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Throughout this note, let E and F be locally convex Hausdorff spaces over
the real number field R. We denote real numbers by Greek letters. The sets of
all continuous semi-norms on E and F will be denoted by P(E) and P(F) res-
pectively, and A will always stand for an open subset of E.

The purpose of this note is to continue our study on the properties of dif-
ferentiable maps; in particular, the differentiability of the inverse maps and the
weak injectivity of maps with invertible derivatives.

1. Definitions of differentiability

A map / : A -> F is said to be differentiable at aeA if there exists a conti-
nuous linear map u of E into F such that

lim sup q(s~1r(f, a, EX)) = 0
e-»0 i6«

for any q e P(F) and any bounded subset B of E, where

K/» «> *) = /(« + *) - / ( * ) - «(*) •
If / is differentiable at a, the map u is determined uniquely, and it is called the
derivative of f at a and is denoted by f'(a).

A map / : A -> F is said to be strongly differentiable at aeA with respect
to p0 e P(E) or po-differentiable at a if there exists a continuous linear map u
of E into F such that

lim sup q(E~ir(f,a,ex)) = 0

for any q e P(F). Every strongly differentiable map is differentiable. We use the
same symbol/'(a) to denote the strong derivative o f / a t a.

Some fundamental properties of these two differentiabilities have been col-
lected by Yamamuro (1974). We only note here that these are respectively the
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weakest and the strongest among all the definitions proposed so far which coin-
cide with the usual Frechet differentiability when the spaces involved are normed
spaces.

The strong differentiability has been introduced by Keller (1963-64), who
observed the following fact.

(1.1) A mapf:A -> F is po-differentiable at aeA if and only if there exists
a continuous linear map u:E -> F such that the following condition is satisfied:
for any e > 0 and q e P(F) there exists 5 > 0 such that po(x) ^ 5 implies
q(r(f, a, x)) g epo(x).

We add two remarks which will be used later. First, the following is obvious.

(1.2) / / / is po-differentiable at a point and p ^ p0 (i.e., p(x) 2; po(x)
for every xeE), then f is p-differentiable at the point.

Secondly, let us denote the set {x:p(x) g 1} by Up. Then, if / : A -> F is
po-differentiable at aeA, there exists peP(E) such that p ^ p0 and
a + Up <= A n (a + Upo). Hence,

(1.3) / / / : A -* F is po-differentiable at aeA, we can suppose that a + Upo <= A.

2. Strong differentiability of the inverse maps

Throughout this section, we assume that / : A -* F is an injective map of A
onto an open set/(/I), strongly differentiable at aeA andf'(a) is an isomorphism.
We shall give a condition for the inverse map g of / be strongly differentiable
a t / ( a ) .

Suhinin (1969) has proved that g is strongly differentiable if g is continuous
at every point in / (^ ) . This sufficient condition is somewhat strange; in the case
of normed spaces, only the continuity of g at f(a) is needed. We shall fill this
gap by giving an exact condition for g to be strongly differentiable at f(a).

By considering the transformation

we can, throughout this section, suppose that E = F, a = 0, /(0) = 0 and
f'(a) = 1 (the identity map).

The following fact is an immediate consequence of (1.1) with q = p0.

(2.1) There is a positive constant /?(/) such that po(x) ^ /?(/) implies

In particular,

(2.2) The map f is po-continuous at zero, i.e., Po(/(xx)) ~* 0 for any net (x0
such that po(xx) ~* 0.
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As a matter of fact,/is continuous in a stronger sense; it follows from (1.1)
that po(xx) -> 0 implies that f(xx) -> 0. However, we shall only need the p0-con-
tinuity, as the following result shows.

(2.3) Let p 2; p0 . Then, the inverse map g is p-differentiable at zero if
and only if g is sequentially p-continuous at zero.

PROOF. Assume that p ^ p0 and g is p-differentiable at zero. Since, by (1.2),
/ i s also p-differentiable at zero, the chain rule implies that #'(0) = / ' (0)"1 = 1.
Hence, (2.2) holds with g and p instead of/and p0. Conversely, let us assume
that g is sequentially p-continuous at zero for some p e P(E) such that p ^ p0.
If g is not p-differentiable at zero, there exist a null sequence (en) c R, a sequence
(yn) => Up, qe P(E) and a positive number 8 such that

q^n^i^yn) -yn)>& for all n.

Put xn = e~ 1g(snyn). Then, since p(snyn) -> 0 and g is p-continuous at zero,
we have

Po(enxn) ^ p(snxn) = p(g(enyn)) - • 0 .

Hence, po(snxn) g i/?(/) for large n, and, by (2.1), we have

from which it follows that po(xn) ^ 1 for large n. Hence, for large n,

q(Cg(enyn) - yn) = g(xn - e"1 / ( v O )

^ sup q(e~ lf{enx) - x) -» 0,

a contradiction.
Thus, if there is p e P(E) such that p ^ p0 and g is sequentially p-conti-

nuous at zero, then g is strongly differentiable at zero. This corresponds exactly
to the normed space version of this theorem. As to the Suhinin's result mentioned
above, we can improve it slightly as follows.

