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Abstract

Let G be a finite group, let π(G) be the set of prime divisors of |G| and let Γ(G) be the prime graph of G.
This graph has vertex set π(G), and two vertices r and s are adjacent if and only if G contains an element
of order rs. Many properties of these graphs have been studied in recent years, with a particular focus on
the prime graphs of finite simple groups. In this note, we determine the pairs (G,H), where G is simple
and H is a proper subgroup of G such that Γ(G) = Γ(H).
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1. Introduction

Let G be a finite group, let π(G) be the set of prime divisors of |G|, and let Γ(G) denote
the prime graph of G. This undirected graph, which is also known as the Gruenberg–
Kegel graph of G, has vertex set π(G), and two vertices r and s are adjacent if and only
if G contains an element of order rs.

This notion was introduced by Gruenberg and Kegel in the 1970s, and it has
been studied extensively in recent years. For example, the connectivity properties
of Γ(G) have been investigated by various authors, with a particular focus on simple
groups. A characterisation of the finite groups G with a disconnected prime graph
was obtained by Williams [16], together with detailed information on the connected
components when G is simple. Later work of Kondrat’ev [10] (see also Kondrat’ev
and Mazurov [11]) shows that the prime graph of any finite group has at most six
connected components. In fact, a more recent theorem of Zavarnitsine [17, Theorem
B] reveals that the sporadic simple group J4 is the only finite group whose prime graph
has six connected components.

Various recognition problems have also been studied in the context of prime graphs
and simple groups, and this continues to be an active area of research. A group
G is said to be prime graph recognisable if G � H for every finite group H with
Γ(G) = Γ(H). For example, the Ree groups 2G2(q) have this property (see [17,
Theorem A]), and detailed information on the recognisability of sporadic simple
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groups is given by Hagie [7]. More generally, one can ask if there are restrictions
on the structure of a finite group H with Γ(G) = Γ(H) (in terms of composition factors,
for example), and we refer the reader to the survey article [8] for further results in this
direction.

An interesting variation on the recognisability problem is to consider the existence
of subgroups H of G such that Γ(G) = Γ(H). A recent theorem of Lucchini, Morigi
and Shumyatsky (see [14, Theorem C]) states that every finite group G has a
3-generated subgroup H such that Γ(G) = Γ(H). Moreover, they construct a soluble
3-generated group G such that no 2-generated subgroup has the same prime graph as
G, so 3-generation is best possible. In the same paper, the authors also investigate
similar problems for other group invariants, such as π(G) (the set of prime divisors of
|G|), ω(G) (the set of orders of elements of G), exp(G) (the exponent of G), and so
on. For example, [14, Theorem A] implies that every finite group G has a 2-generated
subgroup H such that π(G) = π(H), and appropriate extensions to profinite groups have
recently been established by Covato [5].

Note that in each of these results, H is not required to be a proper subgroup
of G; indeed, H = G may be the only subgroup with the desired property. For
example, the simple group G = L5(q) has no proper subgroup H with π(G) = π(H)
(see Theorem 2.2). Since every finite simple group can be generated by two elements
(this follows from the classification of finite simple groups), it follows that the results
in [14] have no content if we restrict our attention to finite simple groups. Therefore,
we are led naturally to consider the following problem on prime graphs, which also
relates to the aforementioned recognisability problem:

Problem. Let G be a finite simple group. Determine the subgroups H of G such that
Γ(G) = Γ(H).

Clearly, Γ(G) = Γ(H) only if π(G) = π(H). The subgroups H of a simple group
G with π(G) = π(H) have been determined by Liebeck, Praeger and Saxl (see [12,
Corollary 5]), using the classification of finite simple groups, and this result has found
a wide range of applications in permutation group theory. In this paper, we will use
this result to solve the above problem; our main result is Corollary 1.4 below. This
follows from our first theorem, which treats the case where H is a maximal subgroup
of G. (In the final column of Table 1, we record the number of connected components
in Γ(G), denoted by s(G), which is taken from [11, Tables 1–3].)

Theorem 1.1. Let G be a finite simple group and let H be a maximal subgroup of G.
Then Γ(G) = Γ(H) only if one of the following holds:

(a) (G,H) is one of the cases in Table 1;
(b) G = An and H = (S k × S n−k) ∩ G, where 1 < k < n and p ≤ k for every prime

number p ≤ n.

Moreover, Γ(G) = Γ(H) in each of the cases in Table 1.
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Table 1. The cases (G,H) in Theorem 1.1(a).

