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Multifunctions of Souslin type

S.J. Leese

Let 5 and X be any two sets; then a mapping1 V which assigns

to each point t in S a set V(t) of points in X is called

a multifunction from S into X . A eelectov for r is a

function / from S into X such that f{t) € T(t) for each

t . We introduce here a class of multifunctions which is both

well-supplied with measurable selectors and yet is comprehensive

enough to include those kinds of multifunction which have been

most commonly studied before. Hence in order to show that a

multifunction with non-empty values, which may arise naturally in

an implicit function problem, has a measurable selector, it is

sufficient to show that it is of Souslin type.

1. Introduction

A problem which has often arisen in control theory (for example, [5],

[J0]) and mathematical economics (for example, [7], [4]) is the following,

given a measurable space S and a topological space X , what is a

sufficient condition for a subset A of S x X to have a measurable

selector (that is, a measurable function / : S -*• X such that

[t, fit)) € A for all t (. S )?

We introduce here the class of multifunctions of Souslin type and show

(Theorem 7) that if the set A is the graph of such a multifunction and if

the projection of A on S is all of S , then there is a measurable

selector. This class of multifunctions is shown to include those which are
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396 S . J . Leese

studied in [3], [7] , [/2], and [/4], and so the various selection theorems
and implicit function theorems of those papers (and also of [1] and [H])
follow from our Theorem 7- The class of multifunctions of Souslin type is
stable with respect to the usual operations of analysis; i t s name was
given because of the parallels between this theory and the classical theory
of Souslin sets ( [2] , [8]).

2. Definitions and notation

In what follows S will be a measurable space; that i s , a set on
which is defined a a-algebra M of subsets which we shall call
measurable. X will denote a topological space and EL the a-algebra

generated by the closed sets of X ; the sets in 8« are called the Borel

sets of X . A multifunction T from S into X (which we shall
abbreviate to r : S •*• X ) i s a mapping from 5 into the space of subsets
of x • The graph of r is the set

C(r) = {(*, x) € S x X : x d Tit)} .

To avoid confusion with point-valued functions, we shall denote multi-
functions by upper-case Greek letters and mappings by lower-case Greek or
Roman le t te rs . The multifunction V will be said to be measurable ([3],
[7] , [/Z]) if for every closed set F in X the set

r"(F) = {t € S : Tit) n F * 0}

is measurable. This is equivalent to the condition that for every open set

G in X the set

T+(G) = {t € S : Tit) c G)

is measurable. We shall make use of the Souslin operation, which is fully

discussed in [6] and [g]: let \A be a countable collection of

sets in a given space, indexed by the set of all finite sequences

a,, •••, a of positive integers. Then the set

A = U 0 An ,
on-1 al"-an

the union being taken over the collection of all infinite sequences o of
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positive integers, is said to be obtained from the collection |;4

by the Souslin operation. If the sets \A n \ belong to a given class
1 nJ

N of s e t s , then A wi l l be said to belong to the class Souslin-N . We

shall use the notation of [73] , pp. U1+-U9, and write

00

A = U n A 1 ,
a n=l a l"

where o\n denotes the f in i te sequence a , . . . , a

The measurable space 5 will be said to admit the Souslin operation

if every subset formed in th i s way from measurable sets i s measurable.

Every measurable space derived from an outer measure admits the Souslin

operation; th i s i s proved in [73], pp. kk-k9. Moreover, i t follows from

the remarks on p . 95 of [8] that i f S i s a local ly compact Hausdorff

space with a Radon measure \i , then the class of y-measurable sets admits

the Souslin operation.

3. Mu l t i f unc t i ons of Sousl in type

If a topological space P is separable and can be metrised so that i t

becomes a complete metric space, then P i s said to be a Polish space.

DEFINITION. Let S be a measurable space, and X a topological

space. Then a multifunction F : S •*• X i s said to be of Souslin type i f

there exis ts a Polish space P , a measurable multifunction £2 : S •*• P

with closed values, and a continuous mapping <p : P •*• X such t ha t , for a l l

t , v(t) = q>(n(t)) .

