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Abstract

In this paper we investigate the relationship between the sampling formula and
Laplace transform associated with the two-parameter Poisson–Dirichlet distribution. We
conclude that they are equivalent to determining the corresponding infinite-dimensional
distribution. With these tools, a central limit theorem is established associated with the
infinitely-many-neutral-alleles model at any fixed time. We also obtain the probability
generating function of random sampling from a generalized two-parameter diffusion
process. At the end of the paper a selection case is considered.
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1. Introduction

In this paper we start with the random partition structure associated with the two-parameter
Poisson–Dirichlet distribution which is defined in the following way. For 0 ≤ α < 1 and
θ > −α, let Uk, k = 1, 2, . . . , be a sequence of independent random variables such that Uk
has a Beta(1 − α, θ + kα) distribution. Define an infinite sequence Ṽ1, Ṽ2, . . . via a stick-
breaking process such that

Ṽ1 = U1, Ṽn = (1 − U1) · · · (1 − Un−1)Un, n ≥ 2.

Rank (Ṽ1, Ṽ2, . . .) in decreasing order, and let V1 ≥ V2 ≥ · · · . The distributions of
(Ṽ1,Ṽ2, . . .) and (V1,V2, . . .) are called the two-parameter Griffiths–Engen–McCloskey (GEM)
distribution and the two-parameter Poisson–Dirichlet distribution, denoted by GEM(α, θ) and
PD(α, θ), respectively. PD(α, θ) is a family of distributions generalized from the well-known
Poisson–Dirichlet distribution with α = 0. The distribution was introduced by Kingman et
al. [14] and has been associated with a number of models in different areas, especially in
population genetics. We refer the reader to [5] and the references therein for more background
and applications of the family of distributions. Hereinafter, we denote PD(0, θ) simply by
PD(θ).

The two-parameter Poisson–Dirichlet distribution first appeared in Perman et al. [15] in
1992. We refer the reader to Pitman and Yor [19] for a comprehensive survey of PD(α, θ)
from the perspective of subordination. Recently, Handa [11] systematically studied the two-
parameter family by means of random point processes. In fact, the PD(α, θ) distribution can
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be regarded as the distribution of a random mass partition on the infinite-dimensional ordered
simplex

∇∞ :=
{
x = (x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,

∞∑
i=1

xi = 1

}
.

The partition probability functions of the exchangeable random partition associated with PD(θ)
and PD(α, θ) are obtained as the well-known Ewens’ sampling formula and Pitman’s sampling
formula. In fact, PD(θ) describes the equilibrium of the infinitely-many-neutral-alleles (IMNA)
model with mutation rate θ > 0 (cf. [4]). That is, PD(θ) is the stationary distribution of
frequencies of different alleles that are ordered according to their family sizes. Consider a
random sample of n individuals from the population. The composition of the sample can be
given by a partition vector n = (n1, . . . , nk) of integer n, which indicates k different types of
allele in the sample and ni individuals of each type. In the literature, the partition structure of n
samples is often denoted by a different but equivalent vector a = (a1, . . . , an), where ai is the
number of families containing i individuals. Therefore, for each i, ai ≥ 0 and

∑n
i=1 iai = n.

Given x = (x1, x2, . . .) ∈ ∇∞, where xi denotes the frequency of the ith largest family in the
population, the conditional probability of a random sample of size n with partition structure
An = a is expressed as

P(An = a | x = (x1, x2, . . .)) = n!∏n
i=1(i!)ai

∑
n

x
n1
1 x

n2
2 · · · ,

where the summation is over the set {n = (n1, n2, . . .) : �{i : ni = j} = aj , ni ≥ 0}. When
x ∼ PD(θ), the probability

P(An = a) =
∫

∇∞
P(An = a | x = (x1, x2, . . .))PD(θ)(dx)

is given by Ewens’ sampling formula (ESF):

P(An = a) = n!
θ(n)

n∏
j=1

(
θ

j

)aj 1

aj ! . (1.1)

Here θ(n) = θ(θ + 1) · · · (θ + n− 1). In the two-parameter case, i.e. x ∼ PD(α, θ), we have
the generalized formula obtained by Pitman [17], known as Pitman’s sampling formula (PSF):

P(An = a) = n!
θ(n)

k−1∏
�=0

(θ + �α)

n∏
j=1

(1 − α)
aj
(j−1)

(j !)aj (aj !) . (1.2)

As PD(θ) plays an important role in population genetics, the sampling formula has wide
applications, including the estimation of the mutation rate θ and the comparison of different
models, such as the neutral and nonneutral models. Here, neutral means that mutation is
considered only in the evolution. Moreover, the proof of the sampling formula also inspires
recursive constructions of some well-known partition structures, such as Hoppe’s urn model,
Blackwell–MacQueen’s urn, and the Chinese restaurant process. See, e.g. [18], which also
contains applications of the sampling formula in Bayesian statistics. In this paper we display
an alternative derivation of the sampling formula from the Laplace transform of the PD(α, θ)
distribution. Moreover, we show that the Laplace transform is also determined uniquely by
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the sampling formula. This implies that they both equivalently characterize the PD(α, θ)
distribution .

In Pitman andYor [19] and Handa [11], the Laplace transform of the two-parameter Poisson–
Dirichlet distribution is obtained as a probability generating functional of a random vector x with
the PD(α, θ) distribution. As shown in [11], the Laplace transform leads to some fundamental
results for PD(α, θ), such as the joint probability density, the moment formula, the asymptotic
behavior, etc. By Campbell’s theorem from the Poisson point processes (see, e.g. [13]), the
particular form of this Laplace transform can be interpreted as the connection between PD(θ)
and PD(α, θ) with some pure-jump subordinators. In [11] the key to deriving the Laplace
transform was the correlation measure of the two-parameter point process, which was obtained
based on the equivalence of the size-biased permutations for PD(α, θ) and GEM(α, θ ). In this
paper we take an alternative approach from the sampling formula (1.2). This can be regarded as
an interpretation of Kingman’s conclusion that the partition function and random mass partition
PD(α, θ) are uniquely determined by each other.

