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Abstract

Objectives: Down syndrome (DS) is a population with known hippocampal impairment, with studies showing that
individuals with DS display difficulties in spatial navigation and remembering arbitrary bindings. Recent research has also
demonstrated the importance of the hippocampus for novel word-learning. Based on these data, we aimed to determine
whether individuals with DS show deficits in learning new labels and if they may benefit from encoding conditions
thought to be less reliant on hippocampal function (i.e., through fast mapping). Methods: In the current study, we
examined immediate, 5-min, and 1-week delayed word-learning across two learning conditions (e.g., explicit encoding vs.
fast mapping). These conditions were examined across groups (twenty-six 3- to 5-year-old typically developing children
and twenty-six 11- to 28-year-old individuals with DS with comparable verbal and nonverbal scores on the Kaufman
Brief Intelligence Test — second edition) and in reference to sleep quality. Results: Both individuals with and without DS
showed retention after a 1-week delay, and the current study found no benefit of the fast mapping condition in either
group contrary to our expectations. Eye tracking data showed that preferential eye movements to target words were not
present immediately but emerged after 1-week in both groups. Furthermore, sleep measures collected via actigraphy did
not relate to retention in either group. Conclusions: This study presents novel data on long-term knowledge retention in
reference to sleep patterns in DS and adds to a body of knowledge helping us to understand the processes of word-learn-
ing in typical and atypically developing populations. (JINS, 2018, 24, 955-965)
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INTRODUCTION studies have examined the word-learning process in children
with memory disorders.

In the current study, we examine children’s ability to learn
new words across a 1-week delay in two encoding conditions,
one of which is considered to be less reliant on hippocampal
function. Using behavioral and eye tracking methods, we
compare word-learning in children with and without Down
syndrome (DS), a population with known hippocampal
impairment and deficits in memory (Edgin, 2013; Jarrold,
Baddeley, & Phillips, 2007; Nadel, 2003).

DS is a chromosomal condition that occurs when an indi-
vidual has an extra copy of chromosome 21 (Lejeune, Gautier,
& Turpin, 1959). Individuals with DS display memory and
learning difficulties, and the syndrome’s profile of hippocampal
deficits is well-established in humans and animal models
(Clark, Fernandez, Sakhon, Spano, & Edgin, 2017; Menghini,

Costanzo, & Vicari, 2011; Nadel, 2003). Individuals with DS
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Memory is a key cognitive process, influencing our ability to
acquire new information, including new words. The hippo-
campus is a brain structure critical to explicit memory; its
function is to bind together unrelated pieces of information
into an integrated memory (Davachi & Wagner, 2002;
Eichenbaum & Bunsey, 1995; Giovanello, Schnyer, & Ver-
faellie, 2009; Yonelinas, Hopfinger, Buonocore, Kroll, &
Baynes, 2001). Memory for such arbitrary associations is
important when learning new words. For instance, to use
“Dax” as the referent for a novel object, the learner must bind
that label to the object. Despite substantial evidence for the
link between the hippocampus and word-learning (Duff,
Hengst, Tranel, & Cohen, 2006; Mayes et al., 2004), few
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hippocampus (Abrahdm et al., 2012; Menghini et al., 2011;
Wisniewski, 1990). Genetic mouse models of DS and human
testing using neuropsychological tasks have revealed deficits on
hippocampal-dependent tasks, such as pattern separation and
spatial navigation (Clark et al., 2017; Courbois et al., 2013;
Lavenex et al., 2015; Pennington, Moon, Edgin, Stedron, &
Nadel, 2003; Smith, Kesner, & Korenberg, 2014).

In addition to memory deficits, individuals with DS have
prominent language delays. Specifically, studies have shown
poor vocabulary growth, grammar deficits, and deficits in
speech-sound production (Mervis & Robinson, 2000; Singer
Harris, Bellugi, Bates, Jones, & Rossen, 1997; Yoder, Woy-
naroski, Fey, & Warren, 2014). Despite these data, not all
researchers have found verbal long-term memory deficits.
Jarrold et al. (2007) found that verbal information was
retained better than spatial information across an estimated
8-min delay, findings that are consistent with word-learning
studies showing that children with DS can effectively com-
prehend and produce one single novel word across an hour
delay (Chapman, Bird, & Schwartz, 1990). Other studies have
suggested that nonverbal memory retention was also unim-
paired at 24 hr (Roberts & Richmond, 2015), but follow-up
studies suggested that young children with DS have deficits in
temporal order memory for deferred imitation sequences
across a delay of 1-month (Milojevich & Lukowski, 2016).

