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Abstract Mukai’s program in [16] seeks to recover a K3 surface X from any curve C on it by exhibiting
it as a Fourier–Mukai partner to a Brill–Noether locus of vector bundles on the curve. In the case X
has Picard number one and the curve C ∈ |H| is primitive, this was confirmed by Feyzbakhsh in [11,
13] for g ≥ 11 and g �= 12. More recently, Feyzbakhsh has shown in [12] that certain moduli spaces of
stable bundles on X are isomorphic to the Brill–Noether locus of curves in |H| if g is sufficiently large.
In this paper, we work with irreducible curves in a nonprimitive ample linear system |mH| and prove
that Mukai’s program is valid for any irreducible curve when g �= 2, mg ≥ 11 and mg �= 12. Furthermore,
we introduce the destabilising regions to improve Feyzbakhsh’s analysis in [12]. We show that there are
hyper-Kähler varieties as Brill–Noether loci of curves in every dimension.

1. Introduction

Let Fg be the moduli stack of primitively polarised K3 surface (X,H) with H2 = 2g−2,

and let Pgm be the moduli stack of triples (X,H,C) such that (X,H) ∈Fg and C ∈ |mH|
a smooth curve of genus gm =m2(g−1)+1. There are natural forgetful maps
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Pgm

Mgm Fg,

Ψgm Φgm

where the fibre of Φgm over (X,H) ∈ Fg is an open subset of the linear system |mH|. In
recent years, there is a series of works studying the rational map Ψgm and its rational
section. For instance, Mukai has proved in [16] that the rational map Ψg := Ψgm=1

is

dominant if g ≤ 11 and g �= 10, while Ciliberto–Lopez–Miranda [8] showed that Ψg is

generically injective if g ≥ 11 and g �= 12. More generally, due to the results of [9] and the
recent work in Ciliberto–Dedieu–Sernesi [6, 5], the map Ψgm is generically finite when

mg≥ 11 and mg �=12. There are other approaches for the case m≥ 2, g≥ 8 or m≥ 5,g=7

(cf. [7, 14]).

On the other hand, Mukai has proposed a program in [18] to find the rational section
of Ψg by relating the K3 surface with the Brill–Noether locus of vector bundles on

curves. This has been confirmed by Mukai in [17] when g = 11 and later on Arbarello–

Bruno–Sernesi [1] generalised his result to the case g = 4k+ 3 for some k. In recent
years, Feyzbakhsh has verified this program in [11, 13] for all g ≥ 11 and g �= 12 by

using the Bridgeland stability conditions. In this paper, we would like to investigate the

rational section of the map Ψgm for arbitrary m ∈ Z>0 via Mukai’s program for curves in
nonprimitive classes.

Main results

Let (X,H) be a primitively polarised K3 surface of genus g with Picard number one.

Let H∗
alg(X)∼= Z⊕3 be the algebraic Mukai lattice, and let M(v) be the moduli space of

H -Gieseker semistable coherent sheaves on X with Mukai vector v = (r,cH,s) ∈H∗
alg(X).

For C ∈ |mH| an irreducible curve, let BNC(v) be the Brill–Noether locus of slope semi-

stable vector bundles on C with rank r, degree 2mc(g−1) and h0 ≥ r+s. The first main

result of this paper is:

Theorem 1.1. Assume g > 2. Let C ∈ |mH| be an irreducible curve. Then if mg ≥ 11
and mg �= 12, there exists a primitive Mukai vector v = (r,cH,s) with v2 = 0 such that the

restriction map

ψ : M(v)→BNC(v)

E �→ E|C
(1.1)

is an isomorphism.

As in [11], one can then reconstruct X as the moduli space of twisted sheaves on
BNC(v). Clearly, such reconstruction is unique for K3 surfaces in Fg of Picard number

one. Due to the results of [10], whenm> 1, generic curves in |mH| have maximal variation,

that is, the rational map

|mH|
Ψgm����� Mgm (1.2)
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is generically finite. One can also deduce the generic quasi-finiteness of Ψgm from
Theorem 1.1 when m > 1,g ≥ 3, mg ≥ 11 and mg �= 12. When gm < 11, the map Ψgm

is not generically quasi-finite and Mukai’s program will fail. We expect that Theorem 1.1

holds whenever gm ≥ 11. So far, the missing values of (g,m) are

(2,m) with m≥ 4, (3,3), (3,4), (4,2), (4,3), (5,2), (6,2).

A mysterious case is when g = 2, where our method fails for any m.
More generally, one may consider the restriction map (1.1) for v2 = 2n > 0. Most

recently, Feyzbakhsh [12] has generalised her construction in [11, 13] and showed that

for each Mukai vector v = (r,cH,s) satisfying

c < r, gcd(r,c) = gcd(c,s) = 1 and −2≤ v2 ≤−2+ r, (1.3)

the restriction gives an isomorphism M(v) ∼= BNC(v) when g is sufficiently large and

the class of C is primitive. As mentioned in [12], the analysis in [12] also works for the
nonprimitive case and one can actually show that Feyzbakhsh’s construction still gives

an isomorphism for C ∈ |mH| if g is sufficiently large (depending on r and m). This gives

many examples of Brill–Noether loci on curves as hyper-Kähler varieties of dimension
2g− 2r	 g

r 
. In this paper, we also improve her result (see Theorem 7.1) and obtain an

explicit condition of v for ψ being an isomorphism (see Theorem 7.3). As an application,

we show that one can construct hyper-Kähler varieties as the Brill–Noether loci of curves
in every dimension.

Theorem 1.2. For any n > 0 ∈ Z, there exists an integer N = N(n) satisfying that if

g >N , there is a primitive Mukai vector v ∈H∗
alg(X) with v2 =2n such that the restriction

map ψ :M(v)→BNC(v) is an isomorphism for all irreducible curves C on X.

In other words, the bound N does not depend on the class of C. This makes use of
the boundedness result of prime character nonresidues (See Lemma 8.2). The strategy

of our proof is similar to [11, 13, 12]. Roughly speaking, we prove that ψ will be a

well-defined and injective morphism if the Gieseker chambers for objects with Mukai
vector v and v(−m) := e−mHv are large enough, and ψ is bijective if further the Harder–

Narasimhan polygon of i∗F for F ∈BNC(v) achieves its maximum. The main ingredient is

the use of a wall-crossing argument to analyse the existence of walls. There are two crucial
improvement in our approach. One is that we find the strongest criterion (Proposition 3.4)

to characterise the stability conditions which are not lying on the wall of objects with a

given Mukai vector. This leads to a more explicit condition for ψ being an isomorphism.

The other one is that we develop a method in analysing the relative position of HN
polygons towards the surjectivity of ψ. This allows us to get a sharper bound of (g,m)

without using the computer program.

Organization of this paper

In Section 2, we review the basic knowledge of the Bridgeland stability condition on

K3 surfaces and the wall-chamber structure on a section. In Section 3, we introduce the

(strictly) destabilising regions Ω
(+)
v (−) of a Mukai vector v. They characterise the stability
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conditions which are not lying on the wall of objects in Db(X) with Mukai vector v. This
will play a key role in the proof of our main theorems.

In Section 4, we show that the map ψ : M(v) → BNC(v) is a well-defined morphism

and h0(X,E) = r+s for any E ∈M(v) if the positive integers r,c and s satisfy

gcd(r,c) = 1, r >
v2+2

2
and g−1≥

{
r, if v2 = 0;

max
{

r2

c > r, r2

mr−c

}
, if v2 > 0.

(1.4)

The first two assumptions provide that any stable sheaf in M(v) is locally free while
the third assumption essentially ensures that there is no wall between the large volume

limit and the Brill–Noether wall. As a by-product, we obtain a numerical criterion for

the injectivity of ψ.

Section 5 and Section 6 are devoted to studying the surjectivity of the restriction map
ψ. They contain the most technical part of this paper. In Section 5, we show that ψ is

surjective if the Harder–Narasimhan polygon of i∗F for arbitrary F ∈BNC(v) is maximal

when g is relatively large. It involves a dedicated analysis of the slope of destabilising
factors of i∗F via a geometric vision of the destabilising region. In Section 6, we analyse

the sharpness of HN-polygons for special Mukai vectors with zero square. The concept of

sharpness is used to detect how far the HN-polygon stays away from the convex polygon
given by the critical position of the first wall. This makes the construction valid for small

genera.

In Section 7, we analyse the surjectivity of the tangent map dψ of ψ and show that it

is always surjective if g−1 ≥ 4r2. In Section 8, we prove Theorem 1.1 and Theorem 1.2
by showing the existence of Mukai vectors satisfying all conditions. Here, we make use of

the bound of prime character nonresidues.

Notation and conventions

Throughout this paper, we always assume (X,H) is a primitively polarised K3 surface of

genus g of Picard number one.

For any two points p,q ∈ Rn, let Lp,q be the line passing through them and let L+
p,q be

the ray starting from p. We use L[p,q], L(p,q), L(p,q] and L[p,q) to denote the closed, open

and half open line segment, respectively. For any line segment I, we set

���p(I) =
⋃
q∈I

L(p,q]

to be a (half open) triangular region. We denote by Pp1...pn
the polygon with vertices

p1, . . . ,pn.

2. Stability condition on K3 surfaces

Let Db(X) be the bounded derived category of coherent sheaves on X. We let Knum(X)

be the Grothendieck group of X modulo numerical equivalence. There is an onto map to

the (algebraic) Mukai lattice H∗
alg(X) := H0(X,Z)⊕NS(X)⊕H4(X,Z) by sending

v(E) = ch(E)
√

td(X) ∈H∗
alg(X).
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As X has Picard number one, we may identify H∗
alg(X) as Z⊕3. So in the sequel of

this paper, we shall abuse the notation and simply write v(E) = (r,c,s) with r = rk(E),
c1(E) = cH and s = χ(E)− r. Here, χ(E) = χ(OX,E) is the Euler characteristic. The

Mukai pairing 〈,〉 on H∗
alg(X) defined by 〈v(E),v(F )〉 = −χ(E,F ) can be viewed as an

integral quadratic form on Z⊕3 given by

〈(x,y,z),(x′,y′,z′)〉= 2yy′(g−1)−xz′− zx′.

We may write v2 = 〈v,v〉 for v ∈H∗
alg(X). Consider the projection map

pr :H∗
alg(X)⊗R\{s= 0}→ R2

sending a vector v = (r,c,s) to ( rs,
c
s ). We write πv = pr(v) and πE = pr(v(E)) for

E ∈Db(X) for simplicity. We let O = (0,0,0) be the origin of H∗
alg(X)⊗R and denote

by o= (0,0) the origin of R2.

A numerical (Bridgeland) stability condition on X is a pair σ = (Aσ,Zσ)
consisting a heart Aσ ⊂Db(X) of a bounded t-structure and an R-linear map

Zσ :Knum(X)⊗R→ C

satisfying the conditions

(i) For any 0 �= E ∈ A,

Zσ(E) ∈ R>0 exp(iπφσ(E)) with 0< φσ(E)≤ 1,

where φσ(E) is the phase of Zσ(E) in the complex plane.