The paper is organized as follows. In Section 2 we introduce the necessary definitions and
notation. We gather the above results and their proofs in Section 3. In Section 4 we consider
the Laplace transform for the IMNA model. The result leads us to establish a central limit
theorem associated with homozygosity functions at any time t > 0 as θ goes to ∞ (recall that
θ denotes the mutation rate). Moreover, the limiting behavior is the same as that found for
the PD(θ) distribution. The latter case has been studied by several authors, including Joyce et
al. [12] and Handa [11]. Our conclusion indicates that the population distribution at a finite
time is almost the same as the stationary state when mutation becomes extremely strong. We
also consider a generalized two-parameter infinitely-many-alleles diffusion model. The two-
parameter diffusionXα,θ (t) is constructed by different means in [6] and [16]. Here we compute
the probability generating function of random sampling from Xα,θ (t), which can be seen as
a two-parameter generalization of Theorem 4.3 of [9]. The proof of [9, Theorem 4.3] relied
on the approximation of IMNA diffusion processes by the finite-alleles Wright–Fisher model.
However, a finite-dimensional version of the two-parameter model is yet to be found. Thanks
to the correlation measure, we find the corresponding two-parameter result, which makes it
possible for us to compare the sampling formula at a finite time with the sampling formula at
the stationary state.

Finally, in Section 5 we consider a nonneutral model incorporating selection. In the classic
Wright–Fisher model with selection, the stationary distribution is shown to possess a density
esH2(X)/C with respect to the neutral case, where H2 = ∑

X2
i is the homozygosity function,

s ∈ R denotes the selection intensity, and C is the normalization constant. The density follows
from the assumption that all the homozygotes (pairs of alleles of the same type) have equal
fitness 1 + s and all the heterozygotes (pairs of alleles with different types) have fitness 1.
In the infinite-alleles model with selection, the stationary distribution PDs,q(θ) is absolutely
continuous with respect to the Poisson–Dirichlet distribution PD(θ), and its Radon–Nikodym
derivative is

esHq(X)

C
, X = (X1, X2, . . .) ∈ ∇∞,

where Hq(X) = ∑
X
q
i , q = 2, 3, . . . , denotes the qth order homozygosity. Given this distri-

bution, Handa [10] considered the more general partition structure

Pθ,s,q(An = a) = E[esHq(X)ψa(X)]
E[esHq(X)] ,
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where

ψa(x) = n!
n1! · · · nk! a1! · · · an!

∑
i1,...,ik �=

x
n1
i1

· · · xnkik (1.3)

and
∑
i1,...,ik �= indicates that the sum is taken over all k-tuples of distinct indices. The expectation

is taken with respect to the PD(θ) distribution. Because of the conclusion in Section 3, we obtain
the correlation function and Laplace transform in the selection case.

2. Preliminaries and notation

First we introduce some definitions in the theory of point processes, which can be found
in [1]. The random element (Xi)∞i=1 governed by the PD(α, θ) distribution can be viewed as
a random point process ξ := ∑∞

i=1 δXi , which is called the (two-parameter) Poisson–Dirichlet
point process with parameters (α, θ), or simply the PD(α, θ) process in [11]. For any positive
integer n, the nth correlation measure of ξ , if it exists, is defined to be a σ -finite Borel measure
µn such that, for any nonnegative measurable function f on Rn,

E

[ ∑
i1,...,in �=

f (Xi1 , . . . , Xin)

]
=

∫
Rn

f (x1, . . . , xn) µn(dx1 · · · dxn),

where
∑
i1,...,in �= denotes that the sum is taken over all n-tuples of distinct indices. If µn is

absolutely continuous with respect to the n-dimensional Lebesgue measure, the density is called
the nth correlation function of ξ .

It is also worth noting that the sampling formula (1.2) is equivalent to the following statement:
given an arbitrary partition (n1, . . . , nk) of n, we have

Eα,θ

[ ∑
i1,...,ik �=

X
n1
i1

· · ·Xnkik
]

=
∏k−1
l=0 (θ + lα)

θ(n)

k∏
i=1

(1 − α)(ni−1), (2.1)

where Eα,θ means that the expectation is taken with respect to the PD(α, θ) distribution. This
statement is key to showing our first result for the correlation function of the PD(α, θ) process
in the next section.

3. Sampling formula and Laplace transform

Theorem 3.1. Suppose that the sampling formula (1.2), which is equivalent to (2.1), holds
for a random element (Xi)∞i=1 ∈ ∇∞. Then the nth correlation function of the point process
ξ = ∑∞

i=1 δXi for each k = 1, 2, . . . is given by

qk(x1, . . . , xk) = ck,α,θ

k∏
i=1

x
−(α+1)
i

(
1 −

k∑
j=1

xj

)θ+αk−1

1	k (x1, . . . , xk), (3.1)

where

	k =
{
(x1, . . . , xk) : x1 ≥ 0, . . . , xk ≥ 0,

k∑
i=1

xi ≤ 1

}

and

ck,α,θ =
k∏
i=1


(θ + 1 + (i − 1)α)


(1 − α)
(θ + iα)
.
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Proof. In fact, we need only show that, for any nonnegative measurable function f (x1, . . . ,

xk) on 	k , the identity

E

[ ∑
i1,...,ik �=

f (Xi1 , . . . , Xik )

]
=

∫
	k

f (x1, . . . , xk)qk(x1, . . . , xk) dx1 · · · dxk (3.2)

holds. Set f (x1, . . . , xk) = x
n1
1 · · · xnkk . Then the right-hand side of (3.2) is equal to

ck,α,θ

∫
	k

k∏
i=1

x
ni−α−1
i

(
1 −

k∑
j=1

xj

)θ+αk−1

dx1 · · · dxk

=
k∏
i=1


(θ + 1 + (i − 1)α)


(1 − α)
(θ + iα)

∏k
i=1 
(ni − α)
(θ + kα)


(θ + n)

=
∏k
i=1(1 − α)(ni−1)

∏k−1
i=0 (θ + iα)

θ(n)
,

which, upon combining with (2.1), indicates that (3.2) holds for all polynomial functions on	k.
Let L be the set of all the nonnegative functions satisfying (3.2). It is easy to check that L is a
λ-system, which means that L satisfies the following three conditions:

1. 1 ∈ L;

2. L is closed under a finite linear combination;

3. If fn ∈ L and fn ↑ f , then f ∈ L.

It suffices to show that L contains all the nonnegative bounded continuous functions on	k by
the monotone theorem.