Given the importance of examining long-term word
retention in individuals with DS and the literature suggesting
that word-learning may be linked to the hippocampus under
certain encoding conditions, we examined the ability of
individuals with and without DS to retain words across a
1-week delay. We used measures of explicit memory recog-
nition as well as implicit eye tracking measures to measure
preferential looking to target words. The relational memory
exhibited via eye tracking measures has been proposed to
engage the hippocampal system; therefore, eye tracking can
provide additional information about learning mechanisms
(Hannula & Ranganath, 2009; Richmond & Nelson, 2009).

One theoretical perspective that has been important for
understanding the processes involved when acquiring arbi-
trary associations (e.g., word-learning) is the complementary
learning systems model of memory (McClelland, McNaugh-
ton, & O’Reilly, 1995). This model proposes that sparse
representations are rapidly indexed by the hippocampus and
medial temporal lobe systems. Under this model, distributed
representations are more slowly formed by the neocortex
(Davis & Gaskell, 2009; McClelland et al., 1995, but also see
McClelland, 2013). The complementary learning systems
model proposes that information initially supported by the
hippocampus and neocortex is consolidated over time and
becomes less dependent on the hippocampus. Much work has
been conducted regarding the role of sleep in this process
(Diekelmann & Born, 2010). However, a few studies inves-
tigating a learning mechanism called fast mapping (FM),
have provided some evidence suggesting that the rapid
acquisition of novel arbitrary associations can be achieved
independently of the hippocampus when words are learned
under certain conditions (Sharon, Moscovitch, & Gilboa,
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2011, but also see Greve, Cooper, & Henson, 2014; Smith,
Urgolites, Hopkins, & Squire, 2014; Warren & Duff, 2014;
Warren, Tranel, & Duff, 2016).

FM is an incidental, exclusion-based learning procedure
commonly used to explain how young children can rapidly
acquire language after being exposed to a word once or a few
times. In a typical FM task, participants are presented with a
familiar item, a novel item, and the name of the novel item for
each trial. Participants can infer that the label is referencing
the novel item and not the familiar item because they already
know the name of the familiar item. The FM procedure has
three key characteristics, stipulating that the novel word:
(1) is encoded incidentally, (2) is introduced in context with
an already-known item, and (3) has a meaning that is appar-
ent through inference (Coutanche & Thompson-Schill,
2014). In a matched condition using explicit encoding (EE),
which is known to be hippocampal-dependent and to benefit
typical adults compared to FM (Atir-Sharon, Gilboa, Hazan,
Koilis, & Manevitz, 2015; Coutanche & Thompson-Schill,
2014; Merhav, Karni, & Gilboa, 2015; Sharon et al.,
2011), participants are presented with just one novel item and
its name and are instructed to remember the novel
association.

In Sharon et al. (2011), four of six patients with hippo-
campal damage were able to form novel arbitrary associa-
tions better through FM compared to EE, suggesting an
alternate cortical route for consolidation. Initial findings from
this study suggested that amnesic patients are able to rapidly
acquire arbitrary novel associations using FM, independent
of the hippocampus. Merhav et al. (2015) further investigated
whether semantic associations acquired through FM can be
integrated directly into cortical regions. Participants’ func-
tional brain responses were measured during the four-
alternative forced-choice recognition test of the associations
they acquired. Compared to the EE condition, the FM con-
dition had significantly increased activity in the anterior
temporal lobe (ATL). This finding, in concert with a similar
study (Atir-Sharon et al., 2015), suggests that an ATL-related
network is responsible for associations learned through FM.

In total, these studies provide a potential alternative
learning strategy for novel arbitrary associations mediated
by the ATL. As such, the current study seeks to examine
word-learning based on hippocampal and hippocampal-
independent ways of encoding and retaining words in
individuals with DS and mental-age matched typically
developing (TD) children to determine if long-term retention
might be enhanced in DS with FM.

Poor sleep also negatively influences word-learning in
children with and without DS (Gémez & Edgin, 2015).
Individuals with DS have sleep disruptions, including
obstructive sleep apnea, and previous work has shown that
these sleep disruptions correlate with poorer language out-
comes (Breslin et al., 2014; Edgin et al., 2015). However,
little work has examined sleep quality in reference to the
word-learning process over delays of days to weeks. Given
the profile of sleep disturbance in this sample, we also
examined whether or not sleep may impact long-term
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retention in either group (Breslin et al., 2014; Churchill,
Kieckhefer, Landis, & Ward, 2012; Edgin et al., 2015).

