by similar reasoning that this same claims
distribution also maximizes not only P[LX > u] for u < %(ji + o2j/u), but also
P[LX+ ... +Lm > u] for all m - 2, 3 , . . . , and thus maximizes the ruin
probability (5).

So Schmitter's problem is solved for very small values of the initial capital u.
This result is confirmed in Figure 1 for u = 1 .̂ But note that in Figure 2 for

u — 2 > ^(ji + a2/fx) still the distribution having mass point 0 led to the
maximal compound Poisson stop-loss premium.

4. AN APPROXIMATION FOR THE MAXIMIZING

DIATOMIC DISTRIBUTION

Though we are as yet unable to solve the problem of maximizing
y/(u) = P[L > u] given ji and a2, a problem we can solve is the maximization
of P[LX > «]. We may expect P[L > u] to be large when P[LX > u] is,
because the term with m = 1 in (5) has the largest weight factor.
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In view of (4), and since 7^(0) = E[X] = /n is given, to maximize P[LX > u]
we just have to maximize nx(u), the stop-loss premium of X. The solution to
this problem can for instance be found in GOOVAERTS et al. (1990), Theo-
rems III.5.2.2 and 5.2.3. These theorems express that the maximal stop-loss
premium for a (non-negative) risk X with mean /i and variance a2 at retention
u is the diatomic distribution with smaller mass point xx — max{M — d, 0},
where d= {(ji — u)2 + <j2}K When a is small with respect to \u — /i\, we may
write

(14) (u-p)-d=(u-/i-d)"~"'"
— a

u-fi + d u

So we may conclude that the diatomic distribution with the following mass
points gives a ' high' ruin probability:

a2

(15) x\ = fi-e, with £ = x \a /(u-/*), so x2 = u + dx 2u-/n.

In the examples we tested, the diatomic distribution maximizing the ruin
probability had xx only slightly smaller than u — d. See Table 1.

Of course this same diatomic distribution maximizes the term with n = 1 of
the compound Poisson stop-loss premium (8). So one may expect this
distribution to have a high stop-loss premium if the probability of just one
claim is large, which is the case if X is small. For large X, however, this
approximation will not be as useful.

Our heuristic procedure may not always lead to the optimal value, but it can
be shown that it is better than many other choices. Suppose Z has distribution
(15), and suppose Y is another feasible choice such that the least mass point of
Y is larger than that of Z, which is u — d. We know that nz(t) is piecewise
linear, with edges al u — d and u + d. Since Y has no mass below u — d, we have
nY(u-d) = nz(u-d). Also, nY(u) < nz(u) since nz{u) is maximal. So
nY(t) < nz{t) for all t < u, which means that Y generates lower compound
Poisson stop-loss premiums and ruin probabilities.

TABLE 1

VALUES OF y/(u) FOR DIFFERENT VALUES OF THE HIGHER MASS POINT IN A DIATOMIC DISTRIBUTION

00

optimal
u + d
2u-fi
10
15
20

u= 1.5

y(u) =

.102003

.272504

.275023

.269824

.272504

.146348

.130637

.123125

= 1, a1 = 1, 6 =

u = 4.5

V(») =

.002315

.039292

.081105

.078214

.078651

.071460

.055095

.044244

1

u = 9

V(u) =

.000008

.002315

.034151

.033632

.033659

.024767

.034151

.031936

M =

u= 1.5

V(u) =

.534796

.550047

.550047

.534796

.550047

.534796

.534796

.534796

3, a2 = 1, (

u = 4.5

y/(u) =

.248974

.278350

.279190

.276506

.277596

.265714

.259498

.256613

1= .5

u = 9

y/(u) =

.078779

.098945

.106205

.101811

.101901

.106184

.101901

.097203
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In particular, the diatomic solutions with support {b, b'} with b > u — d are
apparently non-optimal.

5. EXTREMAL VALUES OF THE ADJUSTMENT COEFFICIENT

Consider all claims distributions with mean /u, variance a2 and as an extra
requirement, support contained in [0, b] for some b > [i + <72/fi. Just as we did
in the previous section for P[LX > u], one may tackle the problem of finding
extremal ruin probabilities by using distributions leading to extremal values of
related quantities like an approximation or an upper bound for the ruin
probability. Here we use the upper bound e~Ru, where the adjustment
coefficient R is the positive solution to the equation

(16) \ + {\ + 6)nr = E[erX].