Since	k is compact, by the Stone–Weierstrass theorem, any continuous functionf ∈ C(	k)
can be approximated by a sequence of polynomial functions uniformly. Thus, for any nonnega-
tivef ∈ C(	k), there exists a sequence of polynomials {Bm} such that sup	k |Bm(x)−f (x)| →
0 as m → ∞. Without loss of generality, we can assume that the sequence {Bm} is also
nonnegative. We consider the following two cases.

Case 1:
∫
	k
f (x1, . . . , xk)qk(x1, . . . , xk) dx1 · · · dxk < ∞. Denote the interior of 	k by

	◦
k, and set Qk ∩	◦

k = {q1, q2, . . .}, since it is a countable set. For any ε > 0 and q1 =
(q11, . . . , q1k), since f (q1) < f (q1)+ ε

∏k
j=1 q1j andBm(q1) → f (q1),we can find a subse-

quence ofBm, denoted byB1m, such thatB1m(q1) ≤ f (q1)+ ε
∏k
j=1 q1j . For the same reason,

we can obtain another subsequence ofB1m,denoted byB2m, forq2 such thatB2m(q2) ≤ f (q2)+
ε
∏k
j=1 q2j . Repeating this process for each qi and using the diagonal method, we can obtain a

sequence which we still call Bm such that Bm(qi ) ≤ f (qi )+ ε
∏k
j=1 qij for any i = 1, 2, . . . .

By the continuity of Bm we have Bm(x) ≤ f (x)+ ε
∏k
j=1 xj for all x = (x1, . . . , xk) ∈ 	◦

k.

Since
∫
	◦
k
(f (x)+ ε

∏k
j=1 xj )qk(x1, . . . , xk) dx1 · · · dxk < ∞, by the dominated theorem we

obtain ∫
	◦
k

f (x)qk(x) dx = lim
m→∞

∫
	◦
k

Bm(x)qk(x) dx.
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On the other hand, we have
∫
	k
f (x)qk(x) dx = ∫

	◦
k
f (x)qk(x) dx and

∫
	k
Bm(x)qk(x) dx =∫

	◦
k
Bm(x)qk(x) dx, since the boundary of 	k has zero Lebesgue measure. Therefore,

lim
m→∞ E

[ ∑
i1,...,ik �=

Bm(Xi1 · · ·Xik )
]

= lim
m→∞

∫
	k

Bm(x)qk(x) dx

= lim
m→∞

∫
	◦
k

Bm(x)qk(x) dx

=
∫
	◦
k

f (x)qk(x) dx

=
∫
	k

f (x)qk(x) dx.

Following Fatou’s lemma, we have

E

[ ∑
i1,...,ik �=

f (Xi1 , . . . , Xik )

]
≤ lim
m→∞ E

[ ∑
i1,...,ik �=

Bm(Xi1 · · ·Xik )
]
. (3.3)

Since Bm(Xi1 · · ·Xik ) ≤ f (Xi1 , . . . , Xik )+ ε
∏k
j=1Xij almost surely,

lim
m→∞ E

[ ∑
i1,...,ik �=

Bm(Xi1 · · ·Xik )
]

≤ E

[ ∑
i1,...,ik �=

f (Xi1 , . . . , Xik )

]
+ ε.

Letting ε ↓ 0 and combining with (3.3), we have

E

[ ∑
i1,...,ik �=

f (Xi1 , . . . , Xik )

]
= lim
m→∞ E

[ ∑
i1,...,ik �=

Bm(Xi1 · · ·Xik )
]
,

which gives the identity
∫
	k
f (x)qk(x) dx = E[∑i1,...,ik �= f (Xi1 , . . . , Xik )].

Case 2:
∫
	n
f (x)qn(x) dx = ∞. By Fatou’s lemma we have

lim
m→∞

∫
	n

Bm(x)qn(x) dx ≥
∫
	n

f (x)qn(x) dx

and

lim
m→∞

∫
	n

Bm(x)qn(x) dx = lim
m→∞ E

[ ∑
i1,...,ik �=

Bm(Xi1 · · ·Xik )
]

= ∞.

By the same method as above we can find a subsequence of Bm which we still denote by Bm
such that Bm(x) ≤ f (x)+ ∏n

j=1 xj for all x = (x1, . . . , xn) ∈ 	◦
n. So

Bm(Xi1 · · ·Xik ) ≤ f (Xi1 , . . . , Xik )+ 1 almost surely,

and

lim
m→∞ E

[ ∑
i1,...,ik �=

Bm(Xi1 · · ·Xik )
]

≤ E

[ ∑
i1,...,ik �=

f (Xi1 , . . . , Xin)

]
+ 1.

Thus, E[∑i1,...,in �= f (Xi1 , . . . , Xik )] = ∞.
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Since we now know the correlation function of the point process ξ , we can derive the Laplace
transform of the probability generating function as shown in Theorem 3.1 of [11].

Theorem 3.2. ([11].) Suppose that g : (0,∞) → C is a measurable function such that

λα(g) := inf

{
λ > 0 :

∫ ∞

0

e−λz

zα+1 |g(z)| dz < ∞
}
< ∞.

Set

λ∗
α(g) = inf

{
λ > λα(g) : Cα

λα

∫ ∞

0

e−λz

zα+1 |g(z)| dz ∈ C \ [1,∞)

}
,

so that in particular λ∗
0(g) = λ0(g). The correlation measure of ξ = ∑∞

i=1 δXi is given by
(3.1). Then

E

[ ∞∏
i=1

(1 + |g(sXi)|)
]
< ∞

for almost every s > 0, and, for λ > λ∗
α(g),

λθ


(θ + 1)

∫ ∞

0
sθ−1e−λs E

[ ∞∏
i=1

(1 + g(sXi))− 1

]
ds

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

θ
exp

(
θ

∫ ∞

0

e−λz

z
g(z) dz

)
− 1

θ
, α = 0, θ > 0,

1

θ

(
1 − Cα

λα

∫ ∞

0

e−λz

zα+1 g(z) dz

)−θ/α
− 1

θ
, 0 < α < 1, θ �= 0,

− 1

α
log

(
1 − Cα

λα

∫ ∞

0

e−λz

zα+1 g(z) dz

)
, 0 < α < 1, θ = 0.

As a corollary of Theorem 3.2, we have the following result for the sampling formula. It
implies that the sampling formula (1.2) and the Laplace transform of the PD(α, θ) point process
given in Theorem 3.2 are equivalent.