A multifunction of Souslin type is necessarily measurable.

EXAMPLES, (i) If r : S •* X is a measurable closed-valued multi-

function, and X is a Polish space, then T is of Souslin type.

(ii) If F : S •* X is a compact-valued measurable multifunction, X

being a separable metrisable space, and i : X -*• X is the embedding of X

into its completion X with respect to some suitable metric, then the

multifunction t -*• i[T(t)) is of Souslin type.

(iii) If S admits the Souslin operation and AT is a regular
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continuous image of a Polish space P , then any measurable closed-valued
multifunction T : S •+ X is of Souslln type. This follows from the fact
that if X = cp(P) , <p being a continuous mapping, then the correspondence

t •* (p (r(t)) is also a measurable multifunction, as is proved in Lemma 1
of [72].

(iv) Let (5, M) be a measurable space which admits the Souslin
operation, and X the continuous image of a Polish space; then if
F : S •*• X is such that i t s graph belongs to the a-algebra M ® By.

generated by the sets A * B , where A is measurable and B is Borel
measurable, then V is of Souslin type. This will be proved below (Lemma
3) .

(v) The special class of multifunctions discussed in [7] is shown
there, incidentally, to satisfy the conditions of our definition; thus
they too are of Souslin type.

In what follows, R will denote the class of all sets A x B where
A is a measurable set in S and B is a closed set in X . We shall
need the following lemma, which is a generalization of result (3.^) of [4],

LEMMA 1. Let X be a topologiaal epaoe and K* the class of sets

which are olosed and compact in X. . Let Y be a Souslin-K* subspace of

X^ . Then if S is a measurable space which admits the Souslin operation,

and IT, is the canonical projection from S x 1 into S 3 TJAA) is

measurable for every Souslin-R set A in S x Y .

Proof. Let

4 •

where each A i is measurable and each B i is closed relative to Ya\n a\n
Now f o r each a\n , 5 i = ^ | n ^ > s a y > where C i i s c l o s e d i n X

Hence e a c h B \ i s S o u s l i n - K * in X, , and as t h e i t e r a t i o n of t h e

o\n -L

Souslin operation produces no new sets ([6], §19)» A is Souslin-R in

S x X . Thus, with new notation, we may write
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A = U (1 [D , XE . ) ,
a n=l 'n 'n

where each V i is measurable, and each E i is a closed compact set in

X . For each finite sequence o\n , we define

E*\ = E n n E ,
a\n ox ai...on

and we put D*\ = 0 if 27* i = 0 , 0*. = Z? i otherwise. Then
o|n o \n o\n o\n

oo

a n=l '" '"

= u I n z?ii

a

Thus

IT U ) = U i (1 D*i x n 2?*,

00

= u n Da\ '
a n=i |w

since if D 27* i is empty, 27* i = 0 for some n , by compactness, in
n=l ' '

which case D*\ = 0 , by our definition. This completes the proof of the

lemma.

COROLLARY 1. Let X^ S , and Y be as in Lemma 1. Then if

Z = <p(y) , where cp is a continuous mapping, and A is a Souslin-R set

in S x z , v (A) is measurable.

Proof. Let

00

A = U n (4 , xB i ) ,
a n=l ' 'n

where each A i is measurable and each B , is closed. We defineA • i s measurable and each B ,
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CD f \

= U (1 U | x^"1 [B , } \ ,
a n=l

in 5 x r .

It is easily shown that IT (J4 ) = IT.. UnJ , whence the corollary follows

immediately.

COROLLARY 2. 1 / 5 admits the Souslin operation, P is a Polish
space and T : S •+ P has Souslin-R graph, then T is measurable.

Proof. If F is a closed set in P ,

T~(F) = TTn

This is the projection of a Souslin-R set, and i t follows from Lemma 1

that i t is measurable, as by [2], p. 197, P is homeomorphic to a

countable intersection of open sets in the cube l , the product of the

interval [0, 1] with i tself countably many times.