G H Conditions s(G)
Sp8(q) O−8 (q) q even 2
PΩ+

8 (q) Ω7(q) q odd 1 + δ3,q
Ω+

8 (q) Sp6(q) q even 1 + δ2,q
Sp4(q) O−4 (q) q even 2
Ω+

8 (2) P1, P3, P4, A9 2
L6(2) P1, P5 2
Sp6(2) O+

6 (2) 2
U4(2) P2,Sp4(2) 2
U4(3) A7 2
G2(3) L2(13) 3
A6 L2(5) 3
M11 L2(11) 3

Remark 1.2. Let us make some comments on the statement of Theorem 1.1:

(i) The groups G in Table 1 are listed up to isomorphism. For example, the
cases (G,H) = (PSp4(3),PSp2(9).2) and (Ω5(3),PO−4 (3)) are recorded as (G,H) =

(U4(2),Sp4(2)).
(ii) In Table 1, Pi denotes a maximal parabolic subgroup of G that corresponds to

deleting the ith node in the corresponding Dynkin diagram for G. In the relevant
cases, the precise structure of Pi is as follows:

G = Ω+
8 (2) : P1 � P3 � P4 � 26.L4(2)

G = L6(2) : P1 � P5 � 25.L5(2)
G = U4(2) : P2 � 24.L2(4)

Consider the case arising in part (b) of Theorem 1.1. Here, the problem of
determining whether or not Γ(G) = Γ(H) depends on some formidable open problems
in number theory, such as Goldbach’s conjecture. In this situation, we propose the
following conjecture.

Conjecture 1.3. If G = An and H = (S k × S n−k) ∩G as in part (b) of Theorem 1.1, then
Γ(G) = Γ(H) if and only if one of the following holds:

(a) (n, k) ∈ {(6, 5), (10, 7)};
(b) n ≥ 25 is odd, k = n − 1 and n − 4 is composite.

We refer the reader to Section 4 for further comments on this conjecture. In
particular, Lemma 4.4 states that if n ≥ 15 is odd and k = n − 1, then Γ(G) = Γ(H)
if and only if n − 4 is composite. It is also easy to check that Γ(G) = Γ(H) if we are in
one of the two cases in part (a).

We can extend Theorem 1.1 by removing the condition that H is a maximal
subgroup:
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Corollary 1.4. Let G be a finite simple group and let H be a proper subgroup of G. If
G = An, then assume that H is transitive. Then Γ(G) = Γ(H) if and only if one of the
following holds:

(a) H is a maximal subgroup and (G,H) is one of the cases listed in Table 1;
(b) H is a second maximal subgroup and (G,H) = (Ω+

8 (2),O+
6 (2)) or (U4(2),O−4 (2)).

Remark 1.5. Suppose that G = An and that H is an intransitive subgroup of G. If the
above conjecture holds, then Γ(G) = Γ(H) if and only if H is maximal and (G,H) is
one of the cases in the statement of the conjecture.

Notation. Our group-theoretic notation is standard, and we adopt the notation of
Kleidman and Liebeck [9] for simple groups. In particular, we write

PSLn(q) = L+
n (q) = Ln(q), PSUn(q) = L−n (q) = Un(q),

and similarly GL−n (q) = GUn(q), and so on. If G is a simple orthogonal group, then
we write G = PΩε

n(q), where ε = + (ε = −) if n is even and G has Witt defect 0 (1),
and ε = ◦ if n is odd (in the latter case, we also write G = Ωn(q)). Following [9],
we will sometimes refer to the type of a subgroup H, which provides an approximate
description of the group-theoretic structure of H. In addition, δi, j denotes the familiar
Kronecker delta.

This paper is organised as follows. In Section 2 we record several preliminary
results that we will need in the proofs of our main theorems. In particular, we state
a special case of [12, Corollary 5], which plays a major role in this paper, and we
record some useful facts on the centralisers of prime-order elements in symplectic and
orthogonal groups. The proof of Theorem 1.1 is given in Section 3, and the special
case arising in part (b) of Theorem 1.1 is discussed in Section 4. Finally, the proof of
Corollary 1.4 is given in Section 5.

2. Preliminaries

Let G be a finite group, let π(G) be the set of prime divisors of |G| and let Γ(G)
be the prime graph of G. For primes r, s ∈ π(G), we will write r ∼G s if r and s are
adjacent in Γ(G). In this section we record some preliminary results that will be useful
in the proof of Theorem 1.1. We start with an easy observation.