(i) The Harder–Narasimhan (HN) property, cf. [3, Definition 2.3].

The σ-slope is defined by

μσ(E) =−ReZ(E)

ImZ(E)
,

and we set the σ-phase to be

φσ(E) =
1

π
[π− cot−1(μσ(E))] ∈ (0,1].

An object E ∈A is called σ-(semi)stable if μσ(F )< (≤)μσ(E) or equivalently φσ(F )<

(≤)φσ(E) whenever F ⊂ E is a subobject of E in A. We say an object E ∈ Db(X) is

σ-(semi)stable if E[k] ∈ A for some k, and E[k] is σ-(semi)stable.
If E is a sheaf with v(E) = (r,c,s), we write μH(E) = c

r for the H -slope of E and

μ±
H(E) for the H -slope of the first/last HN factor of E. In [4], Bridgeland has constructed

a continuous family of stability conditions on X as follows: For α,β ∈ R with α > 0, for

any β ∈ R, the β-tilt of Coh(X) is defined by

Cohβ(X) :=
{
E ∈Db(X)

∣∣∣μ+
H(H−1(E))≤ β,μ−

H(H0(E))> β, Hi(E) = 0 for i �= 0,−1
}

which is the heart of a t-structure on Db(X) with

Zα,β(E) =

〈
(1,β,

H2

2
(β2−α2)),v(E)

〉
+
√
−1

〈
(0,

1

H2
,β),v(E)

〉
;
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Figure 1. Visualization of V (X).

here, Hi(E) is the i -th cohomology of E with respect to the standard heart Coh(X) of

Db(X). Let R(X) be the collection of roots in H∗
alg(X), that is,

R(X) :=
{
v ∈H∗

alg(X)
∣∣〈v,v〉=−2

}
.

Theorem 2.1 [4]. The pair σα,β := (Cohβ(X),Zα,β) is a Bridgeland stability condition

on Db(X) if ReZα,β(δ)> 0 for all roots δ ∈ R(X) with rk(δ)> 0 and ImZα,β(δ) = 0.

The stability condition σα,β is uniquely characterised by its kernel

kerZα,β =

{
(r,c,s) ∈H∗

alg(X)

∣∣∣∣c= rβ,s=
rH2

2
(α2+β2)

}
.

According to [11, Lemma 2.4], if we set k(α,β) = pr(kerZα,β) ∈ R2, then k(α,β) are
parameterised by the space

V (X) =

{
(x,y) ∈ R2

∣∣∣∣x >
H2y2

2

}
\

⋃
δ∈R(X)

L(π′
δ,πδ], (2.1)

where π′
δ is the intersection point of the parabola

{
x = H2y2

2

}
and the line Lo,πδ

. See

Figure 1 for a picture of V (X). Therefore, we may view the stability condition σα,β as
the point k(α,β) in V (X).

The following are some simple observations that will be frequently used in this paper:

(A) If σ ∈ V (X), then the line segment L(o,σ] is contained in V (X).

(B) If gcd(r,c) = 1 and r > 0, the line ry = cx contains a (unique) projection of root if

and only if r | c2(g−1)+1 (cf. [20]). In particular, the unique projection of root on

the x -axis is (1,0), which we denote by o′.

A simple observation is, for elements in the same heart, we can read their phases from

the plane.
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Figure 2. An example of θσ(E).

Proposition 2.2 (Phase reading, see Figure 2). Fix σα,β ∈ V (X). For E ∈ Cohβ(X),

let 0 < θσ ≤ π be the directed angle from −−→σπE to −→oσ modulo π. Then, φσ is a strictly

increasing function of θσ.

Proof. Note that φσ(E1) = φσ(E2) if and only if

v(E1)+λv(E2) ∈ kerZα,β

for some λ ∈ R∗, which is equivalent to σ,πv(E1),πv(E2) being colinear, as σ ∈ V (X) is

precisely the projection of the kernel of Zσ. This already proves φσ is a strictly monotonic

function of θσ due to continuity. It is increasing since φσ(0+) < φσ(π). The interchange
phase φσ = 1 corresponds to the line Lo,σ.

Wall and chamber structure

For any object E ∈ Db(X), there is a wall and chamber structure of V (X) described as

follows.

Proposition 2.3 (cf. [11, Proposition 2.6]). Given an object E ∈ Db(X), there exists a
locally finite set of walls (line segments) in V (X) with the following properties:

(a) The σα,β-(semi)stability of E is independent of the choice of the stability condition
σα,β in any chamber.

(b) If σα0,β0
is on a wall WE, that is, the point k(α0,β0) ∈ WE, E is strictly σα0,β0

-

semistable.

(c) If E is semistable in one of the adjacent chambers to a wall, then it is unstable in
other adjacent chambers.

(d) Any wall WE is a connected component of L∩ V (X), where L is a line passing

through the point πE if χ(E) �= rk(E) or with slope rk(E)/cH(E) if χ(E) = rk(E).
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Figure 3. An example of triangle rule: if any point in the colored region is a stability condition, then

there is no wall between σ1 and σ2.

By definition, if E ∈ Cohβ(X) is σα,β-semistable, then πE �= σα,β since Zα,β(E) �= 0

(recall that in Section 2 we identify a stability σα,β with the projection of kernel k(α,β) :=

pr(kerZα,β) by abuse of notation). Combined with Proposition 2.3, one can see that for
any line segment L[σ1,σ2] ⊆ V (X) containing σα,β with σ1,σ2, and πE colinear, we have

πE /∈ L[σ1,σ2], (2.2)

that is, v(E) cannot lie in the kernel of any stability condition in V (X). (In the case

where E is stable, this follows directly from the v(E)2 ≥−2 and hence πE /∈ V (X).) This

will be used in later sections.

3. The destabilising regions

In this section, we characterize the stability conditions which are not lying on the walls of
an object E ∈ Db(X). As a warm-up, we first assume πE ∈ ∂V (X) and hence v(E)2 = 0

or −2. Then we have

Proposition 3.1 (Triangle rule, see Figure 3). Let E ∈ Db(X), and let I ⊆ V (X) be a

line segment. Assume

���πE
(I)⊆ V (X). (3.1)

Then any point in I is not on a wall. In particular, if I = L[σ1,σ2], then E is σ1-stable if

and only if it is σ2-stable.

Proof. Assume on the contrary, that is, there is a wall WE ⊆ L∩V (X) where L passes
through πE and intersects with I. Let σ0 = I ∩WE . By our assumption, one has

L(πE, σ0] ⊆WE ⊆ V (X).
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By Proposition 2.3 (b), E is strictly σ-semistable for any σ ∈ L(πE,σ0]. Up to a shift, one

may assume that E ∈ Cohβ(σ0)(X). Since σ0 is on a wall, there exists some semistable
factor F ⊂ E in Cohβ(σ0)(X) such that φσ0

(F ) = φσ0
(E) and φσ(F ) > φσ(E) for σ in

an adjacent chamber. In particular, πF �= πE . Applying Proposition 2.3(b) to E, F, and

cok(F → E), respectively, we know that they remain in the heart for any σ ∈ L(πE,σ0].

Hence, F ⊂ E is a proper subobject in the corresponding Cohβ(X). As a consequence,

we get

0< |Zσ(F )|< |Zσ(E)|.

Now, if we tend σ to πE , then |Zσ(E)| → 0 while |Zσ(F )| → ε > 0 since πF �= πE . This is

a contradiction.

Destabilising regions

The proposition above only works for πE ∈ ∂V (X) due to Equation (2.2). For the case
v(E)2 ≥ 0, we need to make use of the three-dimensional region defined as below: For

any σ ∈ V (X) and v ∈H∗
alg(X), let L(σ′,σ′′) ⊆ Lσ,πv

∩ V (X) be the connected component

containing σ. Let [σ]⊆R3 be the preimage of σ via the projection pr :R3 ���R2. Consider

the plane Π spanned by [σ] and v(E). Then [σ0]⊂Π for any σ0 ∈ L(σ′,σ′′). We define the
destabilising region of v with respect to σ as

Ωv(σ) = (POv+σvv−σ
\{o,v})∩

{
u ∈ R3 | u2 ≥−2,(u−v)2 ≥−2

}
,

where v+σ = [σ′]∩ ([σ′′] + v) and v−σ = [σ′′]∩ ([σ′] + v). Note that for any σ ∈ V (X), we
have x ·z ≥ 0 for any (x,y,z) ∈ [σ]. Consider the (open) shadow area in Figure 4 which is

bounded by the two lines and consists of nonzero (x,y,z) ∈ [σ] for some σ. Since v2 ≥ 0,

πE /∈ V (X) and hence v is not in this shadow area. Therefore, the x -coordinates of v+σ
and v−σ have opposite sign. We may simply put

v+σ ∈ {(x,y,z)| x≥ 0,z ≥ 0} and v−σ ∈ {(x,y,z)| x≤ 0,z ≤ 0}

up to switching σ′ and σ′′.
There is a natural decomposition

Ωv(σ) = Ω+
v (σ)�L(O,v)�Ω−

v (σ),

where Ω±
v (σ) =Ωv(σ)∩POv±σ v \L(O,v). We call Ω+

v (σ) the strictly destabilising region

of v with respect to σ. A key result is:

Lemma 3.2. For E ∈Db(X) with v(E)2 ≥ 0 and σ ∈ V (X), if σ is lying on a wall of E,
then there exists an integer point in Ω+

v(E)(σ).

Proof. Set v = v(E) for temporary notation. Firstly, for any G ⊆ F ⊆ E in Cohβ(σ)(X)

satisfying that E,F,G have the same σ-phase, we always have that v(F/G) is lying in the

parallelogram POv+σvv−σ
. This is because there are inclusions

L[0,Zτ (F/G)] ⊆ L[0,Zτ (F )] ⊆ L[0,Zτ (E)]
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Figure 4. The (open) shawdow area is covered by kernel of stability conditions.

for any τ ∈ L(σ′,σ′′), which yields that

v(F/G) ∈
⋂

τ∈L(σ′,σ′′)

Z−1
τ (L[0,Zτ (v)]) =POv+

σ vv−
σ
.

In particular, if 0 = Ẽ0 ⊂ ·· · ⊂ Ẽk = E is a σ-Jordan–Holder filtration of E with

Ei = Ẽi/Ẽi−1 its JH-factors, then any v(Ei) and also v−v(Ei) is lying POv+
σ vv−

σ
.

If necessary, reordering these factors Ei such that the angles between L+
O,v(Ei)

and L+

O,v+
σ

increase with respect to i. And we get a polygon with vertexes
∑j

i=1 v(Ei) (0 ≤ j ≤ k).