Asymptotically, this upper bound can be used as an approximaton, since
y/(u) eR" has a limit in (0, 1) for u -» oo.

It can easily be shown that the diatomic distribution with mass points 0 and
H + o2Jn is minimal in second degree stop-loss order, while the one with mass
points b and fi — a2/(b — fi) is maximal. See Theorem II.4.2.3 of GOOVAERTS et
al. (1990). This implies that these special diatomic distributions have minimal
and maximal moment generating functions on (0, oo) in the class considered,
and accordingly the corresponding adjustment coefficients (roots of (16)) are
maximal and minimal respectively.

One would expect that the support {fi — a2/(b — fj.),b}, with minimal adjust-
ment coefficient, leads to large ruin probability, too. Taking b too large,
however, so ju — <72/(b—fi) is very close to fi, results in the opposite of what we
wanted: the ruin probability of this distribution is very small rather than
maximal. For b -» oo, by (7) we see that the mgf E[erX] -* oo for all r > 0, so
then R ->• 0, which gives us the trivial upper bound (c(») < 1. So we observe
that for b -> oo, the upper bound e~Ru increases, while the ruin probability
decreases. But if b is not too large, say such that /u — a2/(b-fi) x x, as in (15),
which means that b x 2 M - / / , this distribution does lead to a large ruin
probability.

On the other hand we learn for instance from Figure 1 that for small u, the
diatomic distribution with mass point x, = 0 has maximal ruin probability,
even though it gives the tightest upper bound e~Ru.

It can be shown, too, that the compound Poisson distributions with these
distributions for the individual claims are extremal in second degree stop-loss
order. This means that they have minimal and maximal third moment, and
since mean and standard deviation are fixed, also minimal and maximal
coefficient of skewness. As proved at the end of Section 2, these same special
spectra also generate the extreme values of J uns(u)du. So one would be
inclined to expect that they lead to high and low values of the compound
Poisson stop-loss premium as well, but the same caveats as above apply
here.

https://doi.org/10.2143/AST.21.1.2005406 Published online by Cambridge University Press

https://doi.org/10.2143/AST.21.1.2005406


THE SCHMITTER PROBLEM AND A RELATED PROBLEM

6. SOME FINAL REMARKS

145

To conclude, we comment on tables of some results for distributions with
support {/i-G2/(b — fj),b} for different values of b. These distributions have
minimal adjustment coefficient (maximal skewness) for all feasible distributions
with support contained in [0, ft]. They are compared to other distributions
described above: the optimal diatomic distribution, the heuristical approxima-
tions to the optimum found by applying (15) and the distributions with only
one positive mass point: support {0,fi + a2/fi} and {/u}. The latter support is
denoted by higher mass point oo, where the mass on oo is of course 0 (but
contributes to a2). Note that for u not too large and b = 20, the phenomenon
described above indeed occurs. Even though we showed that looking at the
minimal adjustment coefficient sometimes gives incorrect results, especially for
large b or small u, we fear that this method will be used quite often.

Further note that for large u and a2, minimal and maximal ruin probability
are widely apart. For a1 small with respect to u and fi, the ruin probability
cannot vary enormously.

Table 2 gives some results for the compound Poisson stop-loss premiums.
Note the meaningless results obtained by the wrong choice of b for large values
of u, and also for small values of u.

An approach that we plan to follow in the near future is to try to optimize
the compound Poisson stop-loss premium over the set of claim distributions
with support {0,3,25,..., n§}. The more general problem is obtained taking
limits for n -* oo and 5 | 0. The restricted problem can be written in the form
of the maximization of a non-linear criterion function with three linear
constraints on the probabilities pj = P[X = j5], required to be non-negative

TABLE 2

VALUES OF ns(u) FOR DIFFERENT VALUES OF THE HIGHER MASS POINT
IN A DIATOMIC DISTRIBUTION

x2 =

oo

optimal
u + d

2« — H

5
10
15
20
25
30

M =
u = 2

*s(«) =

4.270671
4.330598
4.332192
4.331675
4.324805
4.270671
4.270671
4.270671
4.270671
4.270671
4.270671