Lemma 2.1. Let G be a finite group and let r, s ∈ π(G) be distinct primes. Then r ∼G s
if and only if s ∈ π(CG(x)) for some element x ∈ G of order r.

Let H be a proper subgroup of G and note that Γ(G) = Γ(H) only if π(G) = π(H).
If G is simple, then the cases with π(G) = π(H) have been determined by Liebeck,
Praeger and Saxl [12], and this result plays a major role in the proof of Theorem 1.1.

Theorem 2.2. Let G be a finite simple group and let H be a maximal subgroup of G.
Then π(G) = π(H) if and only if (G,H) is one of the cases listed in Table 2.
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Table 2. The cases (G,H) in Theorem 2.2.

G Type of H Conditions
(a) An (S k × S n−k) ∩ An p prime, p ≤ n =⇒ p ≤ k
(b) Sp2m(q) O−2m(q) m, q even
(c) Ω2m+1(q) O−2m(q) m even, q odd
(d) PΩ+

2m(q) O2m−1(q) m even, q odd
(e) PΩ+

2m(q) Sp2m−2(q) m, q even
(f) PSp4(q) Sp2(q2)

L6(2) P1, P5
U3(3) L2(7)
U3(5) A7
U4(2) P2,Sp4(2)
U4(3) L3(4), A7
U5(2) L2(11)
U6(2) M22
PSp4(7) A7
Sp6(2) O+

6 (2)
Ω+

8 (2) P1, P3, P4, A9
G2(3) L2(13)
2F4(2)′ L2(25)
M11 L2(11)
M12 M11,L2(11)
M24 M23
HS M22
McL M22
Co2 M23
Co3 M23

Proof. This is a special case of [12, Corollary 5]; the specific cases that arise are listed
in [12, Table 10.7]. �

We refer the reader to [9, Tables 5.1.A–C] for convenient lists of the orders of all
finite simple groups. The following basic result on the divisibility of the orders of
classical groups is an immediate consequence.

Lemma 2.3. Let ` and m be integers such that 0 ≤ ` < m. Then the following hold:

(a) |GLε
m(q)| is divisible by |GLε

m−`(q)|;
(b) |Sp2m(q)| is divisible by |Sp2(m−`)(q)| and |Oε

2m(q)|;
(c) |Oε

2m(q)| is divisible by |Oε′

2(m−`)(q)|, unless ` = 0 and ε , ε′.

2.1. Primitive prime divisors. Let q = p f be a prime power and let r be a prime
dividing qe − 1. We say that r is a primitive prime divisor of qe − 1 if r does not divide
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qi − 1 for all 1 ≤ i < e. A classical theorem of Zsigmondy [18] states that if e ≥ 3 then
qe − 1 has a primitive prime divisor, unless (q, e) = (2, 6). Primitive prime divisors
also exist when e = 2, provided that q is not a Mersenne prime. Note that if r is a
primitive prime divisor of qe − 1 then r ≡ 1 (mod e), and r divides qn − 1 if and only if
e divides n.

2.2. Centralisers. In order to handle the cases labelled (b)–(f) in Table 2, we need
information on the orders of centralisers of elements of prime order in finite symplectic
and orthogonal groups. In [15], Wall provides detailed information on the conjugacy
classes in finite classical groups, but we prefer to use an alternative description that is
more suited to our specific needs.

Let G = PSpn(q) be a symplectic group over Fq, where q = p f and p is a prime. Let
x ∈ G be an element of odd prime order r , p. Write x = x̂Z, where x̂ ∈ Spn(q) and
Z = Z(Spn(q)). Define

Φ(r, q) = min{a ∈ N | r divides qa − 1} (2.1)

and set i = Φ(r, q). Note that i ≤ n. As explained in [4, Ch. 3] (see also [3, Section 3]),
the conjugacy class of x is parameterised by a specific tuple (a1, . . . ,at) of non-negative
integers that encodes the rational canonical form of x̂ on the natural Spn(q)-module,
where t = (r − 1)/i and i ≤ i