Therefore, the current study aimed to determine whether
individuals with DS show deficits in word-learning across
delays in two encoding conditions (FM and EE) and in
reference to sleep. The central hypothesis, based on data
suggesting that the hippocampus is compromised in DS, is
that individuals with DS will learn novel arbitrary associa-
tions better through FM than EE and that their EE perfor-
mance will be impaired in relation to controls. We expected
that individuals with DS would have a delayed or absent
effect of preferential looking to target items during retrieval
compared to the TD group for the EE condition. Finally, we
expected that sleep quality would be poorer in individuals
with DS. Based on previous work, better sleep should relate
to better word retention in both groups, and specifically in the
EE condition, which relies on hippocampal representations
and replay of those bindings for cortical consolidation.

METHODS

Participants

Twenty-six 11- to 28-year-old individuals with DS
(M =18.70 years; SD=4.80; 15 male) and twenty-six 3- to
5-year-old TD controls were recruited (M =4.52 years;
SD =.71, 13 male). DS was verified by karyotype report. The
DS and TD group achieved similar raw verbal [#(50)=.01;
p=.92] and nonverbal [#(50) = —.82; p =.42] scores on the
Kaufman Brief Intelligence Test — second edition (K-BIT-II).
The DS group had a mean verbal raw score of 26.73
(range = 1-54; SD=13.13), a mean verbal standardized
score of 46.27 (range =40-71; SD =9.45), a mean nonverbal
raw score of 14.27 (range =0-22; SD=4.87), and a mean
nonverbal standardized score of 48.19 (range=40-67;
SD =8.42). The TD group had a mean verbal raw score of
26.42 (range=11-47; SD=8.94), a mean verbal standar-
dized score of 106.19 (range=73-130; SD=15.28), a
mean nonverbal raw score of 15.69 (range=1-34;
SD=7.41) and a mean nonverbal standardized score of
106.96 (range = 58-145; SD =20.93).

On another benchmark 12-item list-learning task from a
NIH-funded memory battery (the Arizona Memory Assess-
ment for Preschoolers and Special Populations, A-MAP, Clark
et al., 2017), we found that the DS sample showed impaired list
learning retention both at immediate (1(41)= -2.37; p=.02)
and long-term delays (>10min, (#(41)= -2.10; p=.04), a
finding matching the memory profile reported in the previous
literature (Pennington et al., 2003).

All groups were recruited through local and parent orga-
nizations and advertisement. The exclusion criteria for this
study included: past head injury or brain trauma, incident of
loss of consciousness, accidental poisoning, chemotherapy or
radiation, enrollment in a clinical trial, and uncorrected vision
or hearing impairments. An additional exclusion criterion for
the DS group was an autism diagnosis. All experimental
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procedures were approved by the University of Arizona
Institutional Review Board.

Sample size of 26 individuals per group was estimated for a
power of .80 and alpha equal to .05 to detect large effect sizes
for between-samples condition differences (Cohen, 1992).
Our sample size was commensurate with previous investiga-
tions of memory in Down syndrome and exceeds the samples
comparing FM and EE in previous work (Sharon et al., 2011).

Materials
Actigraphy

The Actiwatch-2 (Phillips Respironics Mini-Mitter, Bend,
OR) was used to obtain sleep data. According to standard
collection procedures for pediatric groups, participants wore
the watch for 7 days (Sadeh, 2011). Data for four participants,
from each group, were not collected due to technical errors or
refusal. Parents also completed a 1-week sleep diary to verify
the watch’s recordings. Data were collected in 30-s epochs
and analyzed using commercially available software
(Respironics Actiware 5.71.0, Bend, OR). Actigraphy data
were scored at the medium sensitivity threshold (activity
counts =40/min), with sleep onset and sleep end marked by a
period of 3 and 5min of immobility or more, respectively
(Meltzer, Montgomery-Downs, Insana, & Walsh, 2012).
Each epoch of data was assessed as sleep or wake, based
on whether the activity score exceeded the medium threshold.
The actigraphy variables of interest were: average sleep
efficiency (percent of time spent asleep from sleep onset to
offset), average sleep time (time spent asleep minus any
periods of wake), average wake after sleep onset (time spent
awake), average wake percentage (percent of time spent
awake from sleep onset to offset), and average sleep frag-
mentation (an index of restlessness based on the sum of
mobile time and immobile time that lasts less than a minute
during the night). Averages were taken across all nights.

