
A comparison between methods for linkage disequilibrium
fine mapping of quantitative trait loci

JIHAD M. ABDALLAH1*, BRIGITTE MANGIN2, BRUNO GOFFINET2,
CHRISTINE CIERCO-AYROLLES2

AND MIGUEL PÉREZ-ENCISO1
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Summary

We present a maximum likelihood method for mapping quantitative trait loci that uses linkage
disequilibrium information from single and multiple markers. We made paired comparisons between
analyses using a single marker, two markers and six markers. We also compared the method to
single marker regression analysis under several scenarios using simulated data. In general, our
method outperformed regression (smaller mean square error and confidence intervals of location
estimate) for quantitative trait loci with dominance effects. In addition, the method provides
estimates of the frequency and additive and dominance effects of the quantitative trait locus.

1. Introduction

Linkage disequilibrium (LD), or non-random allelic
association between loci, has become an important
fine mapping tool after the initial success in mapping
Mendelian disease genes (e.g. Hästbacka et al., 1992;
Kerem et al., 1993; Snell et al., 1989). Initially applied
to binary traits, there is a growing interest among
breeders and geneticists in methods that use LD for
mapping quantitative trait loci (QTLs) (Farnir et al.,
2002; Meuwissen and Goddard, 2000; Slatkin, 1999).
Traditionally, linkage analysis was used in mapping
QTLs, which relies on following the segregation of the
phenotype and marker alleles in structured pedigrees.
The main difficulty with quantitative traits is the weak
phenotype–genotype relationship. As for complex
discrete traits, quantitative traits are influenced by
environmental factors and, usually, by multiple genes.
In addition, the resolution of linkage analysis ap-
proach is limited by the low number of recombi-
nations in the pedigree data (usually two to three
generations are available; Meuwissen and Goddard,
2000) and the accuracy for the QTL position is gen-
erally within several cM. The main advantage of LD

mapping over linkage analysis is that it makes use of
historical recombinations, resulting in higher resol-
ution of gene location.

In this paper, we generalize an existing method used
in mapping disease genes (Terwilliger, 1995) to allow
for mapping of QTLs. In his work, Terwilliger (1995)
proposed a powerful likelihood test that is not re-
stricted by the number of marker alleles or the num-
ber of markers considered jointly. The test is based on
maximizing the likelihood over an association par-
ameter l, defined as the proportion of increase of
marker allele i in disease chromosomes, relative to its
population frequency. Our extension of the method
provides estimates of genetic effects and frequency of
the QTL under additive and dominance models. We
considered three analyses in our method, single mar-
ker, two marker and six marker analyses, and made
paired comparisons among them and between these
analyses and single marker regression.

2. Materials and methods

(i) Single marker analysis

Let us assume that a QTL is segregating in a popu-
lation with two alleles, Q and q, with frequencies PQ

and 1xPQ, where allele Q resulted from a mutation t
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generations ago, and that this allele has a positive
effect on a quantitative trait. Consider also a linked
polymorphic marker M with m alleles. Suppose that,
initially, marker allele i was completely associated
with the Q allele, the likelihood is

Li=
YN
n=1

X3
k=1

Pin(gk)w (yn; mk, s
2)

 !
,

where: N is the number of observations and subscript
k takes values 1, 2 and 3 for QTL genotypes QQ, Qq,
and qq, respectively ; Pin(gk) is the probability of the
nth individual having QTL genotype gk conditional
on marker allele i being associated with the mutant
QTL; w(.) is the probability density function of a
normal distribution; yn is the phenotypic record; s

2 is
a common within-genotype variance; and mk is the
genotypic mean for the kth QTL genotype. Using
Falconer parameterization of genotypic means (Fal-
coner and Mackay, 1996), m1=m+a, m2=m+d and
m3=mxa, with a and d defined as the additive and
dominance deviations from m, the mean of the
homozygote QTL genotypes. Here, we assume a
panmictic population in Hardy–Weinberg equilib-
rium. The Pin(gk) probabilities are calculated as
follows