∑
j a j ≤ n. If i is odd, then this tuple satisfies the additional

condition a j = at/2+ j for j = 1, . . . , t/2.
More concretely, the G-class of x corresponds to the tuple (a1, . . . , at) if and only if

x̂ is Spn(q)-conjugate to a block-diagonal matrix of the form [I`,Λ
a1
1 , . . . ,Λ

at
t ], where

` = n − i
∑t

j=1 a j and Λ
a j

j denotes a j copies of an irreducible matrix Λ j ∈ GLi(q) with

eigenvalues {ω,ωq, . . . , ωqi−1
} in Fqi for some primitive rth root of unity ω. Moreover,

the order of the centraliser CG(x) can be read off from the corresponding tuple as
follows:

|CG(x)| =


2−a|Sp`(q)|

t∏
j=1

|GUa j (q
i/2)| for i even,

2−a|Sp`(q)|
t/2∏
j=1

|GLa j (q
i)| for i odd,

(2.2)

where a = 1 if q is odd, otherwise a = 0.
There is a very similar parameterisation of the conjugacy classes of elements of odd

prime order r , p in orthogonal groups. In particular, if G = PΩε
n(q) and the G-class

of x ∈ G corresponds to the tuple (a1, . . . , at), then

|CG(x)| =


2−a|SOε′

` (q)|
t∏

j=1

|GUa j (q
i/2)| for i even,

2−a|SOε′

` (q)|
t/2∏
j=1

|GLa j (q
i)| for i odd,

(2.3)
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Table 3. The integer N(i) in Lemma 2.5.

G i N(i)
PSp8(q) 2(3 − ε) q4 − ε

3(3 − ε)/2 (q + ε)(q3 − ε)
1, 2 (q2 + 1)(q6 − 1)

PΩ+
8 (q) 4 q4 − 1

3(3 − ε)/2 q3 − ε
(3 − ε)/2 (q4 − 1)(q3 − ε)

PSp4(q) 4 q2 + 1
1, 2 q2 − 1

for some integer a ∈ {0, 1, 2}, where ` is defined as above (again, if i is odd then
a j = at/2+ j for j = 1, . . . , t/2). Note that if n is odd then ` is odd and thus ε′ = ε = ◦.
The situation when n is even is slightly more complicated (see [15, page 38]):

Remark 2.4. There are some additional conditions when G = PΩε
n(q) and n is even.

(i) Suppose that ε = +. If i is odd and ` > 0 then ε′ = +. If i is even then either
∑

j a j

is even and ε′ = + (or ` = 0), or
∑

j a j is odd, ` > 0 and ε′ = −.
(ii) Suppose that ε = −. If i is odd then ` > 0 and ε′ = −. If i is even then either

∑
j a j

is odd and ε′ = + (or ` = 0), or
∑

j a j is even, ` > 0 and ε′ = −.

The following result will be useful in the proof of Theorem 1.1.

Lemma 2.5. Let G be one of the groups PSp8(q), PΩ+
8 (q) or PSp4(q), let x ∈ G be an

element of odd prime order r , p and set i = Φ(r, q) and ε = ±1. Let s , p be a prime
divisor of |CG(x)|. Then s divides the integer N(i) defined in Table 3.

Proof. We use the centraliser orders presented in (2.2) and (2.3). For example, suppose
that G = PΩ+

8 (q) and i = 2. We claim that s divides N(2) = (q4 − 1)(q3 + 1). To see
this, let ` denote the dimension of the 1-eigenspace of x̂ on the natural module for
Ω+

8 (q), so 0 ≤ ` ≤ 6 is even. If ` = 6 then a combination of (2.3) and Remark 2.4
implies that s divides |SO−6 (q)||GU1(q)|, and the claim follows. Similarly, if ` = 4 then
s divides |SO+

4 (q)||GU2(q)| (note that |GU1(q)|2 divides |GU2(q)|), and if ` = 2 then s
divides |SO−2 (q)||GU3(q)|. Finally, if ` = 0 then s divides |GU4(q)|. This justifies the
claim, and the other cases are very similar. �

We will also need information on the conjugacy classes and centralisers of
involutions and elements of order p in symplectic and orthogonal groups. For
involutions, we refer the reader to [6, Section 4.5] (for p , 2) and [1] (for p = 2).
The information we need for elements of order p > 2 is given in [13, Section 7.1]. See
also [3, Section 3] and [4, Ch. 3]. It is routine to check the following two lemmas on
unipotent elements.
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Lemma 2.6. Let G = POε
2m(q), where m ≥ 4, let x ∈ G be an element of order p and

let s be a prime divisor of |CG(x)|. Then either s divides |Sp2m−4(q)|, or q is even,
x ∈ Oε

2m(q) \Ωε
2m(q) and s divides |Sp2m−2(q)|.