This result is clearly s t i l l true if P is the continuous image of a

Polish space.

THEOREM 1. If (r ) is a sequence of multifunctions of Souslin

type from any measurable space S into the topological space X , then the
multifunction T : S •* X defined by

00

Tit) = U T (t) for each t ,
n=l

is also of Souslin type.

Proof. Let the corresponding closed-valued multifunctions and

mappings be

Let P be the Polish space 7 P ([2], p. 195) got by juxtaposing the
n=l n

spaces P as disjoint closed subsets, and let cp be the continuousn
mapping from P to X which coincides with <p. on P. .
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OO

Define ft(t) = J ft (t) for each t in 5 ; then this is closed-
n=l n

valued and measurable, and moreover, cp(ft(t)) = T(t) for each t .

THEOREM 2. If S is a measurable space which admits the Souslin

operation, {x.) a sequence of topological spaces, and (T.) a sequence

of multi functions of Souslin type from S into X. respectively; then

the multifunction T : S •*• X. x X * . . . is also of Souslin type, where

for each t ,

T{t) = T^t) x T2(t) x . . . .

Proof. Let the corresponding closed-valued multifunctions and

mappings be

We then define

n(t)

and P = P± x P• x ... .

Then P is a Polish space ([2], p. 195). Let G = G_x G* ... be

any basic open set in P (that is, G. =• P. for all but finitely many
Is "Is

i . Each G. is open).

Then it is easily seen that

OO

tf(G) = n a~.[G.) ,
n=l * V

which is a measurable set. Since any open set H in P is a countable

union of basic ones /?. (£ = 1, 2, ...) ,

fi-(s) = u n [B) ,

which is measurable. Thus ft is a measurable multifunction, by Theorem 3
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of [ 1 2 ] . We define a continuous mapping cp from P in to U.X. by

fip-L* P 2 . • • • ) = O ^ f r j ) . « P 2 f e 2 ) . • • • ) , (P^ € P^ ) •

Then T(t) = <p(fi(t)) for each t , and so V i s of Souslin type.

LEMMA 2. Let AT, ^ be topotogioal spaces, and ty : X •* Y a

continuous mapping. Then if S is a measurable space and V : S •* X a

multifunction of Souslin type, so is the multifunction t •* \i>[v(t)) .

THEOREM 3. Let S be a measurable space which admits the Souslin

operation, E a topological vector spaae, and V , T multifunctions of

Souslin type from S into E . Then the multifunction

T : t •*• VAt) + TAt) is of Souslin type. Moreover, if a is any

measurable scalar-valued function on S , the multifunction t '•*• a{t)TAt)

is also of Souslin type.

Proof. From Theorem 2, the multifunction t •* VAt) x TAt) i s of

Souslin type, from S in to E x E . Now the mapping <p : E x E •* E

defined by <p(x, y) = x + y i s continuous. Hence T i s of Souslin type,

by Lemma 2, s ince , for each t , V(t) = cp(rAt)*TAt)) .

To prove the second part of the theorem, we observe that by Theorem 2,

the multifunction t -*• {a.{t)} x L ( t ) i s of Souslin type. Now the mapping

<p : (X, x) -*• Xx i s continuous, where A is in the f ie ld of sca lars , and

we have, for each t ,

and hence the multifunction is of Souslin type, by Lemma 2.

Clearly a could here be any multifunction of Souslin type into the

field of scalars. Moreover, this theorem still holds if E is any

topological group and T(t) = T^^'TAt) for each t .

THEOREM 4. Let S be a measurable space which admits the Souslin

operation, E a topological vector space, and V : S -*• E a multifunction

of Souelin type. Then the multifunction T where, for each t , T(t) is

the convex hull of T(t) , is also of Souslin type.
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Proof. Let A be the simplex in n defined by:

X € A i f and only i f X. > 0 for a l l i , and 5" X. = 1 .