Corollary 3.1. Suppose that the Laplace transform given in Theorem 3.2 holds for sufficiently
large λ > 0. Then the sampling formula corresponding to X = (X1, X2, . . .) ∈ ∇∞ coincides
with Pitman’s sampling formula (1.2), which is equal to (2.1).

Proof. Using the uniqueness of the Laplace transformation, or Lemma 3.1 of [11], and
taking its inverse, we have

F(s) = E

[ ∞∏
i=1

(g(sXi)+ 1)

]
− 1

=
∞∑
n=1

cn,α,θ

n!
∫
	n

n∏
i=1

g(sxi)

xα+1
i

(
1 −

n∑
j=1

xj

)θ+αn−1

dx1 · · · dxn

for the function g(z) which satisfies the condition that there exists some λ > 0 such that∫ ∞
0 (e−λz/zα+1)|g(z)| dz < ∞. Set s = 1 and g(z) = t1z

n1 + · · · + tkz
nk , where n1, . . . ,

nk ≥ 1. It is obvious that
∫ ∞

0 (e−λz/zα+1)|g(z)| dz < ∞ for all λ > 0. Furthermore,

∂k

∂t1 · · · ∂tk
∣∣∣∣
t1=···=tk=0

∞∏
i=1

(1 + g(Xi)) =
∑

i1,...,ik �=
X
n1
i1

· · ·Xnkik .
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Therefore,

E

[ ∑
i1,...,ik �=

X
n1
i1

· · ·Xnkik
]

= ∂k

∂t1 · · · ∂tk
∣∣∣∣
t1=···=tk=0

E

[ ∞∏
i=1

(1 + g(Xi))

]

= ∂k

∂t1 · · · ∂tk
∣∣∣∣
t1=···=tk=0

×
[

1 +
∞∑
n=1

cn,α,θ

n!
∫
	n

n∏
i=1

g(sxi)

xα+1
i

(
1 −

n∑
j=1

xj

)θ+αn−1

dx1 · · · dxn

]

=
∞∑
n=1

cn,α,θ

n!
∫
	n

∂k

∂t1 · · · ∂tk
∣∣∣∣
t1=···=tk=0

n∏
i=1

g(sxi)

xα+1
i

(
1 −

n∑
j=1

xj

)θ+αn−1

dx1 · · · dxn

= ck, α,θ

k!
∫
	k

k!
n∏
i=1

x
ni−α−1
i

(
1 −

n∑
j=1

xj

)θ+αn−1

dx1 · · · dxn

= ck,α,θ

(n1 − α) · · ·
(nk − α)
(θ + kα)


(θ + n)

=
∏k
i=1(1 − α)(ni−1)

θ(n)

k−1∏
l=0

(θ + lα),

which is exactly (2.1).

4. The IMNA diffusion process

As mentioned in the introduction, the Poisson–Dirichlet distribution PD(θ) is the stationary
distribution of the IMNA process X(t) with generator

L = 1

2

∞∑
i,j=1

xi(δij − xj )
∂2

∂xi∂xj
− θ

2

∞∑
i=1

xi
∂

∂xi
,

whose domain is D(L) = span{1, ϕ2, ϕ3, . . .} ⊂ C(∇∞), where ϕn(x) = ∑∞
i=1 x

n
i is defined

on ∇∞ and extends continuously to its closure ∇∞. In [2] it was shown that the transition
probability P(t, x, A) of X(t) starting from x = (x1, x2, . . .) ∈ ∇∞ is absolutely continuous
with respect to the stationary distribution PD(θ). Moreover, the transition density function
q(t, x, y) is given as

q(t, x, y) = 1 +
∞∑
m=2

2m− 1 + θ

m! e−λmt

×
m∑
n=0

(−1)m−n
(
m

n

)
(n+ θ)(m−1)pn(x, y), x, y ∈ ∇∞, (4.1)
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where λm = 1
2m(m− 1 + θ) and pn is defined as

pn(x, y) =
∑

{n : |n|=n}

ψn(x)ψn(y)

E[ψn(z)] ,

where ψn is as defined in (1.3) and the expectation E[ψn(z)] is taken with respect to the PD(θ)
distribution, which can be given by Ewens’ sampling formula (1.1). The type of expansion in
(4.1) was first derived by Griffiths [8]. A very similar transition function was also obtained by
Ethier and Griffiths [3] for the labeled version of the IMNA model, which is a measure-valued
process called the Fleming–Viot process with parent-independent mutation. Here, we consider
the Laplace transform of X(t) = (X1(t), X2(t), . . .) with initial value x.

Theorem 4.1. Suppose that g(z) is a measurable function such that

λ(g) := inf

{
λ > 0 :

∫ ∞

0

e−λz

z
|g(z)| dz < ∞

}
< ∞.

Then, for fixed time t, the Laplace transform of the IMNA process X(t) starting from x ∈ ∇∞
is given by

∫ ∞

0
e−λτ τ θ−1 Ex

[ ∞∏
i=1

(1 + g(τXi(t)))

]
dτ

= 
(θ)

λθ
exp

(
θ

∫ ∞

0

e−λz

z
g(z) dz

)

+
∞∑
m=2

2m− 1 + θ

m! e−λmt
m∑
n=0

(−1)m−n
(
m

n

)
(n+ θ)(m−1)

×
∑

n=(n1,...,nk)∑k
i=1 ni=n

ψn(x)

[

(θ)

λθ
+ ESF(n)−1

∞∑
�=1

1

�!
�∧k∑
r=0

∑
B⊂{1,...,k}

|B|=r

(
�

r

)
θk+�−rHk,�,B

]
,

where

Hk,�,B =
∫
(0,∞)k+�−r

y
n1
1 · · · ynkk

(∏
j∈B

g(yj )

)
g(yk+1) · · · g(yk+�−r )

(k+�−r∏
i=1

y−1
i e−λyi

)

× dy1 · · · dyk+�−r
∫ ∞

0
e−λτ

(
τ +

k+�−r∑
j=1

yj

)−n
τ θ−1 dτ

and ESF(n) is given by Ewens’ sampling formula as

ESF(n) = θk

θ(n)
(n1 − 1)! · · · (nk − 1)!.
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Proof. For an arbitrary fixed time t > 0,

Ex

[ ∞∏
i=1

(1 + g(τXi(t)))

]
= E

[ ∞∏
i=1

(1 + g(τYi))q(t, x, Y )

]

