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Abstract In this article we extend the results about Gorenstein modules and Foxby duality to a non-
commutative setting. This is done in § 3 of the paper, where we characterize the Auslander and Bass
classes which arise whenever we have a dualizing module associated with a pair of rings. In this situation
it is known that flat modules have finite projective dimension. Since this property of a ring is of interest
in its own right, we devote § 2 of the paper to a consideration of such rings. Finally, in the paper’s final
section, we consider a natural generalization of the notions of Gorenstein modules which arises when we
are in the situation of § 3, i.e. when we have a dualizing module.
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1. Introduction

Grothendieck in [11] introduced the notion of a dualizing complex for a commutative
Noetherian ring R. A dualizing module (or canonical module) for R is a module whose
deleted injective resolution is a dualizing complex for R. Gorenstein local rings are pre-
cisely those local rings for which R itself is a dualizing module for R. All these notions have
been extensively developed and applied in commutative algebra and algebraic geometry.
In recent years, it has become clear that all these notions have useful non-commutative
versions which can be applied in various areas of algebra such as the theory of modular
group representations. Bass had noted that Gorenstein local rings are precisely those
whose self injective dimension is finite (see [2]). But integral group rings of finite groups
(and, in fact, of many infinite groups) have the same property. So these rings can also be
said to serve as their own dualizing modules.

In this article we consider a general notion of a dualizing bimodule for a pair of rings
S and R. We use this terminology since we want to generalize the main result of [9] to
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the non-commutative setting, that is, we want to characterize the Auslander and Bass
classes which arise in this situation in terms of the Gorenstein injective and projective
dimensions. We note that the language of cotilting theory is also appropriate in this
setting. An important property of modules over rings admitting a dualizing module
is that flat modules have finite projective dimensions (cf. [14, Corollary 3.2.7] or [15,
Theorem 4.2.8]). In § 2 we introduce a class of rings with this property.

2. n-perfect rings

Left perfect rings R are characterized in Bass’s Theorem P as those rings such that
every left flat R-module is projective (cf. [2]). In this sense the following definition is an
extension of that of left perfect rings.

Definition 2.1. A ring R is said to be left (right) n-perfect if every left (right) flat
R-module has projective dimension less or equal than n.

Example 2.2. As we have noted before, it is immediate that left perfect rings are left
0-perfect, and so a ring may be left n-perfect and not right n-perfect (see [1, Exercise 2,
p. 322]).

Example 2.3. If R is a local commutative Noetherian ring of Krull dimension d, then
R is a left (and right) d-perfect ring (cf. [15, Theorem 4.2.8]).

Example 2.4. Let R be a left Noetherian ring such that id(RR) � n. Then, by [6,
Proposition 9.1.2], R is left n-perfect. In particular, if R is n-Gorenstein, i.e. R is left
and right Noetherian and id(RR), id(RR) � n, then R is left and right n-perfect.

Example 2.5. If R is a left n-perfect ring, then R[x] is (n + 1)-perfect. To show this,
let F be a flat left R[x]-module. Then F = lim−→Pi, where Pi ∈ R[x]-Mod are projective
and so are direct summands of a free R[x]-module. Now since R[x] is a free left R-module,
it follows that F = lim−→Pi, with Pi projective in R-Mod. But then F [x] = lim−→Pi[x], where
Pi[x] are projective in R[x]-Mod, and so F [x] is flat in R[x]-Mod.

Now suppose that pd(F ) � n and let

0 → Pn → · · · → P1 → P0 → F → 0,

with each Pi projective. Then

0 → Pn[x] → · · · → P1[x] → P0[x] → F [x] → 0

shows that pd(F [x]) � n in R[x]-Mod, and since we have an exact sequence

0 → F [x] → F [x] → F → 0,

it follows that pd(F ) � n + 1 in R[x]-Mod.

Example 2.6. Let R be a filtered ring and G(R) be its associated graded ring. If G(R)
is left n-perfect, then R is n-perfect. Let F ∈ R-Mod be a flat module. Then F = lim−→Pi,
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with Pi finitely generated projective R-modules. Now, by [12, Proposition I.4.2.2], if we
take a good filtration on each Pi, we get that G(F ) = G(lim−→Pi) = lim−→G(Pi), and so, using
Proposition I.6.5 and Lemma I.5.4 of [12], G(F ) is flat in G(R)-gr. Therefore, there exists
an exact sequence in G(R)-gr

0 → Pn → · · · → P1 → P0 → G(F ) → 0,

where each Pi is projective in R-Mod. Now we use Eilenberg’s trick, i.e. if P is pro-
jective, then there is a free module X such that P ⊕ X is free (if P ⊕ P ′ is free, take
X = P ′ ⊕ P ⊕ P ′ ⊕ · · · ), and so we can take the direct sum of the preceding complex
with complexes of the form

0 → · · · → 0 → X
id−→ X → 0 → · · · → 0,

where X is a gr-free graded G(R)-module, to get a projective resolution

0 → Fn → · · · → F1 → F0 → G(F ) → 0,

where every Fi is gr-free. Now, by [12, Lemma 6.2.4], there exist filtered free R-modules
Hi such that G(Hi) = Fi for all i = 1, . . . , n, and so, by [12, Lemma 6.2.6], we get an
exact sequence in R-Mod

0 → Hn → · · · → H1 → H0 → F → 0,

which shows that pd(F ) � n.