Lemma 2.7. Let G = PSp2m(q), where m ≥ 2, let x ∈ G be an element of order p and let
s be a prime divisor of |CG(x)|. Then s divides |Sp2m−2(q)|.

3. Proof of Theorem 1.1

We start by reducing the proof of Theorem 1.1 to the cases labelled (b)–(f) in
Table 2.

Proposition 3.1. Let G be a finite simple group and let H be a maximal subgroup
of G. Assume that (G,H) is not one of the cases labelled (a)–(f) in Table 2. Then
Γ(G) = Γ(H) if and only if (G,H) is one of the following:

(Ω+
8 (2), Pi) (Ω+

8 (2), A9) (L6(2), P j) (Sp6(2),O+
6 (2)) (U4(2), P2)

(U4(2),Sp4(2)) (U4(3), A7) (G2(3),L2(13)) (A6,L2(5)) (M11,L2(11))

where i ∈ {1, 3, 4} and j ∈ {1, 5}.

Proof. By Theorem 2.2, we may assume that (G,H) is one of the cases recorded in
Table 2. If (G,H) is not one of the cases labelled (a)–(f), then it is easy to determine
whether or not Γ(G) = Γ(H), using Magma [2] for example. The result follows. �

In order to prove Theorem 1.1, it remains to deal with the cases labelled (b)–(f)
in Table 2. Recall that the special case labelled (a) will be discussed separately in
Section 4.

Proposition 3.2. Suppose that G = Sp2m(q) and H = O−2m(q), where m and q are even.
Then Γ(G) = Γ(H) if and only if m = 2 or 4.

Proof. First assume that m ≥ 8. We claim that Γ(G) , Γ(H). To see this, let ` be the
smallest prime that does not divide m. Note that ` is odd since m is even. By Bertrand’s
postulate, there exists a prime `′ such that m/4 < `′ < m/2, so `′ does not divide m and
thus ` < m/2.

Let r be a primitive prime divisor of q` − 1 and let s be a primitive prime
divisor of qm−` − 1 (such primes exist by Zsigmondy’s theorem, as discussed in
Section 2.1). Then r, s ∈ π(G), and we note that r , s since ` < m − ` as noted
above. As explained in Section 2.2, there exists an element x ∈ G of order r
such that |CG(x)| = |Sp2(m−`)(q)||GL1(q`)| (in the notation of Section 2.2, we can take
x = [I2(m−`),Λ1,Λt/2+1]), so s divides |CG(x)| and thus r ∼G s by Lemma 2.1.

Let y ∈ H be an element of order r, and suppose that s divides |CH(y)|. The
1-eigenspace of y has dimension 2(m − b`) ≥ 2 for some positive integer b (the
1-eigenspace is nontrivial by Remark 2.4), and it is easy to see that s does not
divide |O−2(m−b`)(q)|. Therefore, s must divide |GLb(q`)|. Clearly, this is impossible if
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b < m/` − 1, so we must have b ≥ m/` − 1. As noted above, we also have m − b` ≥ 1,
so

m/` − 1 ≤ b ≤ (m − 1)/`.

Now (b − 1)` < m − `, so by considering |GLb(q`)| we deduce that s must divide
qb` − 1, so c(m − `) = b` for some positive integer c. But ` < m/2 and thus 2(m − `) >
m − 1 ≥ b`, so c = 1 is the only possibility. This implies that b = m/` − 1, which is a
contradiction since ` does not divide m. We conclude that r /H s and thus Γ(G) , Γ(H).

Next suppose that m = 6. Again, we claim that Γ(G) , Γ(H). Let r and s be primitive
prime divisors of q8 − 1 and q4 − 1, respectively. There is an element x ∈ G of order
r with |CG(x)| = |Sp4(q)||GU1(q4)| (take x = [I4,Λ1]), so r ∼G s. However, if y ∈ H
has order r then |CH(y)| = |O+

4 (q)||GU1(q4)| is the only possibility (see Remark 2.4),
and thus s does not divide |CH(y)|. Therefore, r /H s and once again we deduce that
Γ(G) , Γ(H).

Finally, let us assume that m = 4 or 2. Here we claim that Γ(G) = Γ(H). Let
r, s ∈ π(G) be primes such that r < s and r ∼G s. In order to show that r ∼H s we
will identify an element y ∈ H of order r such that |CH(y)| is divisible by s. For the
sake of brevity, we will assume that m = 4 (the case m = 2 is very similar, and easier).