Word-learning stimuli

Two lists of words (versions A and B), were designed in a
computer-based paradigm, each containing four novel and
two familiar words. All of the six words were in the cate-
gories of “fruit” or “animals,” and each list had two novel
words from each category (Figure 1). The familiar items were
at the preschool level (e.g., based on the MacArthur-Bates
CDI, Fenson, Dale, & Reznick, 1993). Most stimuli were

List A Targets:  List B Targets:
Novel Novel
Animals (2) Animals (2)
Fruits (2) Fruits (2)
Familiar Familiar
Animals (1) Animals (1)
Fruits (1) Fruits (1)

Fig. 1. List A and B items.
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provided by Asaf Gilboa to match those used in the original
study of hippocampal patients. Additional familiar items
were taken from the internet. Pilot work using the same
paradigm as the current study but using a set-size of eight
items with a small group (n = 13 DS) showed that participants
could not correctly recognize the target item significantly
above chance across conditions: FM (M =48.08%; p =.80)
and EE (M =59.62%; p = .16).

Therefore, we decreased the set-size to four items per list to
maximize the levels of encoding performance as to be able to
obtain an assessment of retention across long-term delays.
Questions regarding the perceptual detail of items, like the
ones used in the Sharon et al. (2011) study (e.g., “is the
numbat’s tail pointed up?”’), were too language demanding
for individuals with DS based on some piloting conducted on
a small set of individuals to determine if they could map
labels onto new referents using this method. Therefore, par-
ticipants were asked to touch the target item instead of
answering a perceptually based question similar to a para-
digm used by Spiegel and Halberda (2011).

Procedure

To ensure that participants encoded the items incidentally in
the FM condition, every participant underwent the FM con-
dition first, followed by the EE condition, which began on the
third session. Each session was separated by a week, equating
to four sessions per participant (Figure 2). All participants
learned both lists A and B, one using the FM encoding pro-
cedure and the other using the EE procedure. The two lists
were counterbalanced between the two encoding conditions.
The neuropsychological and IQ assessments were adminis-
tered between session 2 and 3.

Fast Mapping Condition
Practice encoding phase

In session 1, all participants began with the same five non-
randomized practice trials (three familiar and two novel tar-
gets) to ensure participants understood the task. Participants
were told that they would be playing a pointing game
(Figure 3). Participants used a pointing stick to make their
selection. Each trial began with a fixation cross and then
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Fast mapping

The Pointing Game

e %ﬁ « | “Now point to the jambu”

Good Job!
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Fig. 3. Fast mapping, explicit encoding, and recognition phases.

participants heard the target name while being shown the
target item and a comparison item from the same category,
for 5000 ms. After the exposure, participants were instructed
to point to the target item (“Now point to the targer”) within
5000 ms. The selection-screen timed out after 5000 ms to
ensure that every participant was exposed to the stimuli for

Session 1 Session 2
I . FM FM FM Familiarity
FMEncoding  rest 1 Test 2 Test 3 Test
| 5 minute delay || 1 week delay |
Session 3 Session 4

(EE ([ EE

N Test1 / \ Test2

EE Encoding

Trial

| e e |
\\\Test 3> \\\ Test ) Tost

| 5 minute delay || 1 week delay |

Fig. 2. Study design. Fast mapping condition: sessions 1 and 2. Explicit encoding condition: sessions 3 and 4. The category test consisted

both lists from the FM and EE condition.
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the same amount of time. A feedback screen was provided
after their selection for 2000 ms (Figure 3). Having separate
exposure and stimuli selection displays allowed for eye
tracking collection without contamination from a motor
response (a procedure we used uniformly across conditions).

Encoding

After the practice encoding trials, participants were presented
with the FM encoding phase (four novel and two familiar
targets). This is the learning phase in which participants infer
and select the name of the target item they heard. This fol-
lowed the same presentation as described for the practice
trials. They received two randomized blocks of 6 trials, for a
total of 12 trials.

Recognition test

Immediately after the FM encoding phase, participants were
presented with three of the four target items and asked to
point to the object that matched the auditorily presented label
(Figure 3). We counterbalanced the location of the target item
and tested across three blocks to allow variability in the data
with 12 responses instead of three (three blocks of four trials).
Participants were tested twice more: (1) at a 5-min delay, and
(2) after a 1-week delay, without feedback. Each block was
randomized for each participant, and the blocks were rando-
mized for each of the three recognition tests. Participants
watched a short cartoon video during the 5-min delay.

Familiarity test

After the 1-week delayed recognition test, participants were
tested on their familiarity for FM items versus distractors
(novel items). During this test, participants were asked “Did
you see this in the game we just played with the pointing
stick?” This task was used to assess whether participants
showed memory of the target items from the FM task.

Explicit Condition
Encoding phase

After another week, participants returned for the third session
to participate in the EE procedure. This time participants
were told that they would be playing a “remembering game,”
for which they would have to remember the names of the
items (Figure 3). They were presented with just one item on
each trial and were asked to point to the object that matched
the auditorily presented label. This procedure was conducted
to equate the two learning conditions as much as possible,
aside from having a familiar item presented or not and whe-
ther the task was incidental or not. Since there was only one
option, participants did not receive feedback.