Now, from Examples 2.5 and 2.6, it is possible to get numerous examples of classical
rings that are left n-perfect.

3. Gorenstein modules

In this section we characterize Gorenstein modules in terms of the so-called Auslander
and Bass classes and generalize results obtained in [9]. We point out that similar results
have been recently obtained for the commutative case in [4].

We recall from [5] that a left R-module N is said to be Gorenstein injective if there
exists an exact sequence of injective left R-modules · · · → E1 → E0 → E0 → E1 → · · ·
such that N = Ker(E0 → E1) and that remains exact when HomR(E, ·) is applied for
every injective left R-module E. Gorenstein projective modules are defined dually.

Definition 3.1. Let R and S be right and left Noetherian rings, respectively, and let
SVR be an S–R-bimodule such that EndS(V ) = R and EndR(V ) = S. Then V is said to
be a dualizing module if it satisfies the following three conditions.

(i) id(SV ) � r and id(VR) � r.

(ii) Exti
R(V, V ) = Exti

S(V, V ) = 0 for all i � 1.

(iii) SV and VR are finitely generated.
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Example 3.2. If R is a Cohen–Macaulay local ring of Krull dimension d admitting a
dualizing module Ω (see [9]), then Ω is a dualizing module in this sense.

Example 3.3. If R is an n-Gorenstein (not necessarily commutative), then RRR is a
dualizing module.

Example 3.4. Let R and S be strongly graded rings over finite groups, right and
left Noetherian, respectively, and let Se

VRe
be a dualizing module (for Re and Se). Then

W = S ⊗Se V ⊗Re R is a dualizing module (for R and S). Let us show this:

EndS(W ) = HomS(W, W )
∼= HomS-gr(W, W ) ⊗Re R

∼= HomSe(V, V ) ⊗Re R

∼= Re ⊗Re R

∼= R.

Analogously, EndR(W ) = S. If 0 → V → E0 → · · · → Er → 0 is an injective resolution
of V , then 0 → V ⊗Re R → E0 ⊗Re R → · · · → Er ⊗Re R → 0 is an injective resolution
of WR and, analogously, id(SW ) � n.

Exti
S(W, W ) ∼= Exti

S-gr(W, W ) ⊗Re
R ∼= Exti

Se
(V, V ) = 0

for all i � 1 and, analogously, Exti
R(W, W ) = 0 for all i � 1. Finally, it is immediate that

WR and SW are finitely generated.

Example 3.5. Let R and S be right and left Noetherian rings and let SVR be a
dualizing module. Then S[[x]]V [[x]]R[[x]] is a dualizing module. Let us show this. First, it is
immediate that S[[x]]V [[x]] and V [[x]]R[[x]] are finitely generated and, if id(SV ), id(VR) � r,
then, by [10, Proposition 2.7], we have that id(S[[x]]V [[x]]), id(V [[x]]R[[x]]) � r+1. Moreover,

HomR[[x]](V [[x]], V [[x]]) ∼= HomR(V, V )[[x]]

(cf. [13]), and so EndR[[x]](V [[x]]) ∼= S[[x]] and, analogously, EndS[[x]](V [[x]]) ∼= R[[x]]. We
also have that, for every left R[[x]]-module L,

R[[x]] ⊗R[[x]] L ∼= R ⊗R L ∼= L,

and so, if P ∈ Mod-R is projective, then it is easy to see that

P [[x]] ⊗R[[x]] L ∼= P ⊗R L.

Hence, if M ∈ Mod-R and · · · → P1 → P0 → M → 0 is projective resolution of M , then
we have a commutative diagram

P1 ⊗R L ��

��

P0 ⊗R L ��

��

M ⊗R L ��

��

0

P1[[x]] ⊗R[[x]] L �� P0[[x]] ⊗R[[x]] L �� M [[x]] ⊗R[[x]] L �� 0
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and so M ⊗R L ∼= M [[x]] ⊗R[[x]] L. From this, we have that

Extn
R[[x]](V [[x]], V [[x]]) ∼= Extn

R(V, V )[[x]] = 0 ∀n � 1

and, analogously, Extn
R[[x]](V [[x]], V [[x]]) = 0 for all n � 1. Therefore, S[[x]]VR[[x]] is a dual-

izing module.