If r = 2 then Lemma 2.7 implies that s divides |Sp6(q)|, and we deduce that r ∼H s
since |CH(y)| = 2|Sp6(q)| for any transvection y ∈ H (in the terminology of [1], y is a
b1-type involution); see [3, page 94], for example. Now assume that r is odd. Note that
s is also odd. Set i = Φ(r, q) (see (2.1)) and suppose that y ∈ H has order r. If i = 8 then
Lemma 2.5 implies that s divides q4 + 1, and the desired result follows since |CH(y)| =
|GU1(q4)|. Similarly, if i = 4 then |CH(y)| = |O+

4 (q)||GU1(q2)| is the only possibility (see
Remark 2.4), and the result follows since s divides q4 − 1. Next suppose that i = 2, so
s divides (q2 + 1)(q6 − 1). If s divides (q2 + 1)(q3 − 1) then take y = [I6,Λ1] ∈ H (in
the notation of Section 2.2), in which case |CH(y)| = |O+

6 (q)||GU1(q)| is divisible by
s. On the other hand, if s divides q3 + 1 then take y = [I2,Λ

3
1] ∈ H so that s divides

|CH(y)| = |O+
2 (q)||GU3(q)|. It follows that r ∼H s when i = 2. The cases i ∈ {1, 3, 6} are

very similar, and we omit the details. �

Proposition 3.3. Suppose that G = Ω2m+1(q) and H is of type O−2m(q), where m is even
and q is odd. Then Γ(G) = Γ(H) if and only if (m, q) = (2, 3).

Proof. It is easy to check that Γ(G) = Γ(H) if (m, q) = (2, 3), so let us assume that
(m, q) , (2, 3). Suppose that m ≥ 4. Set r = p and let x ∈ G be a unipotent element
with Jordan form [J3, J2m−2

1 ], where Ji denotes a standard unipotent Jordan block of
size i. By [13, Theorem 7.1], there are two G-classes of elements of this form, and
we can choose x so that |CG(x)| is divisible by |Ω−2m−2(q)|. Let s be a primitive prime
divisor of q2m−2 − 1 and note that s divides |CG(x)|, so r ∼G s. However, s does not
divide |Sp2m−4(q)| and thus Lemma 2.6 implies that s does not divide |CH(y)| for any
element y ∈ H of order p. Therefore r /H s and we conclude that Γ(G) , Γ(H).

Finally, suppose that m = 2. Set r = p and let s be an odd prime divisor of q2 − 1
(note that s exists since q ≥ 5). Let x ∈ G be a unipotent element with Jordan form
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[J2
2 , J1]. Then |CG(x)| is divisible by q2 − 1 (see [13, Theorem 7.1]), so r ∼G s.

However, every nontrivial unipotent element y ∈ H has Jordan form [J3, J1], and
we calculate that |CH(y)| = 2q2. Therefore r /H s, and once again we conclude that
Γ(G) , Γ(H). �

Remark 3.4. The case G = Ω5(3) with H of type O−4 (3) arising in Proposition 3.3 is
recorded as (G,H) = (U4(2),Sp4(2)) in Table 1.

Proposition 3.5. Suppose that G = Ω+
2m(q) and H = Sp2m−2(q), where m and q are

even. Then Γ(G) = Γ(H) if and only if m = 4.

Proof. First assume that m ≥ 8. As in the proof of Proposition 3.2, let r and s be
primitive prime divisors of q` − 1 and qm−` − 1, respectively, where ` is the smallest
prime number that does not divide m. Let x ∈ G be an element of order r with
|CG(x)| = |Ω+

2(m−`)(q)||GL1(q`)|. Then s divides |CG(x)|, so r ∼G s. However, by
repeating the argument in the proof of Proposition 3.2, we deduce that s does not divide
|CH(y)| for any element y ∈ H of order r. Therefore, r /H s and thus Γ(G) , Γ(H). To
reach the same conclusion when m = 6 we proceed as in the proof of Proposition 3.2,
taking r and s to be primitive prime divisors of q8 − 1 and q4 − 1, respectively.