Pin(g1)=Pi(QjM1
n)Pi(QjM2

n),

Pin(g2)=Pi(qjM1
n)Pi(QjM2

n)+Pi(QjM1
n)Pi(qjM2

n),

Pin(g3)=Pi(qjM1
n)Pi(qjM2

n),

where Mn
1 and Mn

2 are the alleles of marker M on the
male and female haplotypes. Notice here that the
phase is not required to be known. The probabilities
of QTL alleles conditional on marker alleles (Table 1)
were derived following the same parameterization
as in Terwilliger (1995). For example, if the marker
allele on Mn

1 is i and the allele on Mn
2 is j ( jli)

for an individual then the probability Pin(g1)=
[PQ+l(1xpi)PQ/pi] (PQxlPQ), where pi is the fre-
quency of allele i in the population, and l is the
proportion of excess of allele i on Q bearing chromo-
somes. Specifically, l is defined such that P(i|Q)=
pi+l(1xpi).

Finally, as the particular allele i is unknown,
Terwilliger proposed to integrate it out as

L=
Xm
i=1

piLi,

where the sum is over all marker alleles. The likeli-
hood is maximized over the parameters l, PQ, m, a, d
and s2. The likelihood ratio test statistic (LRT) is
calculated as

LRT=x2 ln
maxL(H0)

maxL(H1)

� �
,

where L(H0) is the likelihood evaluated under the null
hypothesis of no linkage disequilibrium (l=0) and
L(H1) is the likelihood evaluated under the alternative
hypothesis (l>0). The analysis is repeated for all
markers in the hypothesized region of the QTL and
the location of the marker with maximum LRT over
all markers is taken as an estimate of the location of
the QTL.

(ii) Multiple marker analysis

Terwilliger (1995) modelled the parameter l as a
function of h (the recombination fraction), a (the
proportion of Q alleles originally in association with
allele i) and t (number of generations since the mu-
tation occurred) as l=a(1xh)t. For the multiple
marker case, Terwilliger proposed that the likelihood
can be computed by multiplying together the likeli-
hoods for eachmarker and using the previous relation-
ship. The recombination fraction, h, between any map
position and each marker locus can be determined
using an appropriatemapping function (e.g.Haldane’s
function). The parameters t and a can be fixed or es-
timated as nuisance parameters. Terwilliger (1995)
indicated that it is both powerful and conservative to
treat them in the latter manner. The combined likeli-
hood is maximized over a and t in addition to PQ, m,
a, d and s2 for every postulated QTL position. The
null hypothesis is l=0 (i.e. a=0 or t=‘) and the
LRT is computed as before. The maximum LRT over
all map positions is the most likely estimate of the
QTL location. This way of forming the likelihood is
approximate, because it does not take into account
the correlations (i.e. LD) among marker loci.

(iii) Regression analysis

The phenotypic trait value yn of individual n is re-
gressed on the number of copies xn of allele i of mar-
ker M according to the regression model

yn=x0+
X
i

bixni+en,

Table 1. Conditional probabilities of QTL alleles on
marker alleles, with allele i associated with the Q
allele

QTL allele

Marker allele

i j ( jli)

Q PQ+[l(1xpi)PQ/pi] PQxlPQ

q (1xPQ)x[l(1xpi)PQ/pi] (1xPQ)+lPQ

Total 1 1
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where x0 is the population mean of the quantitative
trait, bi is the regression coefficient on allele i of mar-
kerM and en is the residual error of the nth individual.
The F statistic to test significant association of marker
M with QTL is obtained by testing the model above
against the model yn=x0+en ; that is, we test the
overall association of marker alleles on the trait. The
corresponding P values (the probability of an F value
as large as or larger than the observed F statistic given
the null hypothesis of no association (Weisberg,
1985)) are obtained using the appropriate degrees of
freedom. The location of the marker that shows the
lowest P value is taken as the estimate of the QTL
location.