Now we use the bimodule SVR to define the two following classes.

Definition 3.6. Let R and S be right and left Noetherian rings, respectively, and let
SVR be a dualizing module. We define the Auslander class A(R) (relative to V ) as those
left R-modules M such that TorR

i (V, M) = 0 and Exti
S(V, V ⊗R M) = 0 for all i � 1 and

such that the natural morphism M → HomS(V, V ⊗R M) is an isomorphism.
The Bass class B(S) (relative to V ) is defined as those left S-modules N such that

Exti
S(V, N) = 0 and TorR

i (V, HomS(V, N)) = 0 for all i � 1 and such that the natural
morphism V ⊗R HomS(V, N) → N is an isomorphism.

It is an important property of Auslander and Bass classes that they are equivalent
under the pair of functors

A(R)
V ⊗R·

�� B(S)
HomS(V,·)

��

This can be shown as in [3, Theorem 3.3.2].

Lemma 3.7. Let E ∈ S-Mod be injective. Then E ∈ B(S).

Proof. It is immediate that Exti
S(V, E) = 0 for all i � 1. On the other hand, since

SV is finitely presented and E is injective, we have the isomorphism

V ⊗R HomS(V, E) ∼= HomS(HomR(V, V ), E).

But HomR(V, V ) = S and HomS(S, E) ∼= E, and so V ⊗R HomS(V, E) ∼= E.
Finally, since R is right Noetherian, VR is finitely generated and E is injective, then

we have the isomorphism

TorR
i (V, HomS(V, E)) ∼= HomS(Exti

R(V, V ), E),

and since Exti
R(V, V ) = 0 for all i � 1, it follows that TorR

i (V, HomS(V, E)) = 0 for all
i � 1. �

Proposition 3.8. If N ∈ S-Mod is Gorenstein injective, then E ∈ B(S).

Proof. Let · · · → E−1 → E0 → E1 → · · · exact in S-Mod with every Ei injective,
N = Ker(E0 → E1) and such that HomS(E, ·) leaves it exact for every E ∈ S-Mod
injective. Since SV has finite injective dimension, then HomS(V, ·) leaves the preceding
sequence exact, which gives that Exti

S(V, N) = 0 for all i � 1. Moreover, we have an
exact sequence

HomS(V, E−1) → HomS(V, E0) → HomS(V, N) → 0,
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and so we get a commutative diagram

V ⊗R HomS(V, E−1) ��

��

V ⊗R HomS(V, E0) ��

��

V ⊗R HomS(V, N) ��

��

0

E−1 �� E0 �� N �� 0

Now, as the two vertical maps on the left are isomorphisms, since Ei ∈ B(S), it follows
that N ∼= V ⊗R HomS(V, V ). Let us now consider the exact sequence 0 → K → E0 →
N → 0. Since K is Gorenstein injective by [6, Remark 10.1.5], then, by the preceding
K ∼= V ⊗R HomS(V, K). The fact that HomS(V, ·) leaves the first sequence exact gives
that

0 → HomS(V, K) → HomS(V, E0) → HomS(V, N) → 0

is exact and so, applying V ⊗R ·, we get a long exact sequence

0 = TorR
1 (V, HomS(V, E0)) → TorR

1 (V, HomS(V, N)) → K → E0 → N → 0,

which implies that TorR
1 (V, HomS(V, N)) = 0. By the same reasoning, we get that

Tor1(V, HomS(V, K)) = 0, which gives that TorR
2 (V, HomS(V, N)) = 0, since E0 ∈ B(S).

An easy induction terminates the proof. �

A dual argument gives the following result.

Proposition 3.9. If M ∈ R-Mod is Gorenstein projective, then M ∈ A(R).

We have shown that A(R) and B(S) are not empty classes, since they contain the
projective and injective modules, respectively. Now we are going to give a characterization
of these classes.

Let W be the class of all left S-modules M such that M ∼= V ⊗RP for some P ∈ R-Mod
projective and let U be the class of all left R-modules N such that N ∼= HomS(V, E) for
some E ∈ S-Mod injective.

Proposition 3.10. Every left S-module has a W-precover and every left R-module
has an U-pre-envelope.