= E

[ ∞∏
i=1

(1 + g(τYi))

]

+
∞∑
m=2

2m− 1 + θ

m! e−λmt
m∑
n=0

(−1)m−n
(
m

n

)
(n+ θ)(m−1)

× E

[ ∞∏
i=1

(1 + g(τYi))pn(x, Y )

]
,

where Y = (Y1, Y2, . . .) is distributed as PD(θ). Since
∞∏
i=1

(1 + g(τYi))pn(x, Y ) =
∑

n=(n1,...,nk )∑k
i=1 ni=n

∞∏
i=1

(1 + g(τYi))φn(Y )ψn(x)ESF(n)−1,

where
φn(Y ) =

∑
i1,...,ik �=

Y
n1
i1

· · ·Ynkik ,

we have
∞∏
i=1

(1 + g(τYi))φn(Y ) =
∞∏
i=1

(1 + g(τYi))
∑

i1,...,ik �=
Y
n1
i1

· · ·Ynkik

=
∑

i1,...,ik �=
Y
n1
i1

· · ·Ynkik +
∞∑
�=1

1

�!
∑

j1,...,j� �=
i1,...,ik �=

g(τYj1) · · · g(τYj�)Y n1
i1

· · ·Ynkik

=
∞∑
�=0

1

�!
�∧k∑
r=0

∑
B⊂{1,...,k}

|B|=r

�!
(�− r)!

×
∑

i1,...,ik+�−r �=
Y
n1
i1

· · ·Ynkik
(∏
j∈B

g(τYij )

)
g(τYik+1) · · · g(τYik+�−r ).

Using the kth correlation measure µk obtained in last section, we have

E

[ ∞∏
i=1

(1 + g(τYi))φn(Y )

]

= ESF(n)+
∞∑
�=1

1

�!
�∧k∑
r=0

∑
B⊂{1,...,k}

|B|=r

�!
(�− r)!

×
∫
	k+�−r

y
n1
1 · · · ynkk

(∏
j∈B

g(τyj )

)
g(τyk+1) · · · g(τyk+�−r )

× µk+�−r (dy1 · · · dyk+�−r )

https://doi.org/10.1239/aap/1324045699 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1324045699


1076 F. XU

= ESF(n)+
∞∑
�=1

1

�!
�∧k∑
r=0

∑
B⊂{1,...,k}

|B|=r

�!
(�− r)!θ

k+�−r

×
∫
	k+�−r

y
n1
1 · · · ynkk

(∏
j∈B

g(τyj )

)
g(τyk+1) · · · g(τyk+�−r )

×
(

1 −
k+�−r∑
i=1

yi

)θ−1 dy1 · · · dyk+�−r
y1 · · · yk+�−r .

Define

Hk,�,B :=
∫ ∞

0
e−λτ τ θ−1 dτ

∫
	k+�−r

y
n1
1 · · · ynkk

(∏
j∈B

g(τyj )

)
g(τyk+1) · · · g(τyk+�−r )

×
(

1 −
k+�−r∑
i=1

yi

)θ−1 dy1 · · · dyk+�−r
y1 · · · yk+�−r .

Using Fubini’s theorem, we have

|Hk,�,B | ≤ 
(θ)

(∫ ∞

0

e−λz|g(z)|
z

dz

)�
.

Consequently, the series

∞∑
�=1

1

�!
�∧k∑
r=0

∑
B⊂{1,...,k}

|B|=r

�!
(�− r)!θ

k+�−rHk,�,B

is absolutely convergent and upper bounded by 
(θ)eθMθk(1 +M)k , where

M =
∫ ∞

0
e−λx |g(x)|x−1 dx < ∞.

In addition, we obtained previously
∫ ∞

0
e−λτ τ θ−1 E

[ ∞∏
i=1

(1 + g(τYi))

]
dτ = 
(θ)

λθ
exp

(
θ

∫ ∞

0

e−λz

z
g(z) dz

)
.

Therefore,
∫ ∞

0
e−λτ τ θ−1 Ex

[ ∞∏
i=1

(1 + g(τXi(t)))

]
dτ

=
∫ ∞

0
e−λτ τ θ−1 E

[ ∞∏
i=1

(1 + g(τYi))

]
dτ

+
∞∑
m=2

2m− 1 + θ

m! e−λmt
m∑
n=0

(−1)m−n
(
m

n

)
(n+ θ)(m−1)

×
∫ ∞

0
e−λτ τ θ−1 E

[ ∞∏
i=1

(1 + g(τYi))pn(x, Y )

]
dτ
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= 
(θ)

λθ
exp

(
θ

∫ ∞

0

e−λz

z
g(z) dz

)

+
∞∑
m=2

2m− 1 + θ

m! e−λmt
m∑
n=0

(−1)m−n
(
m

n

)
(n+ θ)(m−1)

×
∑

n=(n1,...,nk )∑k
i=1 ni=n

ψn(x)

[

(θ)

λθ
+ ESF(n)−1

∞∑
�=1

1

�!
�∧k∑
r=0

∑
B⊂{1,...,k}

|B|=r

�!
(�− r)!θ

k+�−rHk,�,B
]
,

where

Hk,�,B =
∫
(0,∞)k+�−r

y
n1
1 · · · ynkk

(∏
j∈B

g(yj )

)
g(yk+1) · · · g(yk+�−r )dy1 · · · dyk+�−r

y1 · · · yk+�−r

×
∫ ∞

∑k+�−r
j=1

e−λτ τ−n
(
τ −

k+�−r∑
j=1

yj

)θ−1

dτ

=
∫
(0,∞)k+�−r

y
n1
1 · · · ynkk

(∏
j∈B

g(yj )

)
g(yk+1) · · · g(yk+�−r )

×
k+�−r∏
i=1

(y−1
i e−λyi ) dy1 · · · dyk+�−r

∫ ∞

0
e−λτ

(
τ +

k+�−r∑
j=1

yj

)−n
τ θ−1 dτ.

The upper bound of
∞∑
�=1

1

�!
�∧k∑
r=0

∑
B⊂{1,...,k}

|B|=r

�!
(�− r)!θ

k+�−rHk,�,B

guarantees the absolute convergence of the above series.

4.1. Central limit theorem for the IMNA process

The Laplace transform obtained in Theorem 4.1 enables us to derive the central limit theorem
(CLT) associated with the distribution of the IMNA process X(t).