Recognition test

Like the FM condition participants were tested: immediately,
after a 5-min delay, and after a 1-week delay, without
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feedback. The number of target items, recognition test
design, and total test trial numbers were equated in the FM
and EE tasks.

Familiarity test

After the 1-week delayed recognition test, participants were
tested on their familiarity for EE items versus distractors
(novel items).

Category test

At the end of session 4, participants received a category test
where they were asked to sort pictures of the novel target
items learned in both conditions into three baskets (animal,
fruit, and other). This was to assess whether participants
categorized each item as the intended category.

Eye Tracking

A SensoMotoric Instruments (SMI) eye tracking system was
used to track the participant’s eye gaze throughout the FM
and EE retrieval trials of the experiment. The SMI eye
tracking system rested at the bottom of a desktop monitor
(510 mm width, 250mm height) at an angle of 20. The
tracker monitored the participant’s eye position at 60 Hz.

Calibration was performed before beginning the experi-
ment using SMI iView RED-m software. Participants were
seated in front of the monitor, in a desk chair for the older
participants or a car seat for the younger participants. The
experimenters adjusted the position of the monitor until
the eye-tracker could accurately detect the eye position. The
distance between participant’s head and the monitor was
approximately 50—70 cm. During the calibration, participants
were asked to follow a dot, which moved to five different
locations on the screen.

After the participants finished the FM and EE encoding
tasks, respectively, they were immediately tested on their
ability to recognize the four novel target items. Eye tracking
was collected throughout the study but analyzed at the test
recognition phases across all delays. The fixation cross pre-
ceded every trial, focusing the attention of the participant and
ensuring that the eye tracker would pick up the eye movements
starting from the beginning of each trial. The first display of
each trial, included the onset of the three—item display while
the audio played the novel word, lasted 5000 ms. The second
display of each trial, when the participant was prompted to
point to the target item, lasted until their response.

Three areas of interest (AOI) (top item, left item, right
item) were applied to each trial assigned as Target, Distractor 1,
or Distractor 2. Using SMI BeGaze software, net dwell time
of eye gaze on each AOI and the background white space was
computed. Focusing on only the AOIs (disregarding the
white space net dwell time), the proportions of net dwell time
for Target, Distractor 1, and Distractor 2 were calculated by
summing the net dwell times of only the AOIs given from
BeGaze and dividing by the total looking time of all three.
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The data were divided into four groups: average looking time
of target for correct trials, average looking time of target for
incorrect trials, average looking time per distractor for correct
trials, and average looking time per distractor for incorrect
trials. We focus our analyses of the time course of these
effects on correct trials only.

RESULTS

Behavioral Results

Results were considered significant for behavioral tasks at
p <.01 to lower the threshold for multiple comparisons (based
on five tests central to our hypotheses and Bonferonni correc-
tion). Post hoc tests, additional exploratory analyses, and tests
of above chance performance were evaluated at p <.001. Both
the TD (M=91.35; SD=16.09) and DS (M=286.88;
SD=17.99) groups performed significantly above chance
(p<.001) and not significantly different from each other
[#(50) = —.94; p=.35] during the FM encoding task, suggest-
ing they had enough word knowledge for the well-known
category exemplars to accurately map the label to the novel
object. The groups did not perform significantly different from
each other on the familiarity test [#(49) = — 1.36; p=.18] or the
category test [#(50)=.95, p=.35].

A 2x2 x3 repeated measures analysis of variance (Group x
Condition x Delay) was conducted to compare the effect of
delays on the number of words learned in each condition
between the two groups (Figure 4, Table 1). There were no
main group [F(1,50)=0.06; p=.80], delay [F(2,49)=1.32;
p=.28], or condition [F(1,50)=0.84; p=.36] effects. There
was a similar pattern for the two groups across conditions; no
Condition x Group effect was found [F(1,50)=0.26; p=.61],
against our original prediction. There also was not a Condi-
tionx Delay [F(2,49)=1.29; p=.29] interaction. However,
there was a non-significant trend toward a Group x Delay
interaction [F(2,49) =4.39; p =.02]. This interaction was more
evident between the 5-min and 1-week delay and reflected a
tendency for the controls to improve from 5-min to 1-week
while the DS group showed maintenance. Therefore, we

Recognition Performance

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

Percent Correct

Fast Mapping Explicit Encoding Fast Mapping Explicit Encoding
(TD) (TD) (DS) (DS)

i Immediate 5-Minute & 1-Week

Fig. 4. Recognition performance.
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Table 1. Mean percentage and standard deviation of recognition
performance across groups, conditions, and delays