* A %
We then define a sequence (F ) of multifunctions by taking, for each n

and each t ,
T (*) = {X x. + ... + X x : X € A , x. € T(t), for all i\ .
n l 1 1 n n n v '

Let E* denote the product of E with i t s e l f , with n factors. We

define a mapping <p : A x B; •*• E by the formula:

<p I X ; x . , . . . , x j = X x n + . . . + X x

M v l w 1 1 n n

<p is continuous, since E is a topological vector space. By Theorem 2

the multifunction

A : t •* A x r(t) x ... x r(t) ,

where the factor T(t) occurs n times, is of Souslin type. Now for each

t , F„(*) = <P (A (t)) , and so T is of Souslin type, by Lemma 2.

CO

Therefore, since T(t) = U T (t) , for each t , f is of Souslin
n=l "

type, by Theorem 1.

COROLLARY. If, with the notation of Theorem h, E is metrisdble,

then the multifunction T , where, for each t , T(t) is the closed

convex hull of Y{t) , is also of Souslin type.

Proof. For every open set G in E ,

T~(G) = ?"(C) ,

and this is a measurable set, since P is measurable and G is an F .
a

Hence F is measurable, by Theorem 3 of [72]; and so is of Souslin type,

by Example (iii).

These last two theorems extend the results on p. 107 of [3]. We now

obtain a characterization of multifunctions of Souslin type by means of the
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Souslin operation.

THEOREM 5. Let S be a measurable space, X a Hausdorff

topologioal space, and T : S •* X a multifunction of Souslin type. Then

the graph of V is Souelin~R .

Proof. Let P be a Polish space, and d a metric for P such that
(P, d) is a complete metric space. Let ft : S •+ X be a closed-valued
measurable multifunction such that for each t ,

T{t) = «p(Q(t)) .

We define a family [u i ) of closed sets of P (called a sifting)

as follows (this technique is also used in [72]): let [u.} be a

countable covering of P by closed sets of diameter £ 1/2 . Then for
each U. , let the collection {u. . : j = 1, 2, . . .} be a covering of U.

by closed sets of diameter £ lA • We carry on in this way, so that U i

has diameter £ l/2W .

It then remains to prove the following assertion:

= U ^ (* o | B « o | M )

where for each f in i t e sequence a\n of in tegers ,

Now if (t, x) € G(T) , there exists a point y in P such that

(t, y) € G(Q) and x = cp(t/) .

There also exists a sequence a of positive integers such that

Therefore fj(t) meets V < for each n , and x € <p[ll , ) for each
o\n v o\n'

t .
Therefore {t, x) € A , x B . for al l n .o\n o\n

Conversely, suppose that there exists a sequence a such that
( t , x) € Aa{n x 5 a | n for a l l « .
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Then i/_i meets ft(t) for each n , in w say, and since (P, d)o\n n

is a complete space, y -*• y , say, as n •+ °° . Since fi(t) i s closed,

Then x = <p(y) ; for, i f not, there exists a closed neighbourhood V

of f(y) such that x {: V . Since <p is continuous, <P(£L| ) c v f o r

some n , whence 5 i c V , which contradicts our assumption that

x € B I for a l l n .

Therefore (t, x) € G(<p°ft) = C(T) , as required.

The converse also holds, under s l ight ly different hypotheses.

THEOREM 6. Let S be a measurable space which admits the Souslin

operation, X a space which is the continuous image of a Polish space, and

r : 5 -• X a multifunction with Souslin-^- graph. Then T is of Souslin

type.

Proof. Suppose that X = <p(P) , where P i s a Polish space, and that

CO

C(F) = U fi (A I xB I ) ,
a n=l a ' n a ' n

where each A_\ i s measurable and each B \ i s closed. Let N be theo\n o\n

space of positive integers with the discrete topology and take the Polish

space N , the product of N with i t s e l f countably many times. Consider

now the multifunction fi : 5 •+ P x N defined by

CO

c(n) = u n iA
0\n

x{Ba\n
xC

(J\ ) ] »
a M=I ' ' '

-Ifwhere for each a\n , B* \ = <p~ (B . ) and1 a\n K a\nJ

The sets C \ are clearly closed. SI i s a measurable multifunction, by

the Corollary 2 to Lemma 1.