Proof. It is clear that V ∈ W, since V ∼= V ⊗R R, and that V (I) ∈ W . In this way,
if M ∈ S-Mod, then a W-precover of M is V (HomS(V,M)) → M , taking into account that
W ∼= V ⊗R P

ϕ−→M is a W-precover if and only if HomS(V, W ) → HomS(V, M) → 0
is exact, since, if HomS(V ⊗R P ′, V ⊗R P ) → HomS(V ⊗R P ′, M) → M → 0 is exact,
taking P ′ = R, then HomS(V, V ⊗R P ) → HomS(V, M) → 0 is exact. Conversely, if
HomS(V, V ⊗R P ) → HomS(V, M) → 0 is exact and f ∈ HomS(V ⊗R P ′, M), then,
given p′ ∈ P ′ ∼= HomS(V, V ⊗R P ′), fp′ ∈ HomS(V, M), which implies that there is
g ∈ HomS(V, V ⊗R P ) ∼= P such that fp′ = ϕg. Therefore, given p′ ∈ P ′, we can assign
g ∈ P to it. So we have an element of HomS(P, P ′) ∼= HomS(V ⊗R P ′, V ⊗R P ), as
desired.

Now let M ∈ R-Mod and embed V ⊗R M into an injective E. Then the composition
M → HomS(V, V ⊗R M) → HomS(V, E) is an U-pre-envelope. To show this, if U ∈ U
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and M → U is a morphism, then we have a morphism V ⊗R M → V ⊗R U ∼= V ⊗R

HomS(V, E′) ∼= E′ for some injective E′ ∈ S-Mod. Therefore, the map V ⊗R M → E′

may be extended to E → E′, which gives a morphism HomS(V, E) → HomS(V, E′)
such that the composition M → HomS(V, E) → HomS(V, E′) is the morphism M →
HomS(V, E′) ∼= U . �

Proposition 3.11. Let N ∈ B(S). The following assertions are equivalent.

(i) N ∈ B(S).

(ii) There exists an exact sequence · · · → W1 → W0 → E0 → E1 → · · · in S-Mod,
where every Ei is injective, every Wi ∈ W, N = Ker(E0 → E1) and HomS(V, ·)
leaves it exact.

(iii) There exists an exact W-resolution · · · → W1 → W0 → N → 0, which remains
exact when we apply HomS(W, ·) for every W ∈ W and HomS(V, ·) leaves exact
every injective resolution of N .

Proof. (i)⇒ (ii). Let 0 → N → E0 → E1 → · · · be an injective resolution of N . Then
0 → HomS(V, N) → HomS(V, E0) → · · · is exact since Exti

S(V, N) = 0 for all i � 1.
Now let · · · → P1 → P0 → HomS(V, N) → 0 be a projective resolution of HomS(V, N)
in R-Mod and let Wi = V ⊗R Pi ∈ W. Then we have the complex · · · → W1 → W0 →
V ⊗R HomS(V, N) → 0, which is exact since TorR

i (V, HomS(V, N)) = 0 for all i � 1 and
N ∼= V ⊗R HomS(V, N).

(ii)⇒ (i). HomS(V, ·) leaves 0 → N → E0 → E1 → · · · exact, which implies that
Exti

S(V, N) = 0 for all i � 1. On the other hand, if Wi = V ⊗R Pi for some projective Pi,
then HomS(V, Wi) ∼= HomS(V, V ⊗R Pi) ∼= Pi. Therefore, the natural morphism V ⊗R

HomS(V, Wi) → Wi is an isomorphism and

· · · → HomS(V, W1) → HomS(V, W0) → HomS(V, N) → 0

is a projective resolution of HomS(V, N). But then the complex

· · · → V ⊗R HomS(V, W1) → V ⊗R HomS(V, W0) → V ⊗R HomS(V, N) → 0

is equivalent to the exact sequence · · · → W1 → W0 → N → 0 and so V ⊗RHomS(V, N) ∼=
N and TorR

i (V, HomS(V, N)) = 0 for all i � 1, and therefore N ∈ B(S).

(ii)⇔ (iii). · · · → W1 → W0 → N → 0 remains exact when we apply HomS(W, ·) for
every W ∈ W if and only if HomS(V ⊗R P, ·) leaves it exact for every projective P , if
and only if HomR(P, HomS(V, ·)) leaves it exact for every projective P , if and only if
HomS(V, ·) leaves it exact. Finally, 0 → N → E0 → E1 → · · · remains exact when we
apply HomS(V, ·) if and only if this functor leaves exact any injective exact resolution of
N , since Exti

S(V, N) = 0 for all i � 1. �

We can also prove in a dual manner the following characterization of modules in A(R).

Proposition 3.12. Let M ∈ R-Mod. The following assertions are equivalent.
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(i) M ∈ A(R).

(ii) There exists an exact sequence · · · → P1 → P0 → U0 → U1 → · · · in R-Mod where
every Pi is projective, every U i ∈ U , M = Ker(U0 → U1) and V ⊗R · leaves it
exact.

(iii) There exists an exact U-resolution 0 → M → U0 → U1 → · · · which remains exact
when we apply HomS(·, U) for every U ∈ U and V ⊗R · leaves exact every projective
resolution of M .