Since v(E1) and v− v(Ek) lie in P+

Ov+
σ v

, one sees that
j∑

i=1

v(Ei) is an integer point in

POv+
σ v \L(O,v) for any j. We claim that either v(E1) or

k−1∑
i=1

v(Ei) is lying in Ωv(σ). This

can be proved by using purely Euclidean geometry. Suppose this fails, then we have

v(E1)
2 ≥−2 and (v(E1)−v)2 <−2,

(
k−1∑
i=1

v(Ei)−v)2 ≥−2 and (
k−1∑
i=1

v(Ei))
2 <−2,

(3.2)

as Ei is stable. If we restrict the quadratic equation u2 = −2 to the plane of Povv+
σ
, we

can obtain a hyperbola whose center is O. The edge L[O, v+
σ ] can meet the connected

component of this hyperbola at most one point. Similarly, L[v, v+
σ ] can intersect with the

connected component of the hyperbola defined by (u−v)2 =−2 at most one point. Note

that the edge L[O,v] is lying outside the area{
u2 <−2 and (u−v)2 <−2

}
. (3.3)

See the shadow part in Figure 5. By Equation (3.2), v+σ has to lie in the region (3.3).
Moreover, as one can see from the picture, there is a point w ∈ P◦

Ov+
σ v

lying on the
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Figure 5. If this plane corresponds to a wall, there must be some integer point inside this triangle and

below these two hyperbolas.

intersection of two hyperboloids{
u ∈ R3| u2 =−2

}
∩
{
u ∈ R3| (u−v)2 =−2

}
, (3.4)

and the line Lw,v+
σ

will intersect the edge L[O,v] at a point, denoted by q. Thus, we get

that the point v(E1) is contained in the triangle Pqvv+
σ
, while the point

∑k−1
i=1 v(Ei) is

contained in the triangle POqv+
σ
. If we define Lu to be the line passing through u ∈ R3

and parallel to the line Lw,v+
σ
, the discussion above exactly means

L[O, p1] ⊂ L[O, q) ⊂ L[O, p2], (3.5)

where p1 = L∑k−1
i=1 v(Ei)

∩L[O, v] and p2 = Lv(E1)∩L[O, v]; see Figure 5.

Next, one can regard Lw,v+
σ
as a stability condition in a natural way. Consider the line �

passing through the origin O on the plane Π, which is parallel to the line passing through
w and v+σ . By construction, the line � lies between [σ′] and [σ′′]. Thus, there is a stability

condition τ ∈ (σ′,σ′′) such that [τ ] corresponds to the line �. Since Zτ (�) = 0, we obtain

Zτ (E1) = Zτ (p2), and the same holds for p1.
Using the inclusions (3.5), we obtain the inequality∣∣Zτ (v(E1))

∣∣∣∣Zτ (
∑k−1

i=1 v(Ei))
∣∣ =

∣∣Zτ (p2)
∣∣∣∣Zτ (p1)
∣∣ = ‖L[O, p2]‖

‖L[O, p1]‖
> 1. (3.6)

However, this contradicts to the relation
∑k−1

i=1

∣∣Zτ (v(Ei))
∣∣ = ∣∣Zτ

(∑k−1
i=1 v(Ei)

)∣∣ which
finishes the proof.
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Remark 3.3. If v(Ẽi) already lies in POvv+
σ
\L(O,v) for all i, then our argument actually

implies that we can always take a destabilising sequence

F ↪→ E �Q

such that v(F )∈Ω+
v(E)(σ) and v(Q)∈Ω−

v(E)(σ). This will happen, for instance, if E = i∗G
for some slope stable vector bundle G on C. Indeed, as any subobject A of the sheaf E
(in the heart Cohβ(σ)(X)) is also a sheaf (cf., for example, [2, Proposition 2.4]), we have

v(A) ∈POv+
σ v \L(O,v) (since r(A)≥ 0 and the case r(A) = 0 cannot happen as it is on a

wall). In particular, this holds for v(Ẽi).

Then we can obtain a generalisation of Proposition 3.1.

Proposition 3.4. Given v2 ≥ 0 and a region I ⊆ V (X), we define

Ωv(I) =
⋃
σ∈I

Ωv(σ) and Ω+
v (I) =

⋃
σ∈I

Ω+
v (σ).

Then any σ ∈ I is not lying on a wall of any E with v(E) = v if and only if

Ω+
v (I)∩H∗

alg(X) = ∅. (3.7)

Similarly, any E with v(E) = v cannot be strictly σ-semistable for any σ ∈ I if and only if

Ωv(I)∩H∗
alg(X) = ∅. (3.8)

Proof. The ‘if’ part follows directly from Lemma 3.2. For the ‘only if’ part, suppose

there exists some stability condition σ and an integer point w ∈Ωv(σ). Then, we can find
σ-stable objects F1 and F2 such that v(F1) = w and v(F2) = v−w, and σ will be lying

on a wall of E := F1⊕F2 from the construction. For the strictly semistable case, one just

notes that the Mukai vectors of all the factors are lying on L(O,v).

According to Proposition 3.4, we will say a Mukai vector v ∈H∗
alg(X) admits no wall

in I if Equation (3.7) holds and admits no strictly semistable condition if Equation
(3.8) holds.

Note that from the definition, one automatically has Ωv(σ) = Ωv(L(σ′,σ′′)). This

motivates us to find a subregion of V (X) with regular boundary. A candidate is

Γ =
{
(y,x) ∈ R2

∣∣∣x > gy2,x <
√
2/H2 when y = 0

}
⊆ V (X) (3.9)

which is used in [12]. As a consequence, if v admits no wall in I ⊆ L(o,o′), then it admits

no wall in ���πv
(I)∩Γ as well.

Remark 3.5. Comparing Proposition 3.1 with Proposition 3.4, one can conclude that

for v2 =0 and I being a line segment, the condition (3.1) implies Equation (3.7). Actually,
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if Ω+
v (σ) contains any integer point δ, then πδ is a root lying in L(πv,σ]. This suggests

that the condition (3.1) can be replaced by ���πv
(I)⊆ V ′(X), where

V ′(X) =

{
(x,y) ∈ R2

∣∣∣∣x >
H2y2

2

}
\

⋃
δ∈R(X)

{πδ}.

4. The restriction map to Brill–Noether locus

Given a positive primitive vector v = (r,c,s) ∈ H∗
alg(X), let M(v) be the moduli space of

H -Gieseker semistable sheaves on the surface X with Mukai vector v. In this section, we

always assume r,c,s > 0 and

gcd(r,c) = 1 and r >
v2

2
+1.

ThenM(v) is a smooth variety consisting of μH -stable locally free sheaves (cf. [21, Remark

3.2]). The main result is:

Theorem 4.1. For any irreducible curve C ∈ |mH|, the restriction map is an injective

morphism

ψ :M(v)→BNC(v),

E �→ E|C
with stable image (i.e., E|C is stable) if the following conditions hold

(i) (mr− c)s > rc;

(ii) v admits no wall in L(o,σv ], where σv = ( rc
(mr−c)s,0);

(iii) v(−m) =
(
r,c−mr,s+(g− 1)m(mr− 2c)

)
admits no wall in ���πv(−m)

(L(o,o′])∩Γ,

where Γ is defined in Equation (3.9).

Proof. It suffices to prove that for any E ∈M(v), the restriction E|C is slope stable with

h0(C,E|C)≥ r+s and E|C uniquely determines E.

Firstly, we show that E|C is slope semistable. Note that condition (i) ensures that σv

lies in L(o,o′). By [11, Lemma 2.13 (b)], it suffices to show that i∗(E|C) is σv-semistable.

Consider the exact sequence

0→E(−C)→ E → i∗(E|C)→ 0, (4.1)

we have πi∗(E|C) = ( r
(g−1)(2c−mr),0) is lying on LπE,πE(−C)

. Since E is slope stable,

according to [11, Lemma 2.15], E is σ-stable for any σ ∈ L(o,πv) ∩ V (X). Choose
σ1 ∈ L(o,πv) sufficiently close to o. We have

Poσvσ1
\{o} ⊆ Γ⊆ V (X)

as in Figure 6. Note that for any line L passing through πE , the intersection Poσvσ1
\{o}∩

L is connected. By our assumption 4.1, v admits no wall in L(o,σv ]. This implies it also

admits no wall in Poσvσ1
\{o}. Hence, E is σv-stable as E is σ1-stable. Similarly, we have
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Figure 6. Any point in the colored region is a stability condition.

E(−C) is also σv-stable by using the assumption (iii). As in the proof of Proposition 2.2,

E and E(−C) are of the same σv-phase since σv ∈ LπE,πE(−C)
. Hence, the restriction

i∗(E|C) is σv-semistable with E and E(−C)[1] as its JH-factors.

Secondly, we show that E|C is slope stable. By using [11, Lemma 2.13 (b)], we are

reduced to prove i∗(E|C) is σ-stable for some σ ∈ L(o,σv). Moreover, due to [11, Lemma

2.13 (a)], i∗(E|C) is semistable for any stability condition lying in a line segment L(o,a) ⊆
L(o,σv). Suppose that i∗(E|C) is strictly semistable for all stability conditions in L(o,a).

Then for any σ0 ∈ L(o,a) and any destabilising sequence

F1 ↪→ i∗(E|C)� F2 ∈ Cohβ=0(X)

such that F1,F2 are σ0-semistable with the same σ0-phase as i∗(E|C), we have

πF1
= πi∗(E|C). This gives φσv

(F1) = φσv
(i∗(E|C)), which implies that F1 is σv-semistable.

However, this contradicts to the uniqueness of JH-factors of i∗(E|C) with respect to σv.
Thus, i∗(E|C) is σ-stable for some σ ∈ L(o,a).

Next, we show that h0(C,E|C) = h0(X,E) ≥ r+ s. Let us consider the long exact

sequence of cohomology induced by (4.1)

0→H0(X,E(−C))→H0(X,E)→H0(C,E|C))→H1(X,E(−C))→ . . .

As E(−C) is μH -stable and μH(E(−C))< 0, we have

H0(X,E(−C)) = HomX(OX,E(−C)) = 0.

Then we choose σ2 ∈ L(πv(−m),o) sufficiently close to o and σ3 ∈ L(πv(−m),o′) sufficiently

close to o′ so that Poσ2σ3o′ \{o,o′} ⊆ Γ; see Figure 6. As shown above, E(−C) is σ-stable
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Figure 7. πδ in the interior of P◦
oπv∞ (colored area).

for any σ ∈Poσ2σ3o′ \{o,o′}. In particular, E(−C) is σ3-stable. According to [11, Lemma
2.15], we have

Po′σ3σv
\{o′} ⊆ V (X)

and OX is also σv-stable. Note that πOX
= o′. By Proposition 3.1 and Proposition 2.2,

we know that OX is σ3-stable and φσ3
(E(−C)) = φσ3

(OX). Then we have

H1(X,E(−C)) = HomA(OX,E(−C)[1]) = 0

where A = Cohβ(σ3)(X). Therefore, we get an isomorphism H0(X,E)
�−−→ H0(C,E|C).