Finally, let us assume that m = 4. We claim that Γ(G) = Γ(H). To see this, we
proceed as in the proof of Proposition 3.2. Let r, s ∈ π(G) be primes such that r < s
and r ∼G s. We need to find an element y ∈ H of order r with the property that s divides
|CH(y)|. If r = 2 then s divides q4 − 1 (see Lemma 2.6) and we can take y ∈ H to be a b1-
involution (that is, a transvection), so that |CH(y)| = q5|Sp4(q)|. Now assume that r (and
thus s) is odd. Set i = Φ(r, q) ∈ {1, 2, 3, 4, 6}. We now consider each possibility for i in
turn, using Lemma 2.5. For instance, suppose that i = 2, so s divides (q4 − 1)(q3 + 1).
If s divides q4 − 1 then take y = [I4,Λ1], otherwise take y = [Λ3

1]. Then (2.2) indicates
that s divides |CH(y)|, so r ∼H s as required. The other cases are entirely similar, and
we omit the details. �

Proposition 3.6. Suppose that G = PΩ+
2m(q) and H is of type O2m−1(q), where m is even

and q is odd. Then Γ(G) = Γ(H) if and only if m = 4.

Proof. For m ≥ 6 we can argue as in the proof of the previous proposition, so let us
assume that m = 4, so H = Ω7(q) (see [9, Proposition 4.1.6]). As before, let r, s ∈ π(G)
be primes such that r < s and r ∼G s. Our aim is to find an element y ∈ H of order r with
the property that s divides |CH(y)|. If r , p is odd, then we can repeat the argument
in the proof of the previous proposition (for the case m = 4). If r = p then Lemma 2.6
implies that s divides q4 − 1, and the desired result follows by taking y ∈ H to be an
element with Jordan form [J3, J4

1] and the property that |CH(y)| is divisible by |Ω−4 (q)|
(the existence of such an element was discussed in the proof of Proposition 3.3).

Finally, let us assume that r = 2. Detailed information on the conjugacy classes of
involutions in G and H is given in [6, Table 4.5.1], and the desired result quickly
follows. For example, suppose that q ≡ 1 (mod 4). The representatives of the
involution classes in G are labelled t1, t2, t3, t4 in [6, Table 4.5.1], and we deduce that s

https://doi.org/10.1017/S0004972714000707 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714000707


[11] On the prime graph of simple groups 237

divides (q3 − 1)(q4 − 1). Now if y ∈ H is a t3-type involution, then |CH(y)| is divisible
by |Ω+

6 (q)| (see [6, Table 4.5.1]) and thus r ∼H s. The case q ≡ 3 (mod 4) is very
similar. �

Proposition 3.7. Suppose that G = PSp4(q) and H is of type Sp2(q2), where q ≥ 3.
Then Γ(G) = Γ(H) if and only if q = 3.

Proof. The case q = 3 can be checked directly, so let us assume that q ≥ 4. Let r = p
and let s be any odd prime divisor of q2 − 1 (note that s exists since q ≥ 4). Let x ∈ G
be a transvection, so x has Jordan form [J2, J2

1] and s divides |CG(x)| = q3|Sp2(q)|.
Therefore, r ∼G s. However, |CH(y)| = 2kq2 for all y ∈ H of order r (where k = 1 + δ2,p),
so r /H s. We conclude that Γ(G) , Γ(H) if q ≥ 4. �

Remark 3.8. Note that the case G = PSp4(3) with H of type Sp2(9) arising in
Proposition 3.7 is recorded as (G,H) = (U4(2),Sp4(2)) in Table 1.

This completes the proof of Theorem 1.1.

4. Intransitive subgroups of alternating groups

In this section, we consider the special case labelled (a) in Table 2, which arises in
part (b) of Theorem 1.1. Here G = An and H = (S k × S n−k) ∩G, where 1 < k < n is an
integer such that p ≤ k for every prime p ≤ n.

Since k < n, the condition on k implies that n is composite. If 5 < n < 12 then it is
easy to check that Γ(G) = Γ(H) if and only if (G,H) = (A6, A5) or (A10, (A7 × A3).2).
Now assume that n ≥ 12. We make the following conjecture.

Conjecture 4.1. If n ≥ 12, then Γ(G) = Γ(H) if and only if n is odd, k = n − 1 and n − 4
is composite.

For example, this conjecture implies that Γ(G) = Γ(H) if k = n − 1 and

n ∈ {25, 39, 49, 55, 69, 81, 85, 91, 95, 99, . . .}.

In particular, Γ(G) = Γ(H) if n = m2 and m ≥ 5 is odd.
The following result shows that determining whether or not Γ(G) = Γ(H) in the

special case n = p + 1 is equivalent to a formidable open problem in number theory.