(2.4) Assume that the function T *->g(ty) is continuous when ty ef(A). Then,
there exists peP(E) such that p 7z p0 and g is sequentially p-continuous at zero.

PROOF. We choose peP(E) such that Upcf(A) n Upo. Then, it follows that
p §: p0 . To prove that g is sequentially p-continuous at zero, assume that
Pif(xn)) -* 0 and f(xn)eUp. Then, pie'^xj) -» 0 for some positive null se-
quence (en) cR. Put zn = t^lxn. Then, we can suppose that p(zn) ^ e j* , be-
cause, if p(zn) < e~* for infinite n, we have p(xn) = p(enzn) < e* -> 0, which
completes the proof. Now, put yn = s~ ' / ( x j . Then, since snyn e Up, the function
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* •"»• £n1p(9(wyn)) is continuous, and, for zn(r) = e ~ V < W n ) , we have zn(0) = 0
and zn(l) = zn. Hence, there exist %„ in (0,1] such that

KZ»(O) = £»~* for a11 "•
Since p(snzj[xn)) -* 0, it follows from (1.2) and (2.1) that, for large n,

which implies p(zn(Tn)) g p(Tn.Vn) • This is impossible because />(zn(Tn)) -> oo and

3. Differentiability of the inverse maps

Throughout this section, we assume that / : A -> F is an injective map onto
an open set f(A), differentiable at aeA and/ ' (a) is an isomorphism. By the same
reason as in the previous section, we may suppose that E = F, a = 0, /(0) = 0
and/ ' (0) = 1.

To define the continuity which we need here, we shall use a notion stronger
than the brakedness considered in Yamamuro (to appear). A sequence (xn) <= E
will be said to be (txn)-braked if <zn ->• oo and (anxn) is bounded. Obviously, such
sequences converge to zero in the sense of Mackey, but for our purpose, we must
specify the sequence (an). We call a map / : A -> F brakedly continuous at a eA
if, for any (aj-braked sequence (xn), the sequence (f(a + xn) — f(a)) is also an
(an)-braked sequence.

(3.1) The map f is brakedly continuous at zero.

PROOF. Let (xn) be an (an)-braked sequence and B be a bounded set which
contains (a n x j . Then, by the definition of differentiability,

an/0O =

= anr(f, 0, a~J anxn) + anxB,

which implies that the sequence (anf(xn)) is bounded.
Now, we have the corresponding statement to (2.3).

(3.2) The inverse map g is differentiable at zero if and only if it is brakedly
continuous at zero.

PROOF. If g is differentiable at zero, then we can apply (3.1) to g. Conversely,
let g be brakedly continuous at zero. If g is not differentiable at zero, there exist
a null sequence (en) <= R, a bounded sequence (yn) <= E, qeP(E) and a positive
number 8 such that

l yn) > <5 f o r a11 n •
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Put xn = E^gfayJ. Then, since (enyn) is an (e~^-braked sequence, (g(enyn))
is also an (e~1)-braked sequence, which means that (xn) is a bounded sequence.
But this is impossible, because, for a bounded set B containing (xn),

^ sup g(en"
1/(enx) - x) -> 0 when n -> oo .

As a notion of continuity, the braked continuity can not be said to be in a
natural form. We add a remark to explain how distant is the differentiability
of g at zero from the continuity of g at zero.

Let us consider the following property: for any map / which satisfies all
conditions posed in the beginning of this section, the inverse map g is differentiable
at zero whenever it is continuous at zero. In Yamamuro (to appear) we have
proved that E has this property if and only if E is boundedly levered. A space E
is said to be boundedly levered if, for any null sequence (*„) <= E such that xn ^ 0
for all n, there exists a sequence (an) c R such that (anxn) is bounded but not
convergent to zero. Every normed space and every strict inductive limit of an
increasing sequence of Banach spaces is boundedly levered. However,

(3.3) Every boundedly levered metrizable locally convex Hausdorff space
E is normable.

PROOF. If E is not normable, there exists a fundamental increasing sequence
(Pi) of semi-norms which are mutually non-equivalent. Since E can be assumed
to be complete, we can apply a lemma in Bessaga, Peiczynski and Rolewicz (1961;
page 680) to obtain a sequence (*„) such that

Pi(xn) ^ 1, npi(xn) < pi+1(xn) if 1 ^ i, n < + oo.

Then, for an = ljnpn(xn), (anxn) is a null sequence and txnxn =£ 0 for all n. Suppose
that (£nanxn) is a bounded sequence. Then,

^ n~l sup pi+ i(^nanxn) -> 0 ,
n i l

which means that (<fnanxn) converges to zero. This shows that E is not boundedly
levered.

4. Weak injectivity

A m a p / : A -> F is said to have an invertible (strong) derivative at as A
f / i s (strongly) differentiable at a and / ' ( a ) has a continuous inverse. (It is not
assumed that f'(a) is surjective.)