By Serre duality and the stability of E, we have H2(X,E) ∼= HomX(E,ωX) ∼= HomX

(E,OX) = 0. It follows that

h0(C,E|C) = h0(X,E)≥ χ(E) = r+s. (4.2)

This proves our claim.

In the end, the uniqueness of E follows from the fact that the JH factors of i∗(E|C) are
unique with respect to σv.

A numerical criterion

As in [11], we would like to find a purely numerical condition for Theorem 4.1 to hold.

An elementary result is

Lemma 4.2. Let Poπv∞ be the trapezoidal region bounded by L[o,πv], the (positive) half
x-axis L[o,∞) and the vertical ray L[πv,∞) in Figure 7. Then v admits no wall in Poπv∞∩Γ

if one of the following conditions holds

(i) v2 = 0 and r/gcd(r,c)≤ g−1.

(ii) s= 	 (g−1)c2+1
r 
 and g−1≥max{ r2

c ,r+1}.
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Proof. (i). By Proposition 3.1, it will be sufficient to show that

P◦
oπv∞ ⊆ V (X).

Due to the explicit description of V (X) in (2.1), this is equivalent to showing that there
is no projection of root lying in P◦

oπv∞. Suppose there exists a root δ = (r′,c′,s′) ∈ R(X)

with πδ ∈P◦
oπv∞. Then we have

c′

r′
<

c

r
and

c′

s′
<

c

s
, (4.3)

see Figure 7. Note that 2rs = c2(2g− 2) and 2r′s′ = (c′)2(2g− 2)+2, one can plug into
(4.3) to get

r

gcd(r,c)
c′ <

c

gcd(r,c)
r′ <

r

gcd(r,c)
c′+

r

gcd(r,c)(g−1)c′
≤ r

gcd(r,c)
c′+1. (4.4)

which is not possible.

(ii). According to Proposition 3.4, we just need to show that Ω+
v (σ)∩H∗

alg(X)= ∅ for any
σ ∈Poπv∞∩Γ. Suppose there is an integer point (x,y,z) ∈ Ω+

v (σ0) for some σ0 ∈Poπv∞.

By the construction of Ω+
v (Poπv∞∩Γ), we have 0 < y ≤ c and the point (x,y,z) is lying

in the interior of the triangle Pu1u2u3
with vertices

u1 = (
ry

c
,y,

gcy

r
),u2 = (

ry

c
,y,

sy

c
) and u3 = (

gcy

s
,y,

sy

c
).

As y2(g−1)+1≥ xz and z ≥ sy
c , one has

ry

c
< x <

y2(g−1)+1

sy/c
.

Note that c2(g− 1)− v2

2 = rs, the condition s = 	 (g−1)c2+1
r 
 is equivalent to r > v2

2 +1.

Then we have

0<
y2(g−1)+1

sy/c
− ry

c
<max

{
gc

s
− r

c
,
c2(g−1)+1

s
− r

}
=max

{
r(c2+ v2

2 )

c(c2(g−1)− v2

2 )
,

r( v
2

2 +1)

c2(g−1)− v2

2

}

≤max

{
r(c2+ r−2)

c(c2(g−1)− r+2)
,

r2− r

c2(g−1)− r+2

}
≤ 1

c
.

(4.5)

Here, the last inequality follows from our assumption g−1≥max{ r2

c ,r+1}. This means
0< x− ry

c < 1
c which contradicts to the fact x is an integer.
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Injectivity condition

Let us summarise our numerical criterion in short. We may say v = (r,c,s) ∈ H∗
alg(X)

satisfying the injectivity condition (✶) if the following inequalities holds

r >max

{
v2

2
+1,

c

m

}
, c > 0, s >

rc

mr− c
, gcd(r,c) = 1 (✶−1)

and

g−1≥
{
r, if v2 = 0

max{ r2

c ,
r2

mr−c,r+1}, if v2 > 0.
(✶−2)

Then we have

Corollary 4.3. The restriction map ψ :M(v)→BNC(v) is an injective morphism with

stable image if v satisfies the condition:

Proof. The condition mr > c> 0 ensures πv lies in the first quadrant while πv(−m) lies in

the second quadrant, and the condition s(mr−c)>rc ensures σv is below o′. The assertion
then follows from the direct computation that L(o,σv ] ⊆���πw

(L[o,o′])∩Γ⊆Poπw∞∩Γ for
w = v or v(−m).

Remark 4.4. Under the assumption r > c, the conditions in Corollary 4.3 can be easily

reduced to Equation (1.4).

5. Surjectivity of the restriction map

Throughout this section, we let v = (r,c,s) ∈ H∗
alg(X) be a positive vector satisfying the

injectivity condition (✶). Due to Corollary 4.3, the restriction map

ψ :M(v)→BNC(v)

is an injective morphism with stable image. Following the ideas in [11, 13], we give

sufficient conditions such that ψ is surjective.

The first wall

As in [11], we first describe the wall that bounds the Gieseker chamber of i∗F for
F ∈BNC(v). The following result is an extension of [11, Proposition 4.2].

Theorem 5.1. For any F ∈ BNC(v), the wall that bounds the Gieseker chamber of
i∗F is not below the line Lπv,πv(−m)

, and they coincide if and only if F = E|C for some

E ∈M(v).

Proof. The argument is essentially the same as the primitive case proved in

[11, Proposition 4.2]. Here, we provide the details for completeness.
We first show that for any v satisfying Equation (✶−1), if both v and v(−m) admit no

wall in (o,σv], then so does

v|C := v−v(−m).
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Let Wi∗F be the first wall, and let σα′,0 ∈Wi∗F be a stability condition. Suppose Wi∗F

is below or on the line Lπv,πv(−m)
. Then for any destabilising sequence

F1 ↪→ i∗F � F2 (5.1)

in Cohβ=0(X) such that F1,F2 are σα′,0-semistable, and

φα,0(F1)> φα,0(i∗F ) for α < α′. (5.2)

Taking the cohomology of Equation (5.1) gives a long exact sequence of sheaves

0→H−1(F2)→ F1
d0−→ i∗F

d1−→H0(F2)→ 0. (5.3)

Set v(F1) = (r′,c′,s′), then we have r′ > 0 by Equation (5.2). Let T be the maximal torsion

subsheaf of F1, and we can write v(T ) = (0,ĉ,ŝ) for some ĉ,ŝ ∈ Z. Consider the inclusions

T ↪→ F1 ↪→ i∗F and take the cohomology, one can get

0→H−1(cok)→ T → i∗F →H0(cok)→ 0.

Since H−1(cok) is torsion-free, it must be zero. It follows that T is a subsheaf of i∗F and

rk(i∗T ) = ĉ
m . If we let v(H0(F2)) = (0,c′′,s′′), by restricting (5.3) to the curve C, one can

get

r′+
ĉ

m
= rk(F1/T )+rk(i∗T )≥ rk(i∗F1)

≥ rk(i∗ kerd1)≥ rk(i∗F )− rk(i∗H0(F2)) = r− c′′

m
.

In other words,

μ(F1/T )−μ(H−1(F2)) =
c′− ĉ

r′
− c′+ c′′−mr

r′
≤m. (5.4)

Using Lemma 5.2 below, we can take the destabilising sequence (5.1) satisfying

μ−
H(F1/T )≥

c

r
and μ+

H(H−1(F2))≤
c−mr

r
. (5.5)

This gives

μ−
H(F1/T )−μ+

H(H−1(F2))≥m. (5.6)

Combining Equations (5.4) and (5.6), we get mr− c′′− ĉ=mr′, thus

μH(F1/T ) =
c′− ĉ

r′
=

c′− ĉ

r− c′′+ĉ
m

=
c

r
,

and both F1/T and H−1(F2) are μH -semistable. Since gcd(r,c) = 1 and i∗F does not
contain any skyscraper sheaf, we have ĉ= c′′ = 0 and ŝ= 0. This shows T = 0, and hence

v(F1) = (r,c,s′). Note that by our assumption, we have πv(F1) ∈ L(o,πv), which means

s≤ s′. If s < s′; however, as v2 < 2r−2 by Equation (✶-1), this gives
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v(F1)
2 = c2(2g−2)−2rs′

= v2+2r(s−s′)

< 2r(s−s′+1)−2≤−2

which contradicts to the fact that F1 is μH -stable. This forces s = s′ and Wi∗F ⊆
Lπv,πv(−m)

.

In the case that Wi∗F ⊆ Lπv,πv(−m)
, we have

μ−
H(F1/T )−μ+

H(H−1(F2)) =m

and F1 is a stable sheaf. Note that the map d0 : F1 → i∗F factors through d′0 : i∗(F1|C)→
i∗F and μH(i∗(F1|C)) = μH(i∗F ). Applying Theorem 4.1 to F1, we know that i∗(F1|C)
is stable as well. It follows that d′0 is an isomorphism.

Lemma 5.2. With notations and assumptions as above, one can find a destabilising

sequence (5.1) such that Fi satisfies

μ−
H(F1/T )≥

c

r
and μ+

H(H−1(F2))≤
c−mr

r
. (5.7)

Proof. Denote σ1 =Wi∗F ∩L(o,σv ]. By Remark 3.3, we can take the destabilising sequence

F1 ↪→ i∗F � F2

satisfying v(F1) ∈ Ω+
v|C (σ1) ⊆ Ω+

v|C (L(o,σv ]) and v(F2) ∈ Ω−
v|C (σ1) ⊆ Ω−

v|C (L(o,σv ]). We

divide the proof into three steps.

Step 1. We show that for any point u= (x0,y0,z0) with u2 ≥−2 and x0 > 0, u is lying

in Ω+
v (L(o,σv ]) if x0 ≤ r or z0 ≤ s, and πu ∈ P◦

oσvπv
. By its definition, we know that

u ∈ Ω+
v (L(o,σv ]) if

u ∈P◦
Ovv+

σ
and (u−v)2 ≥−2 (5.8)

for some σ ∈ L(o,σv ].

As πu = (x0

z0
, y0

z0
) is lying in the interior of the triangle Poσvπv

, we have

y0
z0

<
c

s
and

x0/z0
y0/z0

=
x0

y0
>

r

c
. (5.9)

The line Lπu,πv
will meet the open edge L(o,σv). Denote by σ the intersection point

L(o,σv ] ∩L+
πv,πu

. From the construction, we know that u is coplanar to v, v+σ and O.
Indeed, it is lying in the planar cone bounded by the two rays L+

O,v and L+

O,v+
σ
. The

condition x0 ≤ r or z0 ≤ s will ensure that u ∈P◦
Ovv+

σ
.