(iv) Simulations

The simulation strategy was the same as in Abdallah
et al. (2003) and full details are given there. Briefly, a
set of equally spaced markers (0.25 cM, 1.0 cM or
2.0 cM) were simulated on a chromosomal region of
10 cM in a founder population of 200 individuals. In
subsequent generations, offspring haplotypes were
sampled by the gene dropping method. Recombi-
nations were modelled using Haldane’s mapping
function (Haldane, 1919). After 20 generations of
randommating, a QTLmutation with a positive effect
on the trait was introduced in one haplotype of a single
random individual at position 3.6 cM. This results in
complete initial LD between the QTL locus and other
loci in the region. Data on QTL and marker loci were
recovered from generation 120 (100 generations after
the mutation was introduced).

We used either biallelic (single-nucleotide poly-
morphism (SNP)) or multiallelic (microsatellite
(MST)) markers. We assumed five alleles per MST
marker. Initially, all markers had equal allele fre-
quencies. The alleles of MST markers were allowed to
mutate at a rate of 10x4 per generation using a step-
wise mutation model (i.e., an allele increased or
decreased its count by one). Mutation was assumed
to be negligible for SNP markers. Replicates were
discarded when fixation occurred for the QTL or any
of the markers. We also discarded replicates when the
frequency of the Q allele was less than 0.05 because
rare QTL alleles account for a small proportion of the
variance and are not of interest in mapping studies.

The phenotype, yn, of the quantitative trait for an
individual was simulated as yn=gn+en, where gn is
the genetic value of the QTL genotype (a, d or –a) of
the nth individual and en is an environmental value
drawn from a normal distribution with mean 0 and
variance of 1.0. We considered values of a=1.0, d=0
(no dominance) and d=1.0 (complete dominance).

The location of the QTL was estimated using single
marker regression analysis, single marker Terwilliger
analysis (T1) andmultiple marker Terwilliger analysis.

In multiple marker analysis, we tested positions every
0.2 cM on the chromosomal region using the closest
two markers to the position (T2) and closest six mar-
kers (T6). All analyses were performed on the same
replicate. Bias in the QTL location was calculated as
the average of the signed difference between the lo-
cation estimate and the true location. Lower and up-
per limits of 90% confidence intervals (CI) were
determined empirically by the 5th and 95th percen-
tiles. The estimates of the QTL location were com-
pared among the four analysis methods using the
mean square error (MSE) (i.e.

Pr
i=1 ( ŝ ixs)2/r, where r

is the number of replicates, ŝi is the estimated QTL
location and s is the true QTL location). Similarly, for
analysis using Terwilliger method, MSE was calcu-
lated for estimates of PQ, a, d and t. The MSE con-
tains information about both the bias and the
variance of the location estimate. Differences between
methods in MSE of QTL location estimates were tes-
ted using a paired t test (tests of normality of dis-
tributions by Shapiro–Wilk test showed no significant
deviations from normality).

The time required for the maximization process to
converge is proportional to the number of parameters
and the number of markers in the analysis. In order to
complete our simulations in a realistic time, we tried
two algorithms from the NAG library (Numerical
Algorithms Group, 1990). The first (Routine
E04CCF) uses the Simplex method and the second
(Routine E04JYF) is a quasi-Newton algorithm based
on estimating the gradient and curvature of the func-
tion. Routine E04CCF provided larger LRT values
more often than did routine E04JYF for the same re-
plicates and so was adopted in our simulations. We
expect that the use of a more powerful algorithm (like
simulated annealing algorithms) might result in more
accurate parameter estimates but would require much
longer time for convergence.