Theorem 4.2. For any time t > 0, set

Wp(t) = √
θ

(
θp−1

(p − 1)!Hp(t)− 1

)
,

where Hp(t) = ∑∞
i=1Xi(t)

p denotes the pth homozygosity at time t for p = 2, 3, . . .. Then,
as θ → ∞, Wp(t) converges in law to a normal random variable with mean 0 and variance
σ 2
p = 
(2p)/
(p)2 − p2, which is strictly positive.

Proof. To prove the CLT for Wp(t), it suffies to show that the characteristic function of
Wp(t), which is ψp(x) = E[exp(ixWp(t))], converges to exp(−σ 2

px
2/2) as θ → ∞.

Recall from Theorem 4.1 that, for any fixed time t > 0, we have

1


(θ)

∫ ∞

0
e−τ τ θ−1 Ex

[ ∞∏
i=1

(1 + g(τXi(t)))

]
dτ

= exp

(
θ

∫ ∞

0

e−z

z
g(z) dz

)
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+
∞∑
m=2

2m− 1 + θ

m! e−λmt
m∑
n=0

(−1)m−n
(
m

n

)
(n+ θ)(m−1)

∑
n=(n1,...,nk )∑k
i=1 ni=n

ψn(x)

×
[

1 + 1


(θ)
ESF(n)−1

∞∑
�=1

1

�!
�∧k∑
r=0

∑
B⊂{1,...,k}

|B|=r

(
�

r

)
θk+�−rHk,�,B

]
, (4.2)

where Hk,�,B and ESF(n) are as defined in Theorem 4.1. Set g(z) = exp(c1z
p + d1z) − 1,

where c1 = ix/
(p)
√
θ and d1 = −ix/

√
θ for x ∈ R. Then Ex[∏∞

i=1(1 + g(τXi(t)))] =
Ex[exp(c1τ

pHp(t)+ d1τ)] and the first term of (4.2) becomes

I = exp

(
θ

∫ ∞

0

e−z

z

(
exp

(
ix√
θ

zp


(p)
− ix√

θ
z

)
− 1

)
dz

)

= exp

(
θ

∫ ∞

0

e−z

z

[(
ix√
θ

zp


(p)
− ix√

θ
z

)
− x2

2θ

(
zp


(p)
− z

)2]
dz+ o(1)

)

= exp

(
−x

2

2
(σ 2
p + (p − 1)2)+ o(1)

)
as θ → ∞.

Next, we show that the second term of (4.2), i.e. the series, goes to 0 as θ → ∞. Since
|Hk,�,B | ≤ 
(θ)(

∫ ∞
0 (e−z|g(z)|/z) dz)�, we have

|Hk,�,B | ≤ 
(θ)

(∫ ∞

0

e−z

z

∣∣∣∣ x√
θ

(
zp


(p)
− z

)∣∣∣∣ dz

)�
≤ 
(θ)

(
2x√
θ

)�
.

For all θ ≥ 1, we have

∣∣∣∣
∞∑
�=1

1

�!
�∧k∑
r=0

∑
B⊂{1,...,k}

|B|=r

�!
(�− r)!

θk+�−r


(θ)
Hk,�,B

∣∣∣∣ ≤
∞∑
�=1

1

�!
�∧k∑
r=0

∑
B⊂{1,...,k}

|B|=r

�!
(�− r)!θ

k+�−r
(

2x√
θ

)�

= θk
∞∑
�=1

�∧k∑
r=0

∑
B⊂{1,...,k}

|B|=r

1

(�− r)!θ
�−r

(
2x√
θ

)�

= θk
k∑
r=0

(
k

r

) ∞∑
�=r∨1

1

(�− r)!θ
�−r

(
2x√
θ

)�

≤ θke2x
√
θ

k∑
r=0

(
k

r

)(
2x√
θ

)r

= θke2x
√
θ

(
1 + 2x√

θ

)k

≤ θne2x
√
θ (1 + 2x)n.

Using the facts that

∑
n=(n1,...,nk )∑k
i=1 ni=n

ψn(x) = 1 and ESF(n) = (n1 − 1)! · · · (nk − 1)! θ
k

θ(n)
,
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we have ∑
n=(n1,...,nk )∑k
i=1 ni=n

ψn(x)ESF(n)−1 ≤ θ(n).

Thus, the second term of (4.2) is estimated as

|II| ≤
∞∑
m=2

2m− 1 + θ

m! e−λmt
m∑
n=0

(
m

n

)
(n+ θ)(m−1)

+
∞∑
m=2

2m− 1 + θ

m! e−λmt
m∑
n=0

(
m

n

)
(n+ θ)(m−1)θ(n)θ

ne2x
√
θ .

If we can show that the above two series are uniformly convergent then they converge to 0 as
θ → ∞, since every term in the series goes to 0.

First, we can see that

∞∑
m=2

2m− 1 + θ

m! e−λmt
m∑
n=0

(
m

n

)
(n+ θ)(m−1) ≤

∞∑
m=2

(2m− 1 + θ)(m+ θ)(m−1)

m! e−λmt2m

=
∞∑
m=2

(m+ θ)(m)

m! e−λmt2m.

Since

(m+ θ)(m)e
−λmt ≤ (θ + 2m− 1)me−m(m−1+θ)t/2 ≤

(
2(θ + 2m− 1)

t (m− 1 + θ)
e−1

)m
≤

(
4

te

)m
,

we have

∞∑
m=2

2m− 1 + θ

m! e−λmt
m∑
n=0

(
m

n

)
(n+ θ)(m−1) ≤

∞∑
m=2

(
4

te

)m 1

m! ≤ exp

(
8

te

)
≤ ∞,

i.e. the series converges uniformly. Similarly, we have the estimation of the second term:

∞∑
m=2

2m− 1 + θ

m! e−λmt
m∑
n=0

(
m

n

)
(n+ θ)(m−1)θ(n)θ

ne2x
√
θ

≤
∞∑
m=2

2m− 1 + θ

m! e−λmt
m∑
n=0

(
m

n

)
θ(n+m−1)θ

ne2x
√
θ

≤
∞∑
m=2

θ(2m)

m! e−λmt (θ + 1)me2x
√
θ

and

θ(2m)(θ + 1)me−m(m−1+θ)t/2+2x
√
θ ≤ ((θ + 2m− 1)(θ + 1)e−(m−1+θ)t/2+2x

√
θ/m)m ≤ Cm.