Moreover, when x0 ≤ r,z0 ≥ s or x0 ≥ r,z0 ≤ s, we have (u−v)2 ≥ (g−1)(y0− c)2 > 0.
When x0 ≤ r and z0 ≤ s, then we have

(u−v)2 ≥ (c−y0)
2

c2
v2 > 0,

by Equation (5.9).
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Step 2. Set v(F1) = (r′,c′,s′) and v(F2) = (−r′,mr− c′,s− s̃− s′) with 0 < c′ <mr and

r′ > 0. We claim that

μH(F1)≥
c

r
and μH(F2)≤

c−mr

r
. (5.10)

Firstly, we must have either r′ ≤ r or s′ ≤ s. Otherwise, one will have

v(F1)
2 < (g−1)c2− r(s+1)≤−2

or

(v(F1)−v|C)2 < (g−1)(mr− c)2− r(s̃+1)≤−2.

Both of them are impossible as v(F1) ∈ Ω+
v|C (L(o,σv ]).

Now, suppose μH(F1)<
c
r . Then we have v(F1)∈P◦

oσvπv
as φσv

(F1)≥φσv
(v). According

to Step 1, we get

v(F1) ∈ Ω+
v (L(o,σv ])

which contradicts to the assumption Ω+
v (L(o,σv ]) ∩ H∗

alg(X) = ∅. Similarly, we have

μH(F2) ≤ c−mr
r as there is no integer point in Ω+

v(−m)(L(o,σv ]). This proves the claim.

As a consequence, we get

mr′

r
= μH(F1)−μH(F2)≥

c

r
− c−mr

r
=m

which implies r′ ≤ r.

Step 3. Let (F1)min be the last μH -HN factor of F1, hence also of F1/T . According to

[4, Proposition 14.2], for σ sufficiently close to o, we always have

• (F1)min is σ-semistable,
• v(G) is proportional to v((F1)min) for any σ-stable factor G of (F1)min.

As (F1)min is a quotient sheaf of F1, it is also a quotient of F1 in Cohβ=0(X). Since F1

is σ1-semistable, we have

φσ1
(F1)≤ φσ1

((F1)min).

Combined with the fact μH(F1)≥ μH((F1)min), we have πG = π(F1)min
∈Poσ1πF1

. As the

triangle Poσ1πF1
is lying below the ray L+

σv,πv
, we get πG ∈ P◦

oσvπv
if μH(G) < c

r . Note
that rk(G)≤ rk(F1) = r. We must have μH(G)≥ c

r otherwise one will get πG ∈Ω+
v (L(o,σv ])

by the same argument in Step 2. It follows that

μ−
H(F1/T ) = μH((F1)min) = μH(G)≥ c

r
.

A similar argument shows μ+
H(H−1(F2))≤ c−mr

r . This finishes the proof.
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HN-polygon

Let σα,0 be a stability condition with α close to
√

2/H2. By [11, Proposition 3.4], for

fixed E, the HN filtration of σα,0 will stay the same for
√

2/H2+ε > α>
√

2/H2. Denote

by σ the limit of σα,0. The ‘stability function’ can be written as

Z(E) = r−s+ c
√
−1

if v(E) = (r,c,s). Let Pi∗F be the HN polygon (Here, our definition of HN polygon is

slightly different from [11, Definition 3.3]. We drop off the part on the right-hand side of
the line segment L[0,Z(i∗F )]) for i∗F with respect to σ. For E ∈M(v), we have Pi∗(E|C) =

P0z1z2 , where

z1 = r−s+ c
√
−1 and z2 =m(g−1)(mr−2c)+mr

√
−1.

As the polygon Pi∗(E|C) only depends on v, we may simply write it as Pv.

Theorem 5.3. For any F ∈ BNC(v), we have Pi∗F ⊆ Pv. Moreover, they coincide if

and only if F = E|C for some E ∈M(v).

Proof. When v2 = 0, this is essentially proved in [11, Lemma 4.3]. Let us give a slightly

different argument which also works for v2 > 0. Suppose the HN-filtration of i∗F for

σ̄ = (Cohβ=0(X),Z) is given by

0 = Ẽ0 ⊂ Ẽ1 ⊂ ·· · ⊂ Ẽl−1 ⊂ Ẽl = i∗F (5.11)

with Ei := Ẽi/Ẽi−1 the semistable HN-factors. To show Pi∗F ⊆ Pv, it suffices to show

that

φσ̄(v)≥ φσ̄(E1) and φσ̄(El)≥ φσ̄(v(−m)) (5.12)

(see Figure 8b) since Pi∗F is convex. According to the proof of Proposition 2.2, for any

object in Coh0(X), the angle φσ̄ in Figure 8b is an increasing function of the angle θo′ in

Figure 8a. (They are actually equal in this case, as cotθo′ =
y−1
x = r−s

c = ReZ
ImZ

= cotφσ̄).
Therefore, it is equivalent to show

θo′(πv)≥ θo′(πE1
) and θo′(πEl

)≥ θo′(πv(−m)) (5.13)

in Figure 8a.
To prove Equation (5.13), consider the sequence

0→ Ẽn
fn−→ i∗F → cok(fn)→ 0 (5.14)

for each Ẽn. Since the first wall is not below Lπi∗F ,πv
, we have φσv

(Ẽn) ≤ φσv
(i∗F ). As

φσ̄(Ẽn)≥ φσ̄(i∗F ), there exists some stability condition σ ∈ L(o′,σv] such that the objects

in Equation (5.14) have the same σ-phase. As a consequence, we have

πẼi
∈

⋃
σ∈L[σv,o′)

Lπi∗F,σ
. (5.15)
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Figure 8. The angle θo′ is equal to the angle φσ̄ .

Take n = 1, and set v(E1) = (r′,c′,s′). We claim that πE1
/∈ Po′πvσv

\ {πv} which yields

θo′(πE1
)≤ θo′(πv). This can be proved by cases as follows:

Case (1) If v2 = 0, πE1
/∈Po′πvσv

\{πv} automatically holds. This is because Po′πvσv
\

{πv,o
′} ⊆ V (X) and Equation (2.2).

Case (2) If v2 > 0 and r′ ≤ r or s′ ≤ s, as E1 is σ̄-semistable, we may assume v(E1)
2 ≥−2

otherwise we may replace E1 by its first JH-factor. According to Step 1 in

Lemma 5.2, we have

v(E1) ∈ Ω+
v (L(o, o′))

which contradicts to the assumption Ω+
v (L(o, o′))∩H∗

alg(X) = ∅.
Case (3) If r′ > r and s′ > s, we claim that r′ < r+1. Choose a stability condition

σ ∈ L[σv,o′) such that φσ(i∗F ) = φσ(E1). Then v(E1) /∈ {O,v|c} is lying in the

triangle POv|c(v|c)+σ . This means we have 0< c′ <mr and

g(c′)2− r′s′ ≥ 0, g(c′−mr)2− r′(s′+(g−1)m(mr−2c))≥ 0.

After reduction, we know that r′ < r+1 as gc2−(r+1)s≤ 0 and g(c−mr)2−
(r+1)s̃≤ 0 by (✶-2).

Similarly, take n = l− 1 and use the σ̄-semistability of cok(fl−1) = El, one can prove

the second inequality of Equation (5.13).
Finally, if Pi∗F = Pv, the first wall will coincide with the line Lπv(−m),πv

and the last

assertion follows from Theorem 5.1.

Remark 5.4. The discussion above can be much more simplified if the following is true:
For any σ on a wall of i∗F , there exists a JH-filtration of i∗F which is convex (i.e., the

polygon with vertices v(Ẽi) is convex in the plane of POvv+
σ
).
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Now, we provide a numerical criterion for verifying Pv =Pi∗F via Euclidean geometry.
The key ingredient is the upper bound on the number of global sections of an object

E ∈ Db(X) established by Feyzbakhsh in [11, 13]. Recall that for any x,y ∈ Z, there is a

function

�(x+
√
−1y) :=

√
x2+2H2y2+4(gcd(x,y))2

and one can define �(E) :=
∑

i �(Z(Ei)), where Ei’s are the σ-semistable factors of E.
Moreover, we have a metric function given by

‖x+
√
−1y‖ :=

√
x2+(2H2+4)y2,

and we set ‖E‖ :=
∑

i ‖Z(Ei)‖. Clearly, one has ‖E‖ ≥ �(E) once the y-coordinates are

nonzero.

Proposition 5.5 [13, Proposition 3.3 and Remark 3.4]. Suppose E ∈Coh0(X) which has
no subobject F ⊆ E in Coh0(X) with c1(F ) = 0, we have

h0(X,E)≤
∑
i

⌊
�(Ei)+χ(Ei)

2

⌋
=
∑
i

⌊
�(Ei)−ReZ(Ei)

2

⌋
, (5.16)

where Ei’s are semistable factors with respect to σ. In particular,

h0(X,E)≤ ‖E‖+χ(E)

2
. (5.17)

Following [11], we can give a criterion for the surjectivity of ψ.

Theorem 5.6. With the notation as in §5.2: Let z+1
1 = r− s+1+ c

√
−1, z′1 = r− s−

r−s
c +(c−1)

√
−1 and z′2 = r−s− r−γ2s

γc +(c+1)
√
−1, where γ = mr

c −1. Assume that

(i) s−r
c + s−r−χ

mr−c ≥ 2

(ii) ‖z1− z′1‖−‖z′1− z+1
1 ‖+‖z1− z′2‖−‖z′2− z+1

1 ‖ ≥ 2c2

r+s +
2(mr−c)2

r+s−χ ,

where χ= χ(i∗F ) =m(g−1)(2c−mr). Then the restriction map ψ will be surjective.

Proof. Suppose we have Pv �= Pi∗F for some F ∈BNC(v). By Proposition 5.5 and the

convexity, we have

r+s≤ h0(C,F ) = h0(X,i∗F )≤ ‖i∗F‖+χ

2
≤ �+χ

2
,

where �=
√
(r+s−χ)2+4(mr− c)2+

√
(r+s)2+4c2. Then we get

�+χ

2
− (r+s)≥ �+χ

2
− ‖i∗F‖+χ

2
=

�−‖i∗F‖
2

. (5.18)

However, note that the polygon P0z′
1z

+1
1 z′

2z2
is convex under the assumption (i), we have

�−‖i∗F‖ ≥ ‖z1− z′1‖−‖z′1− z+1
1 ‖+‖z1− z′2‖−‖z′2− z+1

1 ‖. (5.19)
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Combined with assumption (ii), we get

�+χ−2(r+s) =
√

(r+s)2+4c2− (r+s)

+
√
(r+s−χ)2+4(mr− c)2− (r+s−χ)

<
2c2

r+s
+

2(mr− c)2

r+s−χ
. (5.20)

≤ �−‖i∗F‖ (5.21)

which contradicts Equation (5.18). This proves the assertion.

Surjectivity condition

As an application, we get an explicit criterion for ψ being surjective for v2 ≥ 0.

Corollary 5.7. The restriction map ψ :M(v)→BNC(v) is bijective if we further have

the inequality

g ≥ 4r2+1. (✶✶)

We may call it a surjectivity condition.