Moreover, i t is closed-valued; suppose that fi(t) t 0 and that
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(x ,

There are two cases: i f fl A . = 0 , then the neighbourhood
n=l K | n

X x {<} of (x, K) does not meet il(t) . On the other hand, i f
oo oo

n A I # 0 , then x fi (1 B*i , and since the l a t t e r i s a closed s e t ,
«=1 K | " n=l K | n

there exis ts a neighbourhood U of x which does not intersect i t . Then

the neighbourhood U * {<} o f (x, K) does not meet Q(t) .

Final ly , l e t ty be the mapping cp ° IT , where ir. i s the natural

projection P x N •+ P . Then for each t , T{t) = \()(fj(t)) , and so T

i s of Souslin type.

This lasV step needs proof: i f (t, x) € ff(r) , then for some a ,

(t, x) £ A I x B I for a l l K . Suppose also that x = <p(y) . Then

y € B*i for a l l n , and (*, y, a) € G(fl) .

COROLLARY 1 . If S is a measurable space which admits the Souslin

operation, and X a Hauedorff epace, then the class of rmltifunctions of

Souslin type from S into X is closed with respect- to the Souslin

operation.

Proof. Let (r i ) be a countable family of multifunctions of Souslin

type from S into X . Let the corresponding Polish spaces and continuous

mappings be P i and <p i . Then without any loss of generality we may
o\n a\n

replace X by the space q>(P) where P is the sum (or disjoint union) of

the spaces (P i ) , and (p : P •*• X is a continuous mapping which coincides

^ %\n °n Pa|n ' L e t

OO

V{t) = U n r i (t) for each t .
a n»i a ' M

Now each G[V • ) i s Souslin-R in S x <p(P) , and hence, by §19 of [ 6 ] ,

G(V) i s Souslin-R . Hence T i s of Souslin type, by Theorem 6.

COROLLARY 2. If S is a measurable space which admits the Souslin
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operation, and X a Eausdorff space, then the class of ntultifunctions of
Souslin type from S into X is closed with respect to the formation of
countable intersections.

4. The existence of measurable selectors

We f i r s t prove a lemma which wil l enable us to deduce the measurable

selection theorem of [ /4 ] .

LEMMA 3. Let (S, M) be a measurable space which admits the Souslin

operation, X a space which is the continuous image of a Polish space, and

F : S -»• X a multifunction such that G(Y) belongs to the a-algebra

M ® B . Then V is of Souslin type.

Proof. We prove th is f i r s t of a l l in the case where AT i s a Polish

space. I t i s sufficient to prove that each set in M ® B_ i s Souslin-R .

Let A be the class of sets A in 5 x x such that both A and i t s

complement A ' are Souslin-R . This class i s a a-algebra, since by [ 6 ] ,

§19 9 any Souslin class i s invariant under the formation of countable unions

and in tersec t ions . A also contains the sets of R , for i f M i s

measurable and F i s closed, the complement of M x P i s

(MxF)' = (M'y-X) u (SxF') f

which i s clearly Souslin-R .

The sets M x F generate the a-algebra M ® 8« since the a-algebra

generated by the sets {M x F : F closed in X) for a fixed set M in S

contains a l l the sets M x B where B is a Borel set in X .

Hence G(T) i s Souslin-R , and so V i s of Souslin type, by Theorem

6.

Suppose now that X = <p(P) , where P i s a Polish space and q> a

continuous mapping. Consider the mapping

\j> : S x P •+ S * X

defined by i|>(t, p) = [t, <p(p)) .

The inverse image of any "rectangle" A * B in S x x i s the

rectangle A x y (g) in S * P , and hence the inverse under if) of any
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se t in M ® B must belong to M ® 8 p .