The second series in II is uniformly convergent. Therefore, the right-hand side of the Laplace
transform converges to exp(−x2(σ 2

p + (p − 1)2)/2).
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On the other hand, the left-hand side becomes

1


(θ)

∫ ∞

0
e−τ τ θ−1 Ex[exp(c1τ

pHp(t)+ d1τ)] dτ

=
(∫ ∞

0
e−θτ τ θ−1 Ex[exp(c1θ

pτpHp(t)+ d1θτ)] dτ

)(∫ ∞

0
τ θ−1e−θτ dτ

)−1

=
(∫ ∞

0
e−θh(τ)τ−1ψp(xτ

p) exp(ix
√
θ(τp − τ)) dτ

)(∫ ∞

0
τ θ−1e−θh(τ) dτ

)−1

,

where h(τ) = τ − log τ − 1. So we need only to prove that
∫ ∞

0 e−θh(τ)τ−1ψp(xτ
p) exp(ix

√
θ(τp − τ)) dτ∫ ∞

0 τ θ−1e−θτ dτ
− ψp(x)e

−(p−1)2x2/2 → 0.

The rest of the proof follows that of Theorem 6.2 of [11]. All that remains is to show that
supθ>1 E[|Wp(t)|] < ∞. Since q(t, x, y) → 1 as θ → ∞, we have supθ>1 q(t, x, y) ≤ K for
all θ ≥ 1. Since

(Ex[|Wp(t)|])2 ≤ Ex[|Wp(t)|2] = E[W 2
pq(t, x, Y )

2] ≤ K2(var(Wp)+ (E[Wp])2),
whereWp is defined asWp(t)with the replacement of (Xi(t))∞i=1 byY = (Yi)

∞
i=1 with the PD(θ)

distribution, then var(Wp)+ (E[Wp])2 → σ 2
p as θ → ∞, and supθ>1 E[|Wp(t)|] < ∞.

4.2. Two-parameter extension of IMNA process

In [6] and [16] the authors used different methods to construct a two-parameter version
of the IMNA model. Specifically, the two-parameter infinite-alleles diffusion is an infinite-
dimensional symmetric diffusion process taking values in ∇∞ with generator

Lα,θ = 1

2

{ ∞∑
i,j=1

xi(δij − xj )
∂2

∂xi∂xj
−

∞∑
i=1

(θxi + α)
∂

∂xi

}
, (4.3)

defined on the same domain of L. The process is shown to be reversible with respect to
the two-parameter Poisson–Dirichlet distribution PD(α, θ). Moreover, in a recent paper [7]
the transition function was proved to be of the same form as (4.1) in the IMNA model. We
need only to replace Ewens’ sampling formula in Pn(x, y) with Pitman’s sampling formula
(1.2). For the two-parameter Poisson–Dirichlet distribution, the CLT is established in [11],
which corresponds to the one-parameter case in [12]. Intuitively, the CLT should also be true
for the two-parameter process, as in the previous section. However, in this case it becomes
more complicated to use the Laplace transform to do the same estimation as in the proof of
Theorem 4.2.

On the other hand, the transient sampling distribution for the two-parameter diffusion model
can be found by using the correlation measure.

Theorem 4.3. Consider the two-parameter diffusion process X(t) with generator Lα,θ (4.3)
and initial value x = (x1, x2, . . .). The probability generating function E[∏n

i=1u
ai
i | X(0) =

x] of a sample a = (a1, a2, . . . , ar ) of size r at time t is the coefficient of ϕr in

G0 +
∞∑
m=2

2m− 1 + θ

m! e−λmt
m∑
n=0

(−1)m−n
(
m

n

)
(n+ θ)(m−1)Gn,
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where

G0 = G1 = r!
θ(r)

(
1 − α

r∑
l=1

(1 − α)(l−1)ulϕ
l

l!
)−θ/α

,

and, for m ≥ 2,

Gm = r! θn

θ(n+r)

∑
n=(n1,...,nk)

ψn(x)

(
1 − α

r∑
l=1

(1 − α)(l−1)ulϕ
l

l!
)(−k+θ/α)

×
k∏
i=1

(
1 +

r∑
l=1

(ni − α)(l)ϕ
lul

l!
)
.

Proof. Since the probability generating function is r! times the coefficient of ϕr in

E

[ ∞∏
i=1

(
1 +

r∑
l=1

(ϕXi(t))
lul

l!
) ∣∣∣∣ X(0) = x

]
,

owing to the expression of the transition density q(t, x, y), we need only to compute

E

[ ∞∏
i=1

(
1 +

r∑
l=1

(ϕXi)
lul

l!
)]

(4.4)

and

PSF(n)−1 E

[
ψn(X)

∞∏
i=1

(
1 +

r∑
l=1

(ϕXi)
lul

l!
)]
, (4.5)

where n = (n1, . . . , nk),

PSF(n) = θ(θ + α) · · · (θ + (k − 1)α)

θ(n)
(1 − α)(n1−1) · · · (1 − α)(nk−1)

and the expectation is taken with respect to the PD(α, θ) distribution. For simplicity, we only
compute the term in (4.4). The term in (4.5) can be computed using a similar argument to that
used in the proof of Theorem 4.1. Setting g(z) = ∑n

l=1 ϕ
lzlul/ l! and using the correlation

function obtained in Theorem 3.1, we have

E

[ ∞∏
i=1

(
1 +

r∑
l=1

(ϕXi(t))
lul

l!
)]

= 1 +
∞∑
n=1

cn,α,θ

n!
∫
	n

n∏
i=1

g(vi)

v1+α
i

(
1 −

n∑
j=1

vj

)θ+αn−1

dv1 · · · dvn

= 1 +
∞∑
n=1

cn,α,θ

n!
r∑

l1,...,ln=1

ϕl1+···+lnul1 · · · uln
l1! · · · ln!

× 
(l1 − α) · · ·
(ln − α)
(θ + αn)


(l1 + · · · + ln + θ)

= 1 +
∞∑
n=1


(θ)αn

n!
(
θ

α

)
(n)

r∑
l1,...,ln=1

ϕl1+···+lnul1 · · · uln(1 − α)(l1−1) · · · (1 − α)(ln−1)

l1! · · · ln!
(l1 + · · · + ln + θ)
.
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Therefore, the coefficient of ϕr in the above corresponds to the coefficient of ϕr in the Taylor
expansion of G0/θ(r). It is also worth noting that, by letting α → 0, the limit of G0 is
r! θ−1

(r) exp(θ
∑r
l=1 ulϕ

l/ l), which coincides with the result obtained by Griffiths [9]. This is
also true for Gm, m ≥ 2.