Proof. As r > 1+ v2

2 , we have

s= 	 (g−1)c2+1

r

 ≥ 4rc2.

This gives

s− r ≥ 4rc2− r ≥ 3c

s− r−χ=
(g−1)(mr− c)2

r
− v2

2r
− r ≥ 4r(mr− c)2− r ≥ 3(mr− c),

(5.22)

as mr− c > 0. Moreover, one can compute that

2s−2r− c

2s+2r+ c
≥ 8rc2−2r− c

8rc2+2r+ c
≥ 6r−1

10r+1
>

1

r
≥ 4c2

s
.

It follows that

‖z1− z′1‖−‖z′1− z+1
1 ‖=

√
(
s− r

c
)2+4g−

√
(
s− r

c
−1)2+4g

>
s−r
c − 1

2√
( s+r

c )2+4(1+ n
c2 )

>
2s−2r− c

2s+2r+ c
>

2c2

s
+

2c2

r+s

and ‖z1−z′2‖−‖z′2−z+1
1 ‖=

√
( s−r−χ

mr−c )
2+4g−

√
( s−r−χ

mr−c −1)2+4g≥ 0. The assertion can

be concluded from Theorem 5.6.
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Remark 5.8. For g sufficiently large, it is not hard to find Mukai vectors satisfying the
conditions in Theorem 5.6. For instance, when v2 = 0 and g > 84, the Mukai vectors given

in [11] and [13] will automatically satisfy the conditions for any m≥ 1. However, when g

is small, it becomes impossible to find such Mukai vectors.

6. Surjectivity for special Mukai vectors

According to Remark 5.8, Theorem 5.6 does not work well for small g. In this section, we

develop a way to improve the estimate in §5 for special Mukai vectors of square zero. Let
us first introduce the sharpness of the polygon Pv.

Definition 6.1. Denote by z+d
1 the point r− s+ d+ c

√
−1. Let z′1,z

′
2 be the points as

in the Theorem 5.6. We say the polygon Pv is d -sharp if for any Pi∗F �=Pv, one of the

following is true:

(i) Pi∗F is contained in the polygon P0z′
1z

+d
1 z′

2z2
.

(ii) z+j
1 is a vertex of Pi∗F for some 1≤ j ≤ d−1.

There is a simple numerical criterion for the d -sharpness of Pv.

Lemma 6.2. With the notations as before, suppose that

s− r

c
+

γ2s− r

γc
≥ 2d, (6.1)

where γ = mr
c −1, the polygon Pv will be d-sharp.

Proof. From the definition of two polygons, one observes that the interior of

Pv −P0z′
1z

+d
1 z′

2z2
only contains z+j

1 (1 ≤ j ≤ d− 1) as integer points. If P0z′
1z

+d
1 z′

2z2
is

convex, then either Pi∗F is contained in P0z′
1z

+d
1 z′

2z2
or z+j

1 is a vertex of Pi∗F . A little

writing reveals the convexity of this polygon literally means Equation (6.1).

Surjectivity condition for special Mukai vectors

The following is an enhancement of Theorem 5.6 for special Mukai vectors.

Theorem 6.3. Suppose g≥ 3. Let v= (g−1,k,k2)∈H∗
alg(X) be a primitive Mukai vector

with gcd(g−1,k) = 1. Assume that (m,k) satisfies the conditions

g <min
{
2k,2(mg−m−k)

}
, g �= k and g �=m(g−1)−k, (✶✶†)

either k � g+1 or m(g−1)−k � g+1.

Then the restriction map ψ :M(v)→BNC(v) is surjective.
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Proof. By Lemma 6.2, if there is Pi∗F �=Pv for some F, the polygon Pv will be at least
3-sharp. Therefore, one of the following is true:

(i) Pi∗F is contained in the polygon P0z′
1z

+3
1 z′

2z2
.

(ii) z+1
1 = g−k2+k

√
−1 is a vertex of Pi∗F

(iii) z+2
1 = g+1−k2+k

√
−1 is a vertex of Pi∗F

We will analyse them by cases. Let us first show that case (i) is impossible if (g,k,m) �=
(5,3,3). By Equation (5.18), it suffices to show that

�−‖i∗F‖> �+χ−2(g−1+k2). (6.2)

when Pi∗F ⊆P0z′
1z

+3
1 z′

2z2
. Set k̃ =m(g−1)−k. As in the proof of Theorem 5.6, from the

convexity and a direct computation, one can get

�−‖i∗F‖> ‖z1− z′1‖−‖z′1− z+3
1 ‖+‖z1− z′2‖−‖z′2− z+3

1 ‖

=

√
(
k2−g+1

k
)2+4g−

√
(
k2−g+1

k
−3)2+4g

+

√
(
k̃2−g+1

k̃
)2+4g−

√
(
k̃2−g+1

k̃
−3)2+4g

≥ 4k2√
(g−1+k2)2+4k2+(g−1+k2)

+
4k̃2√

(g−1+ k̃2)2+4k̃2+(g−1+ k̃2)

= �+χ−2(g−1+k2)

(6.3)

whenever (g,k,m) /∈
{
(5,3,m),(6,4,3),(8,5,2)

}
satisfies our assumption.

In the case (g,k,m) = (6,4,3), (8,5,2) or (5,3,m) with m≥ 4, though the inequality (6.3)

fails, one can give an improvement of the estimate (6.3) by considering the convex hull

of integer points in P0z′
1z

+3
1 z′

2z2
. In those cases, the convex hull is a convex polygon with

vertices z1,z
+3
1 ,z′1,z

′
2 and z3, where z3 is given as below:

• (g,k,m) = (5,3,m), z3 =−3+2
√
−1;

• (g,k,m) = (6,4,3), z3 =−8+3
√
−1;

• (g,k,m) = (8,5,2), z3 =−14+4
√
−1.

Then one can get

�−‖i∗F‖> ‖z1‖−‖z3‖−‖z3− z+3
1 ‖+‖z1− z′2‖−‖z′2− z+3

1 ‖. (6.4)

A computer calculation of their values shows that Equation (6.2) still holds.
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In case (ii) and (iii), if z+1
1 or z+2

1 is a vertex of Pi∗F , there exists Ẽj ⊂ i∗F in the

HN-filtration (5.11) such that Z(Ẽj) = z+1
1 (respectively, z+2

1 ). Then we have

h0(X,i∗F )≤
∑
i

⌊
l(Ei)+χ(Ei)

2

⌋

≤
∑
i≤j

(

⌊
l(Ei)+χ(Ei)

2

⌋
− χ(Ei)

2
)+
∑
i>j

(

⌊
l(Ei)+χ(Ei)

2

⌋
− χ(Ei)

2
)+

χ

2

≤ �+χ

2
.

For simplicity, we may use �1

2 and �2

2 to denote the first two terms in the second row. As
h0(X,i∗F ) ≥ g− 1+k2, following the argument in Theorem 5.6, it suffices to prove the

inequality

�+χ

2
− (g−1+k2)<

�−�1−�2
2

,

or equivalently,

�1+�2 < 2(g−1+k2)−χ= ‖z+1
1 ‖+‖z+1

1 − z2‖−2. (6.5)

For case ii), a direct computation shows

‖z+1
1 ‖−�1 =

∑
i≤j

‖Ei‖−�1− (
∑
i≤j

‖Ei‖−‖z+1
1 ‖)

≥
∑
i≤j

(‖Ei‖− �(Ei))− (
∑
i≤j

‖Ei‖−‖z+1
1 ‖)

≥ (‖E1‖− �(E1))− (
∑
i≤j

‖Ei‖−‖z+1
1 ‖)

≥ 3√
k2+4g−3

− (
∑
i≤j

‖Ei‖−‖z+1
1 ‖) (6.6)

≥ 3√
k2+4g−3

− (‖z′1‖+‖z′1− z+1
1 ‖−‖z+1

1 ‖) (6.7)

> 0. (6.8)

Let us explain why the inequality (6.6) holds. Note that Z(E1) = x+y
√
−1 satisfies

k2−g ≤−x

y
≤ k2−g+1.

Then we have −x < ky and y � x by our assumption g− 1 �= k, g �= k, and g < 2k. This

will give
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‖E1‖− �(E1)≥
√

x2+4gy2−
√
x2+4(g−1)y2+y2 (since y � x)

≥ 3y2

2
√
x2+(4g−3)y2

≥ 3y2

2
√
k2y2+(4g−3)y2

>
3√

k2+4g−3
(since y ≥ 2, which is a consequence of y � x).

The inequality (6.8) holds because

‖z+1
1 −z′1‖+‖z′1‖−‖z+1

1 ‖=
√

(
k2− (g−1)

k
−1)2+4g+(k−1)

√
(
k2− (g−1)

k
)2+4g− (k2+g)

=

√
(
k2− (g−1)

k
−1)2+4g−

(
k−1+

g+1

k

)

+(k−1)

√
(
k2− (g−1)

k
)2+4g−

(
(k2+g)− (k−1+

g+1

k
)

)

<
2g(k−1)

k3−k2+(g+1)k
+

−2g(k−1)2

k4−k3+(g+1)k2− (g+1)k

=
2g(k−1)

(k2+g+1)(k2−k+g+1)

≤ 3√
k2+4g−3

when k ≥ g+1
2 ≥ 2. Note that ‖z+1

1 ‖− �1 = k2 + g− 2
∑
i≤j

⌊
l(Ei)+χ(Ei)

2

⌋
−
∑
i≤j

χ(Ei) is an

even number, this yields ‖z+1
1 ‖−�1 ≥ 2.

Next, recall that Ẽl = i∗F in the HN filtration (5.11), we can get

‖z+1
1 − z2‖−�2 ≥

∑
i>j

(‖Ei‖− �(Ei))− (
∑
i>j

‖Ei‖−‖z+1
1 − z2‖)

≥ (‖El‖− �(El))− (‖z+1
1 − z′2‖+‖z′2− z2‖−‖z+1

1 − z2‖)

>
3√

k̃2+4g−3
− 2g(k̃−1)

(k̃2+g+1)(k̃2− k̃+g+1)
> 0

as k̃ > g+1
2 . Combining them together, we can obtain (6.5).

For case (iii), if k � g+1, we have

‖z+1
1 ‖−�1 =

∑
i≤j

‖Ei‖−�1+‖z+1
1 ‖−

∑
i≤j

‖Ei‖

≥ ‖E1‖− �(E1)+‖z+1
1 ‖−‖z′1‖−‖z′1− z+2

1 ‖

≥ 3√
k2+4g−3

+‖z+1
1 ‖−‖z′1‖−‖z′1− z+2

1 ‖ (6.9)

> 1. (6.10)
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Here, the inequality (6.10) holds because

‖z+2
1 −z′1‖+‖z′1‖−‖z+1

1 ‖=
√

(
k2− (g−1)

k
−2)2+4g+(k−1)

√
(
k2− (g−1)

k
)2+4g− (k2+g)

=

√
(
k2− (g−1)

k
−2)2+4g− (k−2+

g+1

k
)

+(k−1)

√
(
k2− (g−1)

k
)2+4g− (k2−k+(g+1)− g+1

k
)−1

≤ 2g(2k−1)

k (g+(k−1)2)
− 2g(k−1)

k (g+k2+1)
−1

=
2g

(
k2+2k+g−1

)
(k2+g+1)(k2−2k+g+1)

−1

<
3√

k2+4g−3
−1.