DS group TD group
Delay N M SD N M SD
FM
Immediate 26 56.65 24.11 26 56.65 21.26
5-minute 26 58.62 26.07 26 60.69 25.99
1-week 26 57.27 27.27 26 64.35 23.51
EE
Immediate 26 63.46 23.40 26 61.54 25.59
5-minute 26 62.81 27.69 26 57.73 25.70
1-week 26 60.19 27.56 26 66.31 22.36

computed gain/loss scores between the last two delays for each
group by condition. In the EE condition, the DS group had a
mean loss of 2.63%, while the TD group had a mean gain of
8.58%. These gains and losses for the DS and TD groups were
significantly different [#(50)= -2.79; p=.007; d=0.78]. In
the FM condition, the DS group had a mean loss of 1.35%,
while the TD group had a mean gain of 3.65%. These changes
were not significantly different between groups [#50) = — 1.04;
p=.31] (Figure 5).

Performance for all delays and conditions for the two
groups were significantly above chance (p <.001). Contrary
to our hypothesis that individuals with DS would learn novel
arbitrary associations better through FM than EE, we found
no significant differences at immediate test [#(25)= —1.44;
p =.16], at the 5-min delay [#25) = —0.82; p =.42], or at the
1-week delay [#(25) = - 0.55; p =.59] (Figure 4). Similarly,
we did not find significant differences in the TD group
between the two conditions at immediate test [#(25) = —0.84;
p=.41], the 5-min delay [#25)=0.53; p=.60], or at the
1-week delay [#25)= -0.36; p=.72].

Sleep Results

T tests for group differences in sleep were conducted on the
actigraphy data with a critical p-value set at 0.01 (0.05/
5=0.01). Contrary to our hypothesis, individuals with DS
only showed a significant difference in average sleep time
[#(42)= -2.66; p=.01; d=0.80] compared to TD children.
There were no significant differences in sleep efficiency
scores [#(42)= -2.02; p=.05], average wake after sleep

EE FM
15.00% * 15.00% 1
p=.007

@ 10.00% A J‘ @ 10.00% -
o o
o2 a0
8 500% 8 500% -
o c © c
o 3 o 3 T l
£¥5 000% +—F—————— ¥£5 0.00% -
] ® o [ -
ga TS ™ ga DS T
< 500% 1 ! -~ -5.00% - ~

-10.00% - -10.00% -

Fig. 5. Explicit and fast mapping encoding gains/loss between the
5-min test and 1-week test.
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Table 2. Sleep measures for the DS and TD groups

961

DS group TD group
n M SD n M SD
Sleep Efficiency 22 82.82 10.16 22 87.51 3.85
Sleep Time 22 422.96 95.41 22 482.04 41.58
Wake After Sleep Onset 22 67.08 35.62 22 60.26 17.26
Wake Percentage 22 13.93 6.86 22 10.98 2.73
Sleep Fragmentation 22 28.14 9.03 22 25.04 5.57

Average sleep efficiency (percent of time spent asleep from sleep onset to offset), average sleep time (time spent asleep minus any
periods of wake), average wake after sleep onset (time spent awake), average wake percentage (percent of time spent awake from
sleep onset to offset), and average sleep fragmentation (an index of restlessness based on the sum of mobile time and immobile
time that last less than a minute during the night). Averages were taken across all nights of sleep collected.

onset [#(42)=0.81; p=.42], average wake percentage
[#(42) =1.87; p=.068], or sleep fragmentation [#(42) =1.37;
p=.18] (Table 2). In an exploratory analysis, sleep efficiency
for the DS group was not correlated with change in scores in
either the FM [r(22)=.01; p=.98] or EE [r(22)= -.18;
p = .41] condition. This was also the case for the TD group in
both the FM [r(22)=.18; p=.42] and EE [r(22)=.23;
p=.29] condition. While not reported in full, similar results
were found for other sleep variables.

Eye Tracking Results

To determine the course of preferential looking to target words,
we examined the proportion of looking time across eight
250 ms time bins totaling to the first 2-s (2000 ms) of the trial.
The viewing scores to the target were compared to chance
performance of 0.33. At immediate test, there were no group or
condition differences (Fs<0.07; p>.75 for both) and both
groups did not view the target item significantly above chance
in any bin. Multiple ¢ tests were conducted on the eye move-
ment data with a critical p-value set at 0.006 (0.05/8 =0.006 to
control based on the number of bins tested; Figure 6).
One-sample ¢ tests showed that the looking preference to
the target item during the FM condition at the 5-min delay
occurred at 1000-1250ms for DS [#23)=3.15; p=.004].
Similarly, at the 5-min delay for the EE condition, pre-
ferential looking occurred at 1000-1250ms for DS only

FM_Imm_Correct Trials
-<+--TD

—&— DS

[#(22)=3.42; p=.002]. There were no significant overall
condition or group differences across the 2-s window
at 5-min (Group F(1,50)=0.11; p=.74; Condition
F(1,50)=2.57; p=.12; Figure 7).