Proposition 3.13. Let 0 → N ′ → N → N ′′ → 0 and 0 → M ′ → M → M ′′ → 0 be
exact in S-Mod and R-Mod, respectively. If two any of N ′, N and N ′′ (respectively, M ′,
M and M ′′) are in B(S) (respectively, A(R)), then so is the third.

Proof. Let 0 → N ′ → N → N ′′ → 0 be exact in S-Mod. If N ′ ∈ B(S), then

0 → HomS(V, N ′) → HomS(V, N) → HomS(V, N ′′) → 0

is exact since Ext1S(V, N ′) = 0. If N ∈ B(S), then Ext1S(V, N) = 0 and we have an exact
sequence

0 → HomS(V, N ′) → HomS(V, N) → HomS(V, N ′′) → Ext1S(V, N ′) → 0

and so

V ⊗R HomS(V, N) → V ⊗R HomS(V, N ′′) → V ⊗R Ext1S(V, N ′) → 0

is exact. If N, N ′′ ∈ B(S), then

N → N ′′ → V ⊗R Ext1S(V, N ′) → 0

is exact and so Ext1S(V, N ′) = 0. Therefore, if two of N , N ′ and N ′′ are in B(S), then

0 → HomS(V, N ′) → HomS(V, N) → HomS(V, N ′′) → 0

is exact. But this is equivalent to

0 → HomS(V ⊗R P, N ′) → HomS(V ⊗R P, N) → HomS(V ⊗R P, N ′′) → 0

being exact for every projective right R-module P . But this means that the functor
HomS(W, ·) leaves 0 → N ′ → N → N ′′ → 0 exact for any W ∈ W. Now, by [6,
Lemma 8.2.1], given two W-resolutions for N ′ and N ′′, we can get a W-resolution for N

and the same holds for injective resolutions. If we paste them together, we get an exact
sequence of complexes such that remains exact when HomS(V, ·) is applied to it. If two
of these complexes are exact, then so is the third, so, by Proposition 3.11, we get the
desired result.

The proof of the other assertion is dual. �
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Corollary 3.14. Let N ∈ S-Mod and M ∈ R-Mod. If id(N) < ∞, then N ∈ B(S),
and if pd(M) < ∞, then M ∈ A(R).

In the rest of the section, R and S will denote right and left Noetherian rings, R will
be a left n-perfect ring and SVR will be a dualizing module such that id(SV ), id(VR) � r.

Lemma 3.15. If N ∈ B(S) and 0 → N → E0 → · · · → Er+n → G → 0 is exact with
every Ei injective, then G is Gorenstein injective.

Proof. Since N ∈ B(S), then any injective resolution of N remains exact whenever
HomS(V, ·) is applied. Now, if E, E′ are injective left S-modules, then

HomS(E, E′) ∼= HomR(HomS(V, E), HomS(V, E′)).

Since Exti
S(V, V ) = 0 for all i � 1, then Exti

R(HomS(V, E), HomS(V, E′)) = 0 for all
i � 1. Moreover, id(SV ) � r implies that fd(HomS(V, E)) � r and so, since R is left
n-perfect, pd(HomS(V, E)) � n+ r. Therefore, Extn+r+i

R (HomS(V, E), HomS(V, N)) = 0
for all i � 1 and for every injective E ∈ S-Mod. Then

0 → HomS(V, N) → HomS(V, E0) → · · · → HomS(V, En+r) → · · ·

becomes exact from the term

HomR(HomS(V, E), HomS(V, En+r))

whenever HomR(HomS(V, E)·) is applied for every injective E ∈ S-Mod. But then we
get that

0 → HomS(E, G) → HomS(E, En+r) → HomS(E, En+r+1) → · · ·

is exact for every injective E ∈ S-Mod.
Now let us construct an exact injective resolution for G on the left by using injective

precovers. Since En+r → G is surjective, then an injective precover E
ϕ−→G is also surjec-

tive. Now let K = Ker(ϕ). Then Exti
S(E′, K) = 0 for all i � 1 and every injective E′,

which gives that Ext1S(L, K) = 0 for every L ∈ S-Mod such that id(L) < ∞. Let P →
HomS(V, K) → 0 be exact, with P projective. Then V ⊗R P → V ⊗R HomS(V, K) → 0
is exact. But V ⊗R HomS(V, K) ∼= K, since K ∈ B(S) and id(V ⊗R P ) < ∞. Now if
E′ → K is an injective precover of K, then there exists a commutative diagram

V ⊗R P

�����������

��

E′ �� K

where E′ → K is surjective and so N is Gorenstein injective. �

Corollary 3.16. N ∈ B(S) if and only if there is n � 0 such that there exists an
exact sequence

0 → N → G0 → G1 → · · · → Gk → 0,

where every Gi is Gorenstein injective. Moreover, in that case, k � r + n.
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Proof. Apply Propositions 3.8 and 3.13 and Lemma 3.15. �

Theorem 3.17. Let N be a left S-module. The following assertions are equivalent.