Note that ‖z+1
1 ‖−�1 is an odd number, this yields ‖z+1

1 ‖−�1 ≥ 3. Similarly, one can get

‖z+1
1 − z2‖−�2 ≥ 3

under the assumption m(g−1)−k � g+1. Since both of them are at least positive under

our assumption, we get Equation (6.5) as well. This finishes the proof for (g,k,m) �=(5,3,3).
For the remaining case (g,k,m) = (5,3,3), we have to make use of the 4-sharpness of

Pv. We just need to verify Pi∗F is not contained in P0z′
1z

+4
1 z′

2z2
and z+3

1 =−2+3
√
−1 is

not a vertex of Pi∗F . As above, by using the convex hull of integer points in P0z′
1z

+4
1 z′

2z2
,

we have

�−‖i∗F‖ ≥‖z1‖−‖−3+2
√
−1‖−‖−3+2

√
−1− z+4

1 ‖+‖z1− z′2‖−‖z′2− z+4
1 ‖

=−2
√
6−

√
89+

√
205+

√
7549

9
−

√
3301

9

> �+χ−2(g−1+k2)

which show that Pi∗F cannot lie in P0z′
1z

+4
1 z′

2z2
. Moreover, a similar estimate of

‖E1‖− �(E1) and ‖El‖−�(El) in (ii) and (iii) shows that z+3
1 is not a vertex of Pi∗F .

Remark 6.4. One can also directly check the small genera cases by running the computer
program in [13, Section 4] .

7. Surjectivity of the tangent map

In this section, we adapt Feyzbakhsh’s approach to study the surjectivity of the tangent
map and obtain a sufficient condition for ψ being an isomorphism.

Theorem 7.1. Let v = (r,c,s) ∈ H∗
alg(X) be a Mukai vector satisfying the injectivity

condition (✶). The morphism

ψ :M(v)→BNC(v)

is an isomorphism whenever the following conditions hold
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(i) ψ is surjective;

(ii) h0(X,E) = r+s for any E ∈M(v);

(iii) there exists σ ∈ L(πv(−m),πvK
)∩V (X) such that

Ω+
v(−m)(L(o,σ])∩H∗

alg(X) = Ω+
vK

(L(o,σ])∩H∗
alg(X) = ∅, (7.1)

where vK = (s,− c,r);

(iv) 2s > v2+2c2, or 2s > v2+2 and gcd(c,s) = 1.

Proof. As ψ is bijective, it suffices to show the tangent map dψ is surjective. The

argument is similar as [11, §6]. For the convenience of readers, we sketch the proof as
below. For any E ∈M(v), the differential map dψ : T[E]M(v)→ T[E|C ]BNC(v) at [E] can

be identified as the map

dψ : Hom(E,E[1])→ ker
(
HomC(E|C,E|C [1]) H0

−−→Hom(H0(C,E|C),H1(C,E|C)
)

sending (E → E[1]) to (E|C → E|C [1]).
Let ξ : E|C →E|C [1] be a tangent vector in T[E|C ]BNC(v). Then Feyzbakhsh has shown

in [11, §6] that there exist morphisms ξ′ and ξ′′ such that the following commutative

diagram holds

E i∗E|C E(−C)[1]

E[1] i∗E|C [1] E(−C)[2]

∃ξ′ i∗ξ ∃ξ′′

0

provided that

KE =M [1] and HomX(M,E(−C)[1]) = 0, (7.2)

where KE is the cone of the evaluation map Oh0(X,E)
X → E →KE in Db(X). Note that

dψ(ξ′) = ξ, we are therefore reduced to check (7.2) holds for every E.

Note that v(KE) = −vK and πvK
= πKE

. We can choose the stability condition

σ1 ∈ L(πvK
,o′) sufficiently close to o′ and σ2 ∈ L(πK,o) sufficiently close to o so that

Poσ2σ1o′ \{o,o′} ⊆PoπvK
∞∩Γ⊆ V (X);

see Figure 9. As in the proof of Theorem 4.1, we have OX and E are σ1-semistable of

the same phase. Then as the quotient of E by Oh0(X,E)
X , KE is also σ1-semistable of the

same σ1-phase. Note that Lemma 4.2 still holds if we exchange r and s in Mukai vector v.

Then we get

Ω+
vK

(PoπvK
∞∩Γ)∩H∗

alg(X) = ∅.

Since vK is primitive, we have ΩvK
(PoπvK

∞ ∩Γ)∩H∗
alg(X) = ∅. By Proposition 3.4, vK

admits no strictly semistable stability conditions in Poσ2σ1o′ \ {o,o′}. Therefore, KE is
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Figure 9. Any point in the colored region is a stability condition.

stable for any τ ∈Poσ2σ1o′ \{o,o′}. This implies that KE is σα,0-stable for α >
√

2
H2 . By

[15, Lemma 6.18], we have H−1(KE) is a μH -semistable torsion-free sheaf and H0(KE)

is a torsion sheaf supported in dimension zero. So we can set v(H0(KE)) = (0,0,a) and

v(H−1(KE)) = (s,− c,r+a) for some a≥ 0. By [11, Lemma 3.1], we have

−2c2 ≤ v(H−1(KE))
2 = v2−2sa. (7.3)

When gcd(c,s) = 1, we have H−1(KE) is slope stable and v(H−1(KE))
2 ≥ −2. Then

by condition (iv), we have a = 0 and H0(KE) = 0. So we obtain KE = M [1], where

M =H−1(KE) is a μH -semistable torsion-free sheaf.

Since Ω+
vK

(L(o,σ]) ∩H∗
alg(X) = ∅, v(M) admits no strictly semistable condition in

L(o,σ]. It follows that M is σ-stable as it is σ2-stable. Similarly, we have E(−C)[1] is

also σ-stable. Since M and E(−C)[1] are σ-stable of the same phase, one must have

HomX(M,E(−C)[1]) = 0. This proves the assertion.

Conditions for reconstructing K3 surfaces

As a first application, we obtain a numerical criterion for Mukai’s program of reconstruct-
ing K3 surfaces, that is, the case v2 = 0.

Theorem 7.2. Assume g > 2. Let v = (r,c,ck) ∈ H∗
alg(X) be a primitive Mukai vector

with v2 = 0. Suppose it satisfies the condition

r | g−1, k � g, 0< k ≤ 3g−3 and m> 1+
ck

r(k−1)
. (✶✶✶)

The restriction map ψ :M(v)→BNC(v) is an isomorphism if it is a surjective morphism.

Proof. Let us check that the conditions (ii)–(iv) in Theorem 7.1 are satisfied. By our

assumption, we know that gcd(r−s,c) = 1. According to [13, Lemma 3.1], one has

h0(X,E)≤ r+s,

which forces h0(X,E) = r+s by Equation (4.2). This verifies the condition (ii).
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For the condition (iv), note that we have s= c2(g−1)
r ≥ c2 where the equality holds when

r= g−1. If r= g−1, the inequality in Equation (7.3) will be equality. By [11, lemma 3.1],

we have c | (g− 1) which is a contradiction. Thus, we only need to verify the condition

(iii). By Remark 3.5, it suffices to show

PoπvK
πv(−m)

\{vertices} ⊆ V (X).

To make the computation easier, we may consider the action of tensoring the invertible
sheaf OX(H) which sends the triangle PoπvK

πv(−m)
to the triangle Pop1p2

, where p1 =

πvK(1) and p2 = πv(1−m). Then it is equivalent to show there are no projection of roots in

Pop1p2
−{vertices}.

Firstly, we show that there is no projection of root on the two edges joining o. By

definition, we have

p1 = (
kc

(k−1)2r
,

c

(k−1)r
) and p2 = (

cr

k((m−1)r− c)2
,

c

k(c− (m−1)r)
).

Then two open edges L(o,p1) and L(o,p2) do not contain any projection of roots by
Observation (B).

Next, since (m− 1)r > ck
(k−1) > c, we know that p1 is lying in the first quadrant while

projection p2 is lying in the second quadrant. So the region

Pop1p2
\ (L[o,p1]∪L[o,p2])

is contained in the union of two trapezoidal regions P◦
op1∞, P◦

op2∞ and the x -axis. As

r|(g−1) and gcd(r,c) = 1, we have an inclusion

P◦
op2∞ ⊆ V (X)

from Lemma 4.2 (i). Moreover, if there is a root δ = (r′,c′,s′) ∈ R(X) with r′ > 0 whose

projection πδ is lying in P◦
op1∞, one can follow the computation in Lemma 4.2 to get

inequalities

kc′ < (k−1)r′ < kc′+
k

(g−1)c′
. (7.4)

However, one can directly check that there are no such integers (r′,c′,s′) satisfying

Equation (7.4) under the assumption k ≤ g−1 or 3< k ≤ 3g−3.

It remains to show that Pop1p2
∩y-axis⊆ V (X). Note that

L[p1,p2]∩x-axis = (
c/(k−1)

(m−1)r− c
,0)

which is below o′. It follows that Pop1p2
∩y-axis⊆ L(o,o′) ⊆ V (X).

Conditions for reconstructing hyper-Kähler

Now, we reconstruct hyper-Kähler varieties as Brill–Noether locus for Mukai vectors given

in Corollary 5.7.
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Theorem 7.3. Assume v ∈H∗
alg(X) satisfying conditions (✶) and (✶✶). The restriction

map ψ :M(v)→BNC(v) is an isomorphism.

Proof. By Corollary 5.7, ψ is a bijective morphism. We only need to verify the conditions
(ii)–(iv) in Theorem 7.1. We will check them one by one.

(1) Let us first verify that h0(X,E) = r+s for any E ∈M(v). By [13, Proposition 3.1],

it suffices to show that √
(r−s)2+(2g+2)c2

2
<

r+s

2
+1. (7.5)

After simplification, one can find that Equation (7.5) is equivalent to

(g+1)c2−1

2r+2
−1< s.

This holds when (g−1)c2− rs < r and g > 4r2+1.

(2) For condition (ii), we claim that

L(πv(−m),πvK
)∩Γ �= ∅,

and hence L(πv(−m),πvK
)∩V (X) �= ∅. Let us write v(−m) = (r,c̃,s̃) and vK = (s,−c,r)

with c̃= c−mr and s̃= 	 (g−1)c̃2+1
r 
 . Then we only need to show that the quadratic

equation

g((1− t)tc̃+ t(−c))2 = ((1− t)r+ ts)((1− t)s̃+ tr) (7.6)

has roots for 0 < t < 1. By calculating the discriminant of (7.6), we know it has a

solution t0 satisfying

0< t0 <
c̃2g− rs̃

ss̃+ r2+2c̃cg+2(c̃2g− rs̃)
< 1. (7.7)

(3) Choose σ ∈ L(πv(−m),πvK
)∩Γ. We first verify that

Ω+
v(−m)(L(o,σ])∩H∗

alg(X) = ∅.