5. Symmetric selection

The Poisson–Dirichlet distribution with selection, PDs,q(θ), is defined as an absolutely
continuous distribution with respect to the Poisson–Dirichlet distribution PD(θ) with density

PDs,q(θ)(dx)

PD(θ)(dx)
= esHq(x)

C
, x = (x1, x2, . . .) ∈ ∇∞,

where s is an arbitrary real number, C is the normalization constant, and Hq(x) = ∑
x
q
i , q =

2, 3, . . . . The sampling formula with selection was obtained in [10] as

Pθ,s,q(n1, . . . , nk) = EPD(θ)[esHq(X)ψn(X)]
EPD(θ)[esHq(X)]

= C−1θk
∞∑
l=0

θ l

l! Il(a),

where

Il(a) =
∫
	l+k

k∏
α=1

(xnαα esx
q
α )

k+l∏
α=k+1

(esx
q
α − 1)

(
1 −

k+l∑
β=1

xβ

)θ−1 dx1 · · · dxk+l
x1 · · · xk+l

and

C = E[esHq(X)] = 1 +
∞∑
l=1

θ l

l!
∫
	l

l∏
α=1

(esx
q
α − 1)

(
1 −

l∑
β=1

xβ

)θ−1 dx1 · · · dxl
x1 · · · xl .

Since the correlation measure and sampling formula are determined by each other, we can obtain
the correlation measure in the selection case. The proof is similar to that of Theorem 3.1. It
suffices to replace f by the polynomial functions in (3.2) and the correlation measure is found
as follows. Define

Jl(t) =
∫
	l

l∏
j=1

(est
qx
q
j − 1)

(
1 −

l∑
β=1

xβ

)θ−1 dx1 · · · dxl
x1 · · · xl and Fs(t) =

∞∑
l=0

θ l

l! Jl(t).

The correlation measure is given by

µk(dx1, . . . , dxk) = C−1θk
k∏
j=1

(esx
q
j x−1
j )

(
1 −

k∑
j=1

xj

)θ−1

× Fs

(
1 −

k∑
j=1

xj

)
1	k (x1, . . . , xk) dx1 · · · dxk.

We obtain the Laplace transform with selection in the next theorem.
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Theorem 5.1. Suppose that g(z) is a measurable function such that

λ(g) := inf

{
λ > 0 :

∫ ∞

0

e−λz

z
|g(z)| dz < ∞

}
< ∞.

The random element (Xi)∞i=1 has the PDs,q(θ) distribution. Then

∫ ∞

0
e−λt tθ−1 E

[ ∞∏
i=1

(1 + g(tXi))

]
dt = 
(θ)

λθ
+ C−1

∞∑
k=1

θk

k!Mk,

where

Mk =
∫
(0,∞)k

k∏
j=1

(g(xj )x
−1
j e−λxj ) dx1 · · · dxk

×
∫ ∞

0
e−λt tθ−1

k∏
j=1

exp

(
sx
q
j

(t + ∑k
j=1 xj )

q

)
Fs

(
t

t + ∑k
j=1 xj

)
dt.

Proof. Since we know the correlation measure, it is obvious that

E

[ ∞∏
i=1

(1 + g(tXi))

]
= 1 + C−1

∞∑
k=1

θk

k!
∫
	k

k∏
j=1

(esx
q
j g(txj )x

−1
j )

(
1 −

k∑
j=1

xj

)θ−1

× Fs

(
1 −

k∑
j=1

xj

)
dx1 · · · dxk.

Thus,

∫ ∞

0
e−λt tθ−1 E

[ ∞∏
i=1

(1 + g(tXi))

]
dt

= 
(θ)

λθ
+ C−1

∞∑
k=1

θk

k!
∫ ∞

0
e−λt tθ−1 dt

×
∫
	k

k∏
j=1

(esx
q
j g(txj )x

−1
j )

(
1 −

k∑
j=1

xj

)θ−1

Fs

(
1 −

k∑
j=1

xj

)
dx1 · · · dxk

= 
(θ)

λθ
+ C−1

∞∑
k=1

θk

k!
∫
(0,∞)k

k∏
j=1

(g(xj )x
−1
j e−λxj ) dx1 · · · dxk

×
∫ ∞

0
e−λt tθ−1

k∏
j=1

exp

(
sx
q
j

(t + ∑k
j=1 xj )

q

)
Fs

(
t

t + ∑k
j=1 xj

)
dt.

Since, for 0 < x < 1,

|esxq − 1| = xq
∣∣∣∣
∫ s

0
eux

q

du

∣∣∣∣ ≤ (1 ∨ es)xq |s|,
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we have

|Jl(t)| ≤
∫
	l

(1 ∨ esl)(tq |s|)l
l∏
i=1

x
q
i

(
1 −

l∑
i=1

xi

)θ−1 dx1 · · · dxl
x1 · · · xl

= (1 ∨ esl)(tq |s|)l 
(q)
l
(θ)


(ql + θ)
,

|Fs(t)| ≤
∞∑
l=0

θ l

l! |Jl(t)|

≤
∞∑
l=0

θ l(1 ∨ esl)(tq |s|)l
(q)l
(θ)
l!
(ql + θ)

≤ exp(K(1 ∨ esl)tq |s|
(q)θ1−q),

where K is a constant. Thus,

k∏
j=1

exp

(
sy
q
j

(t + ∑k
j=1 yj )

q

)∣∣∣∣Fs
(

t

t + ∑k
j=1 yj

)∣∣∣∣ ≤ m(θ, q, s),

and the second term in the above, i.e. the series, can be controlled by

m(θ, q, s)

∞∑
k=1

θk

k!
(∫ ∞

0
g(z)z−1e−λz dz

)k

(θ)

λθ
.

Since
∫ ∞

0 e−λx |g(x)|x−1 dx < ∞, the above series is absolutely convergent, which completes
the proof.

Remark. The above Laplace transform can also lead to the CLT which is parallel to The-
orem 4.2. However, the CLT associated with a more generalized selection under the two-
parameter case is considered in [20].
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