(i) N is Gorenstein injective.

(ii) N ∈ B(S) and Exti
S(L, N) = 0 for all i � 1 and every L ∈ S-Mod such that

id(L) < ∞.

(iii) There is an exact sequence in S-Mod · · · → E1 → E0 → N → 0 where every Ei is
injective such that HomS(E, ·) leaves it exact for every injective E ∈ S-Mod and
Exti

S(L, N) = 0 for all i � 1 and every L ∈ S-Mod such that id(L) < ∞.

(iv) There is an exact sequence in S-Mod 0 → K → Er+n · · · → E1 → E0 → N → 0
where every Ei is injective and K ∈ B(S).

(v) There is an exact sequence in S-Mod 0 → N → G0 → G1 → · · · → Gm → 0 for
some m � 0 where every Gi is Gorenstein injective and Exti

S(L, N) = 0 for all
i � 1 and every L such that id(L) < ∞.

Proof. (i)⇒ (ii). It follows from [6, Proposition 10.1.3] and Proposition 3.8.

(ii)⇒ (iii). This can be proved by using the same argument in Lemma 3.15.

(iii)⇒ (i). Immediate by the definition of Gorenstein injective.

(i)⇒ (iv). If · · · → E1 → E0 → E0 → E1 → · · · is the complete resolution for N ,
then take K = Ker(En → En−1). K is Gorenstein injective and, by Proposition 3.8,
K ∈ B(S).

(iv)⇒ (i). Immediate from Lemma 3.15.

(ii)⇔ (v). It follows from the preceding corollary. �

Dual arguments give the following results.

Lemma 3.18. If M ∈ A(R) and 0 → G → Pr−1 → · · · → P1 → P0 → M → 0 is exact
with every Pi projective, then G is Gorenstein projective.

Corollary 3.19. M ∈ A(R) if and only if there is k � 0 such that there exists an
exact sequence

0 → Gk → Gk−1 → · · · → G0 → M → 0

where every Gi is Gorenstein projective. Moreover, in that case, k � r.

Theorem 3.20. Let M be a left R-Mod. The following assertions are equivalent.

(i) M is Gorenstein projective.

(ii) M ∈ A(R) and Exti
R(M, L) = 0 for all i � 1 and every L ∈ R-Mod such that

pd(L) < ∞.
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(iii) There is an exact sequence in R-Mod 0 → M → P 0 → P 1 → · · · where every Pi

is projective such that HomS(·, P ) leaves it exact for every projective P ∈ R-Mod
and Exti

R(M, L) = 0 for all i � 1 and every L ∈ R-Mod such that pd(L) < ∞.

(iv) There is an exact sequence in R-Mod 0 → M → P 0 → P 1 → · · · → P r−1 → C → 0
where every P i is projective and C ∈ A(R).

(v) There is an exact sequence in R-Mod 0 → Gk → Gk−1 → . . . → G1 → G0 → M → 0
for some k � 0 where every Gi is Gorenstein projective and Exti

R(M, L) = 0 for all
i � 1 and every L such that pd(L) < ∞.

Corollary 3.21. G = G1 ⊕ G2 is Gorenstein injective (respectively, Gorenstein
projective) if and only if G1 and G2 are.

Theorem 3.22. If N ∈ B(S), then N has a Gorenstein injective pre-envelope N → G

such that id(G/N) � r + n.

Proof. Let 0 → N → E0 → · · · → Er+n → C → 0 be exact. Then, by Lemma 3.15,
is Gorenstein injective. So let

· · · → I1 → I0 → I0 → I1 → · · ·

be the complete injective resolution for C with C = Ker(I0 → I1). Let

0 → D → Ir+n → · · · → E0 → C → 0

be exact. Then we have the commutative diagram

0 �� N ��

��

E0 ��

��

· · · �� Er+n ��

��

C ��

��

0

0 �� D �� Ir+n
�� . . . �� I0 �� C �� 0

Now the associated complex to this diagram

0 → D ⊕ E0 → · · · → I0 ⊕ C → C → 0

is exact and has the exact sequence

0 → C → C → 0

as a subcomplex, and so the quotient complex

0 → N → D ⊕ E0 → · · · → I0 → 0

is exact. Since all of its terms are injective, except perhaps D⊕E0, if 0 → D⊕E0 → L → 0
is exact with id(L) < ∞ and D ⊕ E0 is Gorenstein injective and Ext1S(L, X) = 0 for
every Gorenstein injective module X, then N → D ⊕ E0 is the desired pre-envelope. �

A dual reasoning gives the following result.