Suppose there is an integer point p0 = (x0,y0,z0) ∈ Ω+
v(−m)(L[σ,o)). By Lemma 7.4

below, we have

c̃−1< y0 < 0.

Moreover, one may observe that p0 is lying in a (closed) planer region enclosed by

the conic

Q=
{
y = y0, (g−1)y2+1 = xz

}
and two lines

L1 =

{
y = y0, z =

y0s̃

c̃

}
; L2 =

{
(1− t)

y0
c̃
(r,c̃,s̃)− ty0

c
(s,− c,r),t ∈ R

}
.
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It has three vertices given by the intersection points L1 ∩L2, L1 ∩Q and L2 ∩Q.
This yields

y0r

c̃
≤ x0 ≤ (1− t′)

y0r

c̃
− t′y0s

c
, (7.8)

where t′ is the smaller root of the quadratic equation

(g−1)y20 +1 = [(1− t)
y0r

c̃
− ty0s

c
][(1− t)

y0s̃

c̃
− ty0r

c
].

Solving the equation, one can get

t′ ≤ 2
(g−1)y20 +1− rs̃y2

0

c̃2

− c̃s̃s
c −2rs̃

≤ 2c(y20r+ c̃2)

(−c̃s̃s−2rcs̃)c̃2
(7.9)

as (g−1)c̃2− rs̃ < r. Plugging Equation (7.9) into (7.8), we get

0< x0−
y0r

c̃
≤ 2cy0(y

2
0r+ c̃2)

(c̃s̃s+2rcs̃)c̃2
(
sc̃+ rc

cc̃
)

= (
y0
c̃
)(
y20r+ c̃2

s̃c̃2
)(

sc̃+ rc

sc̃+2rc
)

≤ 3(r+1)

s̃

<
3r(r+1)

(g−1)c̃2− r

<−1

c̃
,

where the last inequality holds because g−1 ≥ 4r2. This contradicts to x0,y0 ∈ Z.

A similar computation shows that Ω+
vK

(L(o,σ])∩H∗
alg(X) = ∅ as well.

(4) Condition (iv) holds since our assumption g > 4r2+1 ensures that

2s > 2r−2+2c2 > v2+2c2.

Lemma 7.4. For any integer point (x0, y0, z0)∈Ω+
v(−m)(L(o,σ]) in Theorem 7.3, we have

c̃−1< y0 < 0.

Proof. Set vt = (1− t)v(−m)+ tvK . Let 0 < t0 < t1 < 1 be the roots of Equation (7.6).

We set

w = (x′,y′,z′) = LO,vt0
∩Lv(−m),v(−m)+vt1

.

Then Ω+
v(−m)(L(o,σ]) is contained in the tetrahedron TOv(−m)�w with four vertices

O,v(−m),w and � = (r,c̃, gc̃
2

r ). This gives y′ < y0 < 0. Hence, we only need to estimate

the lower bound of y′.
Set vt0 = (rt0,ct0,st0), then we have w = y′

ct0
vt0 ∈ Lo,vt0

. Note that w−v(−m) ∈ LO, vt1

is lying on the hyperboloid {
(x,y,z) ∈ R3| gy2−xz = 0

}
.
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Then one can see that y′ < c̃−1 if

c̃−1

ct0
vt0 −v(−m) ∈

{
(x,y,z) ∈ R3| gy2−xz < 0

}
, (7.10)

that is, ( c̃−1

ct0
rt0 − r

)( c̃−1

ct0
st0 − s̃

)
> g. (7.11)

Plugging the coordinates of vt0 into Equation (7.11) and simplify all the terms, one can

obtain a quadratic inequality of t0 and one can easily see that Equation (7.11) holds if

t0 <
(2− c̃)(c̃2g− rs̃)

c̃[rs̃− r2−ss̃+(2− c̃)g(c+ c̃)]+ r2+ss̃− (c+2)rs̃
.

Using the upper bound of t0 given in Equation (7.7), we are reduced to check

c̃(rs̃− r2−ss̃+(2− c̃)g(c+ c̃))+ r2+ss̃− (c+2)rs̃ < (2− c̃)(ss̃+ r2−2rs̃+2c̃g(c̃+ c)).

After further simplification and reduction, the inequality above becomes

0< ss̃+ r2+2c̃g+ c− (c̃+ c−2)(c̃2g− rs̃). (7.12)

The right-hand side can be estimated as below

RHS> r2+ss̃+2c̃g− (c̃+ c−2)(c̃2g− rs̃)

= r2+ss̃+2c̃g+(mr+2−2c)(c̃2+
v2

2
)

> r2+ss̃+2c̃g− r(c̃2+ r)

≥ (
(g−1)c2

r
−1)(

(g−1)c̃2

r
−1)+2c̃g− rc̃2

> 0.

(7.13)

8. Proof of the main theorems

We now prove our main theorems by finding suitable Mukai vectors v ∈H∗
alg(X) satisfying

the conditions in Theorem 7.2 and Theorem 7.3, respectively.

Proof of Theorem 1.1

As the case of m= 1 is already known, we may always assume m> 1. There will be two
cases:

(i) If (g,m) �= (7,2), we can choose the Mukai vector v = (g− 1,k,k2) with k given in
the Table 1.

Note that when g ≥ 8, we have

k =min
{
k0 | k0 >

g

2
, gcd(g−1,k0) = 1

}
< g−2.

By a direct computation, one can easily see that the values of k and m in

Table 1 satisfy the special surjectivity condition (✶✶†) given in Theorem 6.3. This
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Table 1. Choices of Mukai vectors.

Values of g Values of k Range of m

3 k = 5 m≥ 5
4 k = 5 m≥ 4
5 k = 3 m≥ 3
6 k = 4 m≥ 3
7 k = 5 m≥ 3

≥ 8 k =min{k0 | k0 > g
2, gcd(g−1,k0) = 1} m≥ 2

ensure the restriction map ψ :M(v)→BNC(v) is surjective. The assertion follows
from Theorem 7.2 as it satisfies the condition (✶✶✶). Indeed, the only nontrivial

condition one needs to check is

m> 1+
k2

(g−1)(k−1)
.

(ii) If (g,m) = (7,2), Theorem 6.3 cannot be applied because primitive Mukai vectors
of the form (6,k,k2) do not satisfy the assumptions in Theorem 6.3. However, we

can choose v = (2,1,3), and the assertion can be concluded by the following result.

Proposition 8.1. Suppose g = 7. The restriction map ψ :M(2,1,3)→BNC(2,1,3) is an
isomorphism for any irreducible curve C ∈ |2H|.

Proof. Note that v satisfies the injectivity condition (✶), ψ is an injective morphism

with stable image. It also satisfies the condition (✶✶✶). Due to Theorem 7.2, it suffices
to show that ψ is surjective. The idea is to use Theorem 5.3. Suppose one has

Pv �=Pi∗F

for some F ∈ BNC(v). A direct computation shows Pv is at least 2-sharp. Then either
Pi∗F lies inside the polygon P0z+2

1 z′
2z2

, or it has z+1
1 as a vertex. For the first case, one

has

�−‖i∗F‖> ‖z1− z′1‖−‖z′1− z+2
1 ‖+‖z1− z′2‖−‖z′2− z+2

1 ‖

=

√
877

3
−

√
613

3

>
√
29+

√
877−34 = �+χ−10

which contradicts Equation (5.18). For the second case, it forces Z(Ẽ1) = z+1
1 and hence

5≤ h0(C,F ) = h0(X,i∗F )≤ 	�(z
+1
1 )

2

+ ‖z+1

1 − z′2‖+‖z′2− z2‖+χ

2
≤ �+χ

2
.
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However, we have

�− (‖z+1
1 − z′2‖+‖z′2− z2‖)

2
−	�(z

+1
1 )

2

= 1

6

(√
877−4

√
46
)
+

√
7

2
−1

>
1

2

(√
29+

√
877−34

)
=

�+χ

2
−5

which is impossible. It follows from Theorem 5.3 that ψ is surjective.

Proof of Theorem 1.2

By Corollary 5.7, for each n> 0, we need to find a positive Mukai vectors v = (r,c,s) with

v2 = c2(2g−2)−2rs= 2n satisfying conditions (✶) and (✶✶), that is,

g ≥ 4r2+1, r >max
{
n+1,

c

m

}
, s >

rc

mr− c
and gcd(r,c) = 1.

A key tool is

Lemma 8.2. For each n, there is an integer N =N(n) such that for g >N , one can find

a prime number p satisfying that

(i) n+1< p <
√
g−1
2 and gcd(p,8(g−1)n) = 1,

(ii) the equation x2 ≡ (g−1)n mod p has a solution.

Proof. The idea is to use the bound for prime character nonresidues. In [19, Theorem

1.3], it has been proved that there exists an integer m0 with the property: if j > j0 and χ
is a quadratic character modulo j, there are at least log(j) primes �≤ 3

√
j with χ(�) = 1.

Choose N to be the minimal integer satisfying

• 8(N −1)n≥ j0,
• the 	log(8(N −1)n)
-th prime number > n+1,

• 3
√
8(N −1)n≤

√
N−1
2 .

Clearly, N only depends on n. For g > N , we write

(g−1)n= a2
k∏

i=1

qi,

where qi are distinct primes. Let χi be the character defined by

χi(d) =

(
d

qi

)
(−1)

(d−1)(qi−1)

4

if qi is odd and χi(d) = (−1)
d2−1

8 if qi = 2. Consider the quadratic character

χ(d) =

k∏
i=1

χi(d)
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modulo 8(g−1)n. As 8(g−1)n >N ≥ j0, there exists a prime p such that χ(p) = 1 and

n+1< p < 3
√

8(g−1)n≤
√
g−1

2
.

Moreover, one can compute the Jacobi symbol(
n(g−1)

p

)
=

k∏
i=1

(
qi
p

)
=

k∏
i=1

χi(p) = χ(p) = 1

by the law of reciprocity. It follows that x2 = (g−1)n mod p has a solution.

Due to Lemma 8.2, when g >N(n), we can find an odd prime p and an integer 0< c< p
satisfying

n+1< p <

√
g−1

2
and p divides c2(g−1)−n.

Here, c(g− 1) is actually a solution of the equation of x2 ≡ (g− 1)n mod p. Choose the

Mukai vector v = (p,c, c
2(g−1)−n

p ), then we have

p >max
{
n+1,c

}
, g ≥ 4p2+1,

and

c2(g−1)−n

p
>

4c2p2−p

p
= 4c2p−1> pc,

by Lemma 8.2 (i). The assertion then follows immediately.
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