For FM at 1-week, a looking preference emerged at 1000—
1250 ms in TD [#(25) =3.74; p=.001], which stayed above
chance for the following 750 ms. Greater than chance-level
viewing started at 1250-1500ms for DS [#23)=3.40;
p=.002], continuing across 500 ms for FM. Similar results
were found for EE. At 1-week, preferential looking emerged
at 1250-1500ms for TD [#(25) =2.97; p =.006] continuing
500 ms, and at 1500-1750 ms for DS [#(22) =4.75; p <.001]
lasting 250 ms. A repeated-measures analysis of variance
showed a main effect of Delay [F(1,40)=12.19, p=.001]
between the 5-min and 1-week. No group or condition
effects were found (Group F(1,50) =0.02; p =.90; Condition
F(1,50)=0.65; p=.42). The delay main effect shows that
both groups looked longer at the target items during the
I-week delay than at 5-min for both conditions across both
groups (Figure 8).

DISCUSSION

Overall, our hypotheses regarding better integration via
encoding with FM in DS and sleep effects on retention were
not supported. Therefore, we first detail the main finding of
interest in the study, the word-learning retention in both
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Fig. 6. Proportion looking time to the target word across FM and EE conditions and groups at immediate test.
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Fig. 7. Proportion looking time to the target word across FM and EE conditions and groups at the 5-min delay.

groups. Specifically, we measured long-term memory reten-
tion of small sets of novel words in both groups after just
two exposures. Surprisingly, we found that the DS group
maintained what they had learned over a long-term delay,
whereas typically developing controls showed a small increase
in performance from the 5-min delay to 1-week. Eye tracking
data showed that preferential viewing for both groups emerged
at 1-week, when these effects were not present at the
immediate or 5-min delay. This memory related eye move-
ment seems to suggest a consolidation process across one
week, and one that operates similarly in typical children and
DS across both encoding conditions. These study results are
consistent with findings regarding long-term retention for 1
novel item in children with DS in Chapman et al. (1990).
However, Bird, Chapman, and Schwartz (2004) and
Ashworth, Hill, Karmiloff-Smith, and Dimitriou (2015)
found that individuals with DS had more difficulty with
learning 8 to 10 novel words after a delay. A larger set-size
appears to be more difficult for individuals with DS both at
short and long-term retention intervals. This finding was also
supported by our pilot study; DS participants performed at
below chance level during an immediate recognition test
when remembering 8 novel items. Although decreasing the
set-size in the current study improved initial encoding per-
formance, the task of remembering four items may have been
too simple to engage the hippocampal memory system for the
EE condition. Additionally, Yonelinas (2013) argued that
simple associations, potentially similar to the current study’s
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task demands, are less affected by hippocampal damage.
More work is needed to determine if this pattern of results is
due to working memory difficulties at encoding and possibly
the effects of sleep on different set-sizes (as we discuss in
depth below).

The FM literature with young TD children also shows
mixed results as to whether young children can retain FM
words over a long-term delay. Some studies have shown
rapid forgetting for fast mapped words (Horst & Samuelson,
2008; Vlach & Sandhofer, 2012), while others have sup-
ported long-term retention (Brady & Goodman, 2014; Carey
& Bartlett, 1978; Markson & Bloom 1997; Waxman &
Booth, 2000). One argument raised by Vlach and Sandhofer
(2012) is that previous studies have varied in how they have
incorporated memory supports (i.e., saliency, repetition, and
generation). These supports include: presenting the label of
objects in a way that make them more salient, labeling the
object repeatedly, or requiring learners to verbally generate
the label. Vlach and Sandhofer (2012) examined word-
learning and retention in children without providing any
memory support over a 1-week and 1-month delay and failed
to find retention. Alternatively, Waxman and Booth (2000)
showed 1-week retention for fast mapped words, with a sal-
iency memory support.