3. Results and Discussion

Bias in QTL location estimates is in Table 2. All
mapping analyses showed significant (P<0.05) bias in
location estimates towards the ‘right-hand’ side of the
true QTL location (except for T1 with marker spacing
of 0.25 and d=1.0, where bias was not significant).
The bias was smaller when the QTL had a dominant
effect than when it had a strict additive action. The
bias increased as marker spacing increased. Part of
the bias in the location is due to the presence of the
true QTL on the left-hand side and not in the middle
of the chromosomal region, which explains why the
mean location estimate fell to the right of the true
location. However, the contribution of intrinsic bias
(the bias caused by limiting the length of the region
between 0 cM and 10 cM) to the total bias was found
to be negligible. The expected intrinsic bias was
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calculated assuming a normal distribution with mean
3.6 and variance approximated by the variance of the
location estimate.

Estimates of PQ and additive effects of QTLs (data
not shown) were also biased (P<0.05). Estimates of
PQ were biased upwards and additive effects were
biased downwards, but bias was generally smaller
when the QTL allele Q is dominant (d=1.0). Esti-
mates of dominance effects were not biased when the
QTL was dominant but were biased upwards when
the QTL was not dominant (d=0).

MSE values of QTL location estimates are in
Table 3. The MSE includes the variance of the lo-
cation estimate plus the variance caused by the bias of
the estimate. Although the bias in location estimates
was significant, its contribution to the MSE was small
(1–14%). As with bias, the MSE increased as marker
spacing increased. The MSE was lower when the QTL
had additive and dominance effects compared with
additive effects only. Clearly, MST markers had lower
MSE than SNP markers for all mapping analyses.

Paired differences in MSE of QTL location esti-
mates between mapping analyses are in Table 4. With
few exceptions, the regression method had higher
MSE than Terwilliger-based methods (T1, T2 and T6)
but differences inMSE were significant (P<0.05) only
when the QTL was dominant. T2 generally had lower
MSE than T1, with one exception (marker spacing of
0.25 cM using MSTs and d=1.0). No consistent trend
was found for differences between T1 and T6. T2
had significantly lower MSE than T6 when marker
spacing was 2 cM.

MSEs of PQ, a and d were generally large. For a 2-
cM marker spacing, these ranged from 0.006 to 0.07
for PQ, from 0.30 to 1.24 for a, and from 0.51 to 2.00
for d. The MSE decreased in simulations with marker
spacing of 0.25 cM and ranged from 0.002 to 0.06,
0.22 to 0.72 and 0.29 to 1.07 for PQ, a, and d, re-
spectively. Among Terwilliger analyses, T1 had a
lower MSE for a than T2 and T6 but a higher MSE
for PQ.

Estimates of t, the number of generations since the
mutation occurred, were generally biased downwards
(data not shown). The bias ranged from x62.5 to
+18.4 generations for T2 and x71.1 to x9.0 gen-
erations for T6. More importantly, the estimates of t
had very large variances and therefore large confi-
dence intervals. Estimates by T6 were often less vari-
able than estimates by T2. Standard deviations
ranged from 50.5 to 581.6 for T2 and from 28.0 to
312.0 for T6. Estimates using MST markers had
smaller standard deviations than SNP markers. For
both marker types, estimates had smaller variances
when the QTL had additive and dominance effects
than when it had additive effects only. No clear trends
in bias or variances of estimates were found for mar-
ker distances. The behaviour of estimates of t might
be due to the decay model used (i.e. modelling l in
relation to a and t). Terwilliger (1995) stated that, if
map distances are overestimated, the estimate of t
would be small and that, if they are underestimated,
the estimate of t is large. In our results, estimates
of QTL location were biased upwards and that
might explain the downward bias in t. We should
note here that, in our simulations, estimates of t had

Table 2. Bias in QTL location estimates obtained
using regression and Terwilliger-based QTL mapping
methods