3, a1 = 1, X

u = 1

"s(") =

1.300816
1.337326

1.395435

1.374006
1.374694

1.376488
1.380493

1.356405

1.342594

1.334135
1.328482

u = 20

ns(u) =

0.008804
0.010879

0.052178

0.047330
0.047347

0.014677
0.022903

0.034962

0.047335

0.052137
0.051061

/* =

u = 5

ts(") =

10.101076
10.138862
10.138862
10.105046
10.105033
10.101069
10.104438
10.103393
10.102812
10.102458
10.102223

3, <J2 = 1, X =

u = 20
ns(u) =

1.004413

1.077055
1.136463

1.077758

1.077807

1.105061
1.113764

1.124541

1.116290
1.103217

1.091199

5

u = 40

ns{u) =

0.002488
0.003859
0.058680
0.049633
0.049638
0.005110
0.007883
0.012330
0.018726
0.028545
0.040868
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for all / By restricting to an arithmetic spectrum we are able to use Panjer's
recursion instead of (9); the necessary partial derivatives can also be computed
by a recursive scheme. The procedure can be generalized if more moments are
known.

Of course, as the title of our paper indicates, maximization over the diatomic
distributions only does not give a complete solution of either problem. We find,
however, that by using this technique both problems are sufficiently solved for
practical purposes. In the first place, our examples led us to the conviction that,
although the optimal diatomic distribution is not always globally optimal, it is
not much removed from this optimum. Second, in our opinion in practice one
might judge the attractiveness of risks or risk processes with known mean and
variance of the claims by the worst feasible diatomic distribution as well as by
the overall worst feasible distribution.

ACKNO WLEDGM ENT

The author wishes to thank ANGELA VAN HEERWAARDEN for some construc-
tive suggestions, and MARC GOOVAERTS for stimulating discussions. Also, the
valuable contributions of both referees are acknowledged.

REFERENCES

BOWERS, N. L., GERBER, H.U., HICKMAN, J.C., JONES, D.A. and NESBITT, C.J. (1986) Actuarial
Mathematics. Society of Actuaries, Itasca, Illinois.
BROCKETT, P.L., GOOVAERTS, M.J. and TAYLOR, G.C. (1991) The Schmitter problem. ASTIN
Bulletin 21, 129-132.
GERBER, H.U. (1990) From the convolution of uniform distributions to the probability of ruin.
Mitteilungen der VSVM Heft 2/1989, 283-292.
GOOVAERTS, M.J., D E VYLDER, F. and HAEZENDONCK, J. (1984) Insurance premiums. North-
Holland, Amsterdam.
GOOVAERTS, M.J., KAAS, R., VAN HEERWAARDEN, A.E. and BAUWELINCKX, T. (1990) Effective
Actuarial Methods. North-Holland, Amsterdam.
KAAS, R. and GOOVAERTS, M.J. (1986) Bounds on stop-loss premiums for compound distributions.
ASTIN Bulletin XVI, 1, 13-17.
PRESS, W.H., FLANNERY, B.P., TEUKOLSKY, S.A. and VETTERLING, W.A. (1986) Numerical
recipes; the art of scientific computing. Cambridge University Press.
SCHMITTER, H. (1990) The ruin probability of a discrete claims distribution with a finite number of
steps. Paper presented at the XXII ASTIN-colloquium, Montreux, Switzerland.
SHIU, E. S.W. (1989) Ruin probability by operational calculus. Insurance: Mathematics and
Economics 8, 243-249.
STEENACKERS, A. and GOOVAERTS, M.J. (1990) Bounds on slop-loss premiums and ruin probabilities
for given values of the mean, variance and maximal value of the claim size. Paper presented at the
XXII ASTIN-colloquium, Montreux, Switzerland.
TAKACS, L. (1967) Combinatorial Methods in the Theory of Stochastic Processes. Wiley, New York,
Reprinted by Krieger, Huntington, NY (1977).

ROB KAAS
Institute for Actuarial Science and Econometrics, University of Amsterdam,
Jodenbreestraat 23, NL-1011 NH Amsterdam, the Netherlands.

https://doi.org/10.2143/AST.21.1.2005406 Published online by Cambridge University Press

https://doi.org/10.2143/AST.21.1.2005406