Theorem 3.23. If M ∈ A(R), then M has a Gorenstein projective precover G → M

whose kernel K has pd(K) � r.
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4. V -Gorenstein modules

The aim of this section is to extend the class of modules studied in [7] and [8] that
generalizes Gorenstein modules. We show the existence of pre-envelopes and precovers
by these classes of module.

Let C, D and E be abelian categories and T : C × D → E be an additive functor
covariant in the first variable and contravariant in the second. Let F and G be classes of
objects of C and D, respectively. Then T is said to be left balanced by F ×G if, for each
object M of C, there is a complex · · · → F1 → F0 → M → 0 that becomes exact when
T (·, G) is applied for every G ∈ G and if, for every object N in D, there is a complex
0 → N → G0 → G1 → · · · that becomes exact when T (F, ·) is applied for every F ∈ F .
It is possible then to define left-derived functors of T by using either left F-resolutions
or right G-resolutions (cf. [6, Chapter 8]). Now, let U denote the same class as in the
preceding section.

Proposition 4.1. Let R and S be right and left Noetherian rings; R is a left n-perfect
and SVR is a dualizing module. Then HomR(·, ·) is left balanced by U × U on R-Mod ×
R-Mod.

Proof. By Proposition 3.10, if M ∈ R-Mod, then there exists an exact sequence
0 → M → U0 → U1 → · · · such that HomR(·, U) leaves it exact for every U ∈ U . Now
let us show that every left R-module has an U-precover, which will finish the proof.

Since S is left Noetherian, then there exists a set of representatives of the indecom-
posable injective left S-modules {Ek} that gives a set of representatives of the modules
in U , {Uk = HomS(V, Ek)}. Now, if M ∈ R-Mod, let s(M) = ⊕U

HomR(Uk,M)
k . Since SV

is finitely generated and S is left Noetherian,

HomS(V, lim−→(·)) ∼= lim−→ HomS(V, ·),

and so s(M) ∈ U . The evaluation map s(M) → M is a U-precover. �

This allows us to give the following definition. In the rest of the section, R and S

will be right and left Noetherian rings, such that R is left n-perfect, and SVR will be a
dualizing module such that id(SV ), id(VR) � r.

Definition 4.2. A left R-module M is said to be V -Gorenstein injective if there exists
an exact resolution

· · · → U1 → U0 → U0 → U1 → · · · ,

with every Ui and U i in U , M = Ker(U0 → U1) and such that it remains exact whenever
HomR(U, ·) is applied for every U ∈ U .

Proposition 4.3. If M ∈ R-Mod is V -Gorenstein injective, then Exti
R(U, M) = 0 for

all i � 1 for every U ∈ U .

Proof. If U ′ ∈ U , then

Exti
R(U, U ′) = Exti

R(HomS(V, E), HomS(V, E′)) ∼= HomS(TorR
i (V, HomS(V, E)), E′),
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and since E ∈ B(S), it follows that Exti
R(U, U ′) = 0 for all i � 1, and so Exti

R(U, M) = 0
for all i � 1 for every U ∈ U . �

Proposition 4.4. Let M ∈ R-Mod. Then the following hold.

(i) If 0 → M → U0 → U1 → · · · is an exact right U-resolution and

Ci = Ker(U i → U i+1),

then Ci is V -Gorenstein injective for i � r.

(ii) If · · · → U1 → U0 → M → 0 is an exact left U-resolution and

Ci = Coker(Ui+1 → Ui),

then Ci is V -Gorenstein injective for i � r − 1.

Proof. (i) If R is left n-perfect, then pd(HomS(V, E)) � n for every injective E ∈
S-Mod, since id(SV ) < ∞, i.e. pd(U) � n for every U ∈ U . Therefore, Exti

R(U, M) = 0
for all i � n + 1, or, equivalently, if 0 → U0 → U1 → · · · is a right U-resolution of M ,
then

0 → Ci → U i → U i+1 → · · · (∗)

is exact and remains exact whenever HomR(U, ·) is applied for every U ∈ U . Now let

0 → V → E0 → · · · → Er → 0

be exact in S-Mod. Then

0 → HomS(V, V ) → HomS(V, E0) → · · · → HomS(V, Er) → 0

is exact since Exti
S(V, V ) = 0 for all i � 1. But HomS(V, V ) ∼= R. In this way, if

· · · → U1 → U0 → M → 0 is a left U-resolution of M , since, by the preceding, the left
derived functors of HomR(·, ·) using U-resolutions on both variables, ExtR

k (R, M) = 0
for every k � r − 1, we get that the considered left U-resolution for M is exact at Uk,
k � r − 1.