Marker
type

Marker
spacing d*

Analysis method$

R T1 T2 T6

SNP 0.25 cM 0.0 0.21 0.36 0.34 0.35
1.0 0.15 0.08ns 0.13 0.17

1 cM 0.0 0.68 0.48 0.60 0.49
1.0 0.28 0.23 0.32 0.30

2 cM 0.0 0.77 0.81 0.80 1.14
1.0 0.42 0.21 0.43 0.38

MST 0.25 cM 0.0 0.10ns 0.17 0.12 0.20
1.0 0.16 0.07ns 0.13 0.14

1 cM 0.0 0.37 0.41 0.39 0.33
1.0 0.24 0.15 0.17 0.19

2 cM 0.0 0.50 0.50 0.45 0.45
1.0 0.44 0.34 0.19 0.29

*Dominance effect of QTL.
$R, regression analysis ; T1, Terwilliger-based single marker
analysis ; T2, Terwilliger-based analysis with two markers;
T6, Terwilliger-based analysis with six markers.
ns Bias is not significantly different from 0 (Po0.05);
otherwise, bias is significant (P<0.05).

Table 3. MSEs of QTL location estimates obtained
using regression and Terwilliger-based QTL mapping
methods

Marker
type

Marker
spacing d*

Analysis method$

R T1 T2 T6

SNP 0.25 cM 0.0 3.04 3.64 3.28 3.12
1.0 2.26 1.85 1.76 1.67

1 cM 0.0 6.15 5.81 5.71 5.64
1.0 4.44 3.99 3.53 3.85

2 cM 0.0 7.93 7.93 7.75 8.88
1.0 6.49 5.30 4.57 6.15

MST 0.25 cM 0.0 1.60 1.91 1.67 1.59
1.0 1.26 0.82 1.09 1.03

1 cM 0.0 3.83 4.12 3.58 4.18
1.0 3.33 2.61 2.08 2.13

2 cM 0.0 5.39 5.34 4.96 5.31
1.0 4.32 3.48 3.11 3.72

*Dominance effect of QTL.
$R, regression analysis ; T1, Terwilliger-based single marker
analysis ; T2, Terwilliger-based analysis with two markers;
T6, Terwilliger-based analysis with six markers.
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very small effects on the values of maximum LRT
(i.e., the likelihood conveys very little information
about t).

Table 5 shows the empirical 90% CI for QTL
location estimates. A larger CI indicates more un-
certainty about the QTL’s location. Here, the CIs
obtained for marker spacing of 1.0 cM and 2.0 cM
were large (5–10 cM). Such a resolution is less than
desired for fine mapping. However, the use of a denser
map (marker spacing of 0.25 cM) resulted in smaller
CI (2.7–6.8 cM). Smaller spacing than 0.25 cM might
be required to improve further the resolution of the

QTL location. However, dense maps (less than
0.25 cM) are available in human genetic studies but
not in animals, in which marker density is usually
more than 1.0 cM. The results in Table 5 reflected the
trends in MSE (Table 3). Terwilliger-based methods
had smaller CIs than regression analysis when the
QTL was dominant. This was more evident for mar-
ker spacing of 2 cM. Use of biallelic markers (SNPs)
provided larger CIs than multiallelic markers (MSTs).
However, SNPs are more abundant in genetic maps
than MSTs and it is difficult to have MST maps as
dense as for SNPs.

Table 4. Differences in MSEs of QTL location estimates between regression and Terwilliger-based QTL
mapping methods

Marker
type

Marker
spacing d 1 RxT12 RxT2 RxT6 T1xT2 T1xT6 T2xT6

SNP 0.25 cM 0.0 x0.59**3 x0.24 x0.08 0.36 0.52 0.16
1.0 0.42* 0.50** 0.60** 0.09 0.18 0.10

1 cM 0.0 0.34 0.44 0.51 0.10 0.17 0.07
1.0 0.45* 0.91*** 0.59 0.46* 0.13 x0.32

2 cM 0.0 0.00 0.18 x0.95 0.17 x0.96* x1.13***
1.0 1.20*** 1.92*** 0.34 0.73** x0.86* x1.58***