Thus, i f G(T) € M ® Bx , the multifunction cp"1 ° T is of Souslin

•tyPe» Mid hence F i s of Souslin type, by Lemma 2.

We now turn to the problem of the existence of measurable se lec tors .

I f F : 5 -»• X i s a multifunction with non-empty values, a selector for T

i s a function y : S •*• X such that y(t) € T(t) for every t in S .

Also y i s measurable i f y~ (?) i s measurable for every closed set F

i n X .

Now l e t 5 be any measurable space and X a Polish space; i f T i s

a closed-valued multifunction from S into X , and i t s values are a l l

non-empty, then i t follows from the main theorem of [9] and from the proof

of Theoreme 5.U of [3] that there exis ts a countable collection

{y : n = 1 , 2 , . . . } of measurable selectors of T such that for each

t € S , the set {Y (t) : n = 1 , 2 , . . . } i s dense in T(t) . Hence we

have:

THEOREM 7. If S is a measurable space, X a topological space and

r : S -*• X a multifunction of Souslin type with non-empty values, then

there exists a sequence (Y ) of measurable selectors of T such that for

each t the set {Y (*) : n = 1, 2 , . . . } is dense in T(t) .

Proof. There exist a Polish space P , a continuous mapping

cp : P •*• X , and a measurable closed-valued multifunction Q : S -*• P such

tha t T(t) = <p(fi(t)) for each t .

Since T(t) # 0 for a l l t , « ( t ) t 0 for a l l t . Therefore fi

has a countable dense collect ion fu ) of measurable se lec tors . The

theorem follows on putt ing Y =<p°a) , n = 1, 2 , .

In pa r t i cu la r , from Lemma 3 and Theorem 7, we deduce Theoreme 1 of

[ /4] in the following form:

COROLLARY. If S is a measurable space which admits the Souelin

operation, X the continuous image of a Polish space, and T : S •*• X a

multifunction with non-empty values such that G(V) € M ® 8 , then there
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exists a sequence [y ) of measurable selectors of T such that for each

t the set {y it) : n = 1, 2, . . .} is dense in Tit) .

Finally we give an application of this theory. Implicit function
theorems and "lifting theorems" (see, for example, [JO]) have been found
useful for the abstract theory of control. We give two examples of a type
of implicit function theorem known in the literature as Filippov's Lemma,
from i ts ini t ia l appearance in [5].

THEOREM 8. Let is, M) be a measurable space which admits the

Souslin operation, X a Hausdorff space, and 1 a separable metri able

space. Let f : S * X -*• Y and g : S •*• I be functions measurable with

respect to M ® 8 and M respectively. Suppose that r : 5 -»• X is a

multifunction of Souslin type such that, for each t , git) € f[t, Tit))

Then V has a measurable selector y such that g(t) = f[t, yit)) for

each t .

THEOREM 9. Let S be a locally compact Hausdorff space on which is

defined a Radon measure u . Let X, T be Hausdorff spaces,

f : 5 x X •*• I a continuous function, T : S -*• X a multifunction of

Souslin type, and g : S •+ I a \i-measurable function such that, for each

t , g(t) € f{t, T(t)) .. In addition, suppose that X is regular. Then

F has a measurable selector y such that for each t ,

f{t, y{t)) = g{t) .

(Ety- ^-measurable we mean that given any compact set K in 5 and

any positive real number e , there exists a compact set K c K such that

lyK^VxJ < e and g\Kt is continuous.)

The proof in each case consists of showing that the multifunction

A : t - {u € X : fit, u) = git)} is of Souslin type.

By various ways, such as identifying S and Y or by taking T to

be constant, we may deduce a l l the implicit function theorems to be found

in [//] (Lemma 5, p. 1*1*8), [ / ] , [3] , [7] , 1121. (In the cases where X

has to be embedded in i t s completion, we may restr ict f to the graph of

T ; so Theorems 8 and 9 s t i l l hold if T i s a measurable compact-valued

multifunction and X is a separable metric space.)
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