In the current study, we found that both groups showed
retention over a week delay. A potential reason for this
retention could be attributed to testing effects (Roediger &
Karpicke, 2006); testing can enhance later retention even
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Fig. 8. Proportion looking time to the target word across FM and EE conditions and groups at the 1-week delay.
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when feedback is not provided. In the current study, partici-
pants were tested after a 5-min delay, which could have
contributed to retention at 1-week. Other studies have also
failed to show consolidation deficits in DS when participants
retrieved with multiple repetitions before a delay (Roberts &
Richmond, 2015). More work is needed to examine how
individuals with DS may retain information based on the
number of repetitions and retrievals. In total, this study sug-
gests two educational strategies that may be beneficial for
supporting retention in DS, including (1) training on small
item sets, and (2) repeated testing.

This study also investigated whether FM would benefit
individuals with DS, a population with hippocampal dys-
function. Based on previous work, we expected that indivi-
duals with DS would learn novel arbitrary associations better
through FM than EE. Inconsistent with findings from Sharon
et al. (2011) and contrary to our hypothesis, our results
showed no significant benefit in the FM condition for the DS
group. This result is consistent with other recent work failing
to measure a FM benefit in healthy older adults, memory-
impaired patients (damage to the hippocampus), patients with
amnesia (damage to the hippocampus), and patients with left
temporal lobectomies (Greve et al., 2014; Smith et al., 2014;
Warren & Duff, 2014; Warren et al., 2016).

Therefore, given these recent findings, there is mixed evi-
dence regarding the benefit of FM for the retention of arbi-
trary labels in individuals that do not have amnesia. One
explanation could be that patients with more severe amnesia
may have developed alternative methods (i.e., fast mapping)
for forming associations as a way to compensate for poor
hippocampal function. Alternatively, individuals without
amnesia may have some residual hippocampal function they
can rely on, and the FM mechanism might not be operating in
the same way (i.e., as may be the case in DS given these
findings).

We further investigated whether sleep contributed to
recognition performance given that sleep is known to play a
role in memory consolidation (Diekelmann & Born, 2010).
We expected that differences in sleep efficiency between the
DS and TD groups would correlate with patterns of long-term
retention. The DS and TD group showed a significant dif-
ference in average sleep time; however, a range of sleep
outcomes were not related to long-term retention across
groups. Since some subfields of the hippocampus show an
extended profile of development, the hippocampus may not
yet be developed enough to support sleep-consolidation
benefits for the TD group in the EE condition (Gémez &
Edgin, 2015).

Another potential reason for the absence of sleep effects
may be the small set-size used on our task. Feld, Weis, and
Born (2016) showed no effect of sleep in a small set-size of
paired associates (40 word-pairs) when compared to the
measured benefit of sleep for a larger set-size (160 word-
pairs) in adults. Therefore, sleep benefits, or the relation
between sleep variability and outcome, may vary based on
task set-size. Furthermore, other studies have also demon-
strated long-term memory consolidation effects in children
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that were not related to sleep (Wang, Weber, Zinke, Inos-
troza, & Born, 2017). It is important to recognize that mem-
ory consolidation effects may be most related to time since
test, with some parallel processes occurring during wake as
well as sleep. Not all learning tasks (i.e., depending on the
demands) require hippocampal, or sleep-dependent,
mechanisms to be retained. Our findings in DS, with its well-
established profile of hippocampal dysfunction and sleep
deficits, emphasize this point.

However, we must note that more work is required to
understand the conditions in which children do and do not
benefit from sleep. In a theoretical review by Gémez &
Edgin (2016), we emphasize that the developmental trajec-
tory of the hippocampus predicts shifts in sleep-dependent
memory consolidation across early childhood. Therefore, it
is important that more developmental studies examining
memory consolidation are conducted and reported so that we
can fully understand the conditions (e.g., age, task content,
item difficulty) under which children do show benefits
from sleep.

Finally, we must note that one limitation of our study is
the use of actigraphy. While actigraphy has been used
extensively in recent work in young children, demonstrating
relations with word-learning in other studies (Edgin et al.,
2015), it does not capture all aspects of sleep disturbance in
DS [i.e., sleep apnea or differences in sleep neurophysiology
such as rapid eye movement sleep (REM)]. Therefore,
future investigations are needed using gold standard sleep
assessment (polysomnography) in relation to memory
performance.

In conclusion, individuals with DS and TD children
demonstrated retention and some enhanced memory related
eye movement effects for a small set of novel words after
only two encoding exposures and a week’s delay. Future
research should aim to understand the encoding presentation
parameters that relate to better long-term retention in groups
with developmental disorders and DS. Given the difficulty
executing studies including long-term memory delays in
these populations, these studies are rarely conducted, and the
large majority of studies of memory formation in develop-
mental disorders focus on delays within short-term testing
sessions. However, the examination of the factors influencing
long-term retention may reveal educationally relevant, and
potentially surprising, results.
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