MST 0.25 cM 0.0 x0.31 x0.08 0.01 0.24 0.32 0.08
1.0 0.44** 0.17 0.23 x0.27*** x0.22* 0.06

1 cM 0.0 0.30 0.25 x0.35 0.55 x0.06 x0.60**
1.0 0.66*** 1.15*** 1.37*** 0.50*** 0.71*** 0.21

2 cM 0.0 0.05 0.43 0.09 0.38 0.04 x0.34
1.0 0.78** 1.08*** 0.33 0.30 x0.45 x0.76**

1 Dominance effect of QTL.
2 R, regression analysis ; T1, Terwilliger-based single marker analysis ; T2, Terwilliger-based analysis with two markers ; T6,
Terwilliger-based analysis with six markers.
3 Difference is significantly different from 0. ***P<0.01; **P<0.05; *P<0.10.

Table 5. Empirical 90% confidence limits of QTL location estimates
obtained using regression and Terwilliger-based QTL mapping methods

Marker
type

Marker
spacing d*

Analysis method$

R T1 T2 T6

SNP 0.25 cM 0.0 1.2–7.5 1.5–8.3 1.4–8.0 1.4–7.6
1.0 1.5–6.5 1.5–6.0 1.6–6.2 1.8–6.4

1 cM 0.0 1.0–9.0 0.0–9.0 0.6–9.0 0.4–9.0
1.0 0.0–8.0 1.0–8.0 1.2–7.8 0.8–8.0

2 cM 0.0 0.0–10.0 0.0–10.0 0.0–9.8 0.4–9.8
1.0 0.0–10.0 0.0–8.0 0.2–8.2 0.0–9.4

MST 0.25 cM 0.0 1.8–6.0 2.0–6.0 1.8–6.0 2.2–6.4
1.0 2.0–5.5 2.3–5.0 2.2–5.6 2.4–5.4

1 cM 0.0 1.0–8.0 1.0–9.0 1.2–8.0 0.6–8.0
1.0 1.0–7.0 1.0–7.0 1.2–6.2 1.0–6.2

2 cM 0.0 0.0–8.0 0.0–9.1 0.7–8.7 0.6–9.3
1.0 0.0–8.0 2.0–8.0 1.2–7.8 0.6–8.0

*Dominance effect of QTL.
$R, regression analysis ; T1, Terwilliger-based single marker analysis ; T2,
Terwilliger-based analysis with two markers; T6, Terwilliger-based analysis with
six markers.
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MSEs and length of CI of all parameter estimates
decreased as the frequency of Q allele, PQ, increased.
This is due to the increase of the variance explained by
the QTL. Fig. 1 illustrates this by showing the length
of 90% CI of the estimated location as a function of
threshold of PQ. Here, we used approximate normal
CIs that were not different from empirical ones but
the trends were clearer. Fig. 1A, B shows simulations
with MST markers with, respectively, 1.0 cM and
2.0 cM spacing. Fig. 1C, D shows simulations with
SNP markers with 2 cM spacing, but the minimum
frequency of marker alleles was set to 0.05 cM for
simulations in Fig. 1D. In all the cases, the T2 test
gave the smallest CI, whereas regression analysis gave
the largest ones almost every time. The CI obtained
by T1 test were almost halfway between those of T2
and regression. The trend of T6 test was less stable. In
Fig. 1A, the CI of T6 looked like those obtained with
T2, whereas T6 behaved more like regression when
marker spacing increased (Fig. 1B). Limiting the

minimum frequency of alleles did not really change
the length of CI except for T6, which was the only
method with a clear decrease in CI length from Fig. 1C
to Fig. 1D.