When E and F are normed spaces and / has an invertible derivative at a,
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then / is weakly injective ar at by which we mean that there exists a neighbour-
hood U of zero such that/(a) # /(a + x) for all non-zero xeU. (See Dieudonne
(1960; page 269, Problem 1)).

On the other hand, Keller (1963-64) has constructed a map/ of a countable
product of R with the product topology into itself such that /(0) = 0, f(xn) = 0
for some null sequence (xn) and / has an invertible derivative at zero.

The conclusions of this section are that the fact stated above for normed
spaces can be generalized by using the strong differentiability whereas the
differenbtiability again behaves very baddly.

(4.1) If f: A-* F has an invertible strong derivative at aeA, then f is
weakly injective at a.

PROOF. By assumption, there exists peP(E) such that

sup q(e-l[f(a + £*) - / (« ) ] -/ '(«)(*)) -> ° w h e n £ -» °

for any q e P(F). Assume that / is not weakly injective at a. Then, there exists
a net (xx) in E which converges to zero and f(a + xx) — f(a) for all X. Since we
can assume that p(xx) = 1 f°r a^ >̂ w e have

e-1|7(fl + «0- / (a ) ] - / ' ( f l ) (x 1 ) - ->0 if e - 0

uniformly with respect to X. Assume that p(xk) = 0 for all X. Then, since
^(g"1^^) = 0 for any non-zero e, we have

-/ ' (aXe- 'xO = z~\f{a + c r t j - / ( a ) ] -f'(a)(s~'xj - 0

when e -> 0, which means that x̂  = 0 for all X, because f'(a) has an inverse.
Hence, taking a subsequence if necessary, we may suppose that p(xk) ^ 0 for all
X. Then, since XK^x)"1**) = 1 f o r a11 ̂ >

which means that p(xx)~
1xl -> 0, because/'(a) has a continuous inverse. How-

ever, this is impossible.
A topological space E is said to be sequential if, for any subset M of E and

a point aeM\M (the upper bar denotes the closure), there is a sequence (xn)
in M such that xn -> a. Metrizable spaces are sequential, but the converse is not
true. For a detailed account of this notion, we refer to Yamamuro (1974; Ap-
pendix 1).

(4.2) Every map with an invertible derivative at a point is weakly injective
there if and only if E is sequential and boundedly levered.
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PROOF. We suppose that E has the property that every map with an invertible
derivative at a point is weakly injective there. First, we prove that E is sequential.

If E is not sequential, then there exists a subset M of E and a point aeM\M
such that no sequence in M converges to a. By considering the set M — a instead
of M, we may suppose that a = 0. Then, let k:E -> R be the characteristic
function of the set M and define a map / : £ - » £ by

f(x) = x — k(x)x.

This map is not weakly injective at zero, because, if we take a net (xk) in M con-
verging to zero, we have f(xx) = /(0) = 0 for all A. On the other hand, / is dif-
ferentiable at zero and/'(0) = 1. To see this, let (en) be a null sequence and (xn)
be a bounded sequence; then

e;VM -/(0)] -xn= -k(snxn)xn.

Since snxn -» 0 and M does not contain null sequences, we see that k(snxn)xn = 0
except for finite n's. This shows that the identity map is the derivative of /a t zero,
which is a contradiction.

Next, we prove that E is boundedly levered. If E is not boundedly levered,
there exists a null sequence (en) such that en ^ 0 for all n and anen -+ 0 whenever
(anen) is bounded. Let k:E -» R be the characteristic function of M = (en) and
define a map f:E -* E as above. Then, / is not weakly injective at zero. How-
ever, / has the identity map as its derivative at zero. To see this, let (en) be a null
sequence and (*„) be a bounded sequence; we need to show that

e^rifAe^) = C ' [ / ( V l ) - / ( 0 ) ] - xn -» 0 when n -> oo .

We only need to consider those snxn which belong to M, because, if enxn is not
in M, we have e~1 r(f, 0, anxn) = 0. Hence, taking a subsequence if necessary,
we can suppose that enxn = en for all n. Then,

£,T1K/>0>enXn) = ~xn = ~^en ~* 0 when n -* oo,

because ( e ^ O is a bounded sequence. Thus, we have proved that E is sequential
and boundedly levered.

To prove the converse, let us assume that E is sequential, boundedly levered
and / : A -* F has an invertible derivative at a e A. Iff is not weakly injective at
a, since E is sequential, there exists a sequence (xn) such that xn ^ 0, xn -> 0
and /(a) = / (a + xn) for all n. Since E is boundedly levered, there exists a se-
quence (an) in R such that (ccnxn) is bounded but not convergent to zero. Taking
a subsequence if necessary, we can suppose that an -> oo . Then, since / is dif-
ferentiable at a, we have

an[/(a 4- a.~l(anxn)) - / ( a ) ] -/ '(a)(«„*„) ->• 0 when n -> oo,
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which implies f'(a)(anxn) -* 0 when n -* oo. This is a contradiction, because
f'(a) has a continuous inverse and (ocnxn) is not a null sequence.
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