In the case r = 1 and 0 → R → U0 → U1 → 0 is exact, we have that

0 → HomR(U1, M) → HomR(U0, M) → HomR(M, M)

is exact. Then ExtR
k (R, M) = 0 for all k � 1 and the natural morphism

ExtR
0 (R, M) → M

is monic. Now if we calculate ExtR
0 (R, M) using a left U-resolution of M , then U1 →

U0 → M is exact at U0 and so · · · → U1 → U0 → M → 0 is exact at Uk, k � 0.
Finally, if V is injective, then 0 → R → U0 → 0 is exact and so every U-precover is

surjective and so · · · → U1 → U0 → M → 0 is exact.
From the preceding, it follows that every left U-resolution of Ci is exact, so if we

paste (∗) to it we get that Ci is V -Gorenstein injective.
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(ii) The proof is analogous to (i) using the fact that if · · · → U1 → U0 → M → 0 is a
left U-resolution, then · · · → Ur+1 → Ur → Ur−1 → Ur−2 is exact, i.e. Ci → Ei−1 is a
monomorphism for every i � r − 1. �

Theorem 4.5. Let M ∈ A(R). Then M is V -Gorenstein injective if and only if
V ⊗R M is Gorenstein injective.

Proof. Let
· · · → U1 → U0 → U0 → U1 → · · ·

be exact with every Ui and U i in U , M = Ker(U0 → U1) and such that this sequence
remains exact whenever HomR(U, ·) is applied for every U ∈ U . If we apply V ⊗R −, we
get a complex

· · · → V ⊗R HomS(V, E1) → V ⊗R HomS(V, E0) → V ⊗R HomS(V, E0) → · · · ,

which is isomorphic to

· · · → HomS(HomR(V, V ), E1) → HomS(HomR(V, V ), E0)

→ HomS(HomR(V, V ), E0) → HomS(HomR(V, V ), E1) → · · · ,

and since HomR(V, V ) ∼= S, we get a complex in S-Mod,

· · · → E1 → E0 → E0 → · · · ,

such that V ⊗R M ∼= Ker(E0 → E1). Now, if E is injective in S-Mod, then E ∈ B(S)
and U = HomS(V, E) ∈ A(R). Therefore, TorR

i (V, U) = 0 for all i � 1 for every U ∈ U .
Moreover, M ∈ A(R) by hypothesis, and so the complex

· · · → E1 → E0 → E0 → E1 → · · ·

is exact. If U, U ′ ∈ U , then

HomR(U, U ′) ∼= HomR(HomS(V, E), HomS(V, E′)) ∼= HomS(E, E′),

and so the functor HomS(E, ·) leaves it exact and therefore V ⊗R M is Gorenstein injec-
tive.

Conversely, if V ⊗RM is Gorenstein injective and if · · · → E1 → E0 → E0 → E1 → · · ·
is the complete injective resolution for V ⊗R M , then HomS(V, ·) leaves it exact since
id(SV ) < ∞ and therefore we get an exact sequence · · · → U1 → U0 → U0 → U1 → · · · ,
where every Ui, U

i ∈ U and Ker(U0 → U1) = Ker(HomS(V, E0) → HomS(V, E1)) =
HomS(V, V ⊗R M) ∼= M since M ∈ A(R). Finally, let U ∈ U , U = HomS(V, E), where
E is injective. Then

. . . → HomR(U, U1) → HomR(U, U0) → HomR(U, U0) → HomR(U, U1) → · · ·

is isomorphic to

. . . → HomS(E, E1) → HomS(E, E0) → HomS(E, E0) → HomS(E, E1) → · · · .

But this complex is exact, since V ⊗R M is Gorenstein injective and therefore M is
V -Gorenstein injective. �
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An analogous reasoning to the one used in Theorem 3.22 gives the following result.

Theorem 4.6. Every M ∈ A(R) has a Gorenstein injective pre-envelope 0 → M →
G → L → 0 such that there exists an exact sequence 0 → L → U0 → U1 → · · · → Uk → 0
with k � r − 1 if r � 1 and every U i ∈ U for i = 0, . . . , k.

Now let W be the class of left S-modules M that are isomorphic to V ⊗R P for
some projective P ∈ R-Mod and let us denote by B(S)fg and Wfg the classes of finitely
generated left S-modules that are in B(S) and W, respectively. Then using the fact that
every finitely generated left R-module has a finitely generated projective pre-envelope,
since R is right coherent, we get the following result.

Proposition 4.7. HomS(·, ·) is left balanced on B(S)fg × B(S)fg by Wfg × Wfg.

This suggests the following definition.

Definition 4.8. A left S-module N is said to be V -Gorenstein projective if there
exists an exact resolution

· · · → W1 → W0 → W 0 → W 1 → · · · ,

with every Wi and W i in W, N = Ker(W 0 → W 1) and such that this sequence remains
exact whenever HomR(·, W ) is applied for every W ∈ W.

There exist similar results for V -Gorenstein projective finitely generated modules to
those obtained for V -Gorenstein injective.
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