We have seen that Terwilliger-based QTL analyses
outperformed regression analysis (lower MSE and
smaller CI) in mapping QTLs with additive and
dominance effects, although the precision was com-
parable for a strict additive action. The advantage of
Terwilliger analyses over regression analysis is that
they allow an explicit modelling of the additive and
dominance effects of the QTL. The disadvantage of
likelihood-based methods (as for Terwilliger analysis)
is that the maximization process might fail to con-
verge to the global maximum.

Of the Terwilliger analyses, T2 performed the best
overall. Generally, one would expect the use of more
markers to result in more precise estimates of the lo-
cation as more information is used. It seems that, in
the case of T6, this is hindered by the difficulty of the
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Fig. 1. Length of approximate normal 90% confidence intervals as a function of threshold of QTL frequency (frequency
of Q allele) ; for example, a threshold of 0.05 means all replicates with QTL frequency equal or greater than 0.05. In these
simulations, QTL frequency ranged between 0.05 and 0.50. (A) Marker spacing of 1 cM using MSTs. (B) Marker spacing
of 2 cM using MSTs. (C) Marker spacing of 2 cM using SNPs. (D) Marker spacing of 2 cM using SNPs, but marker alleles
had minimum frequency of 0.05. In all four simulations, a=1.0 and d=1.0. R=regression analysis ; T1=Terwilliger-based
single marker analysis ; T2=Terwilliger-based analysis with two markers; T6=Terwilliger-based analysis with six markers.
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maximization process. Terwilliger (1996) noted that
the admissible proportion of the total parameter
space becomes smaller and smaller with the increase
in number of markers. The result is that, sometimes,
the global maximum is not achieved, particularly with
small data sets or with the presence of rare marker
alleles. To test the effect of rare marker alleles, we
carried out simulations such that the minimum fre-
quency of any marker allele was at least 0.05. Setting a
minimum on allele frequencies resulted in a decrease
of 0.18 to 0.70 in MSE of the QTL location for T6.
The length of CI for T6 became smaller than that for
T1 and the advantage of T2 over T6 was attenuated
(see Fig. 1D).

Another factor is that, in T6, the assumptions of
marker independence are more flagrantly violated.
Accounting for correlations between markers is com-
plicated, especially when one considers more than two
markers jointly (a simple measure of LD among sev-
eral markers needs to be implemented). In fact, this is
the subject of future work to improve the precision of
the method. In our analysis here, we did not perform
any test of significance and neither did we make any
assumptions about the distribution of the statistics
used. We simply estimated the position of the QTL by
taking the maximum value of the statistic over all test
positions. Regardless of the distribution of the stat-
istic, the threshold values for test of significance can
be determined from the data using permutation (e.g.
Churchill and Deorge, 1994).

One factor that affects the efficiency of all LD
mapping methods is the high variability of LD. In a
previous study and using the same simulation strat-
egy, we found that it is common to have the strongest
association (or maximum disequilibrium) with the
more distant markers from the QTL (Abdallah et al.,
2003). The variability of LD depends on allele fre-
quency and high variability is found for extreme fre-
quencies.

4. Conclusions

We presented a maximum-likelihood method for LD
mapping of QTLs that is a generalization of the
method of Terwilliger (1995) used in mapping disease
genes. The method uses information from single and
multiple markers with no restriction on the number of
markers used. However, the use of two markers re-
sulted in smaller MSE and CI of QTL location esti-
mate than either single- or six-marker strategies. The
advantage of the method over regression analysis
seemed to be in modelling additive and dominance
effects of the QTL. The method provides estimates of
frequency and additive and dominance effects of the
QTL, but these estimates had large variability.

A FORTRAN F-90 program (QTLTER) to carry out the
described analyses is available and can be requested from
the corresponding author. Funding for this work was pro-
vided by project 20 (2001–2002) of the Bureau des resources
génétiques and a project within Action en bioinformatique
of the Ministère de la Recherche (France). We thank the
editor and two anonymous referees for their suggestions,
which helped to improve the manuscript.
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