Lemma 4.2. Let G = Ap+1 and H = Ap, where p ≥ 7 is a prime. Then Γ(G) , Γ(H) if
and only if there exist distinct primes r, s such that p + 1 = r + s.

Proof. First observe that if p = 5 then Γ(G) is the empty graph on three vertices, so
Γ(G) = Γ(H). Now assume that p ≥ 7. Suppose that there exist distinct primes r and s
such that p + 1 = r + s (for example, this holds if Goldbach’s conjecture is true, with
distinct primes). Then r, s ∈ π(G), and clearly r ∼G s but r /H s, so Γ(G) , Γ(H).

For the converse, suppose that Γ(G) , Γ(H); say r, s ∈ π(G), where r < s, r ∼G s
and r /H s. By Lemma 2.1, there exists an element x ∈ G of order r such that
s divides |CG(x)|. Now x has cycle shape (rk, 1p+1−rk) for some k ≥ 1 + δr,2, so
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|CG(x)| = 1
2 (p + 1 − rk)!rk and thus s ≤ p + 1 − rk. If r = 2 and y ∈ H has cycle shape

(22, 1p−4) then the condition r /H s implies that |CH(y)| = 2(p − 4)! is indivisible by
s, so s ≥ p − 3 and we deduce that s = p − 3 is the only possibility. But this situation
cannot arise since p ≥ 7. Now assume that r > 2. If y ∈ H has cycle shape (r, 1p−r)
then |CH(y)| = 1

2 (p − r)!r is indivisible by s, so s ≥ p − r + 1. Therefore, k = 1 is the
only possibility, and p + 1 = r + s. The result follows. �

More generally, suppose that the following variation of Goldbach’s conjecture is
true (note that the condition n ≥ 12 is needed, since the conclusion is false when
n = 10).

Conjecture 4.3. Let n ≥ 12 be an even integer, and let p be the largest prime less than
n. Then there exist distinct primes r, s such that r < s < p and n = r + s.

If we assume the validity of this conjecture, then we immediately deduce that
Γ(G) , Γ(H) if n ≥ 12 is even; simply take r and s as in the conjecture, and note
that r ∼G s and r /H s. Similarly, if n ≥ 15 is odd and k < n − 1 then the conjecture
provides primes r and s such that n − 1 = r + s, and again it is easy to see that r ∼G s
and r /H s.

Lemma 4.4. Let G = An and H = An−1, where n ≥ 15 is odd. Then Γ(G) = Γ(H) if and
only if n − 4 is composite.

Proof. First assume that r = n − 4 is a prime number and set s = 2, so r ∼G s. Now,
if y ∈ H has order r then y has cycle shape (r, 13) and thus |CH(y)| = 3r is odd.
Therefore, r /H s and thus Γ(G) , Γ(H). For the converse, we argue as in the
proof of [19, Proposition 1]. Suppose that Γ(G) , Γ(H), say r, s ∈ π(G) where r < s,
r ∼G s and r /H s. For a prime number p, set e(p) = p1+δ2,p . By [19, Lemma 1′],
n − 1 < e(r) + e(s) ≤ n, so n = e(r) + e(s). Since n is odd, it follows that r = 2 and thus
s = n − 4 is a prime number. �

In particular, Lemma 4.4 implies that Γ(G) = Γ(H) if the conditions in part (b) of
Conjecture 1.3 hold.

5. Proof of Corollary 1.4

In this final section we establish Corollary 1.4. Let G be a finite simple group and
let H be a proper subgroup of G. Suppose that Γ(G) = Γ(H). We may as well assume
that H is non-maximal, so H < M < G for some maximal subgroup M of G. Note that
Γ(G) = Γ(M), so the possibilities for (G,M) are given in Theorem 1.1.

First assume that (G, M) is not one of the cases in the first four rows of Table 1.
Here it is easy to determine the proper subgroups H of M such that Γ(M) =

Γ(H), using Magma [2] for example. Only one case arises, namely (G, M, H) =

(U4(2), Sp4(2),O−4 (2)). This gives us the second example recorded in part (b) of
Corollary 1.4.

To complete the proof of the corollary, we may assume that (G, M) is one of the
first four cases listed in Table 1. Let L be a maximal subgroup of M containing H.
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Suppose that (G, M) = (PΩ+
8 (q),Ω7(q)), where q is odd. Here M is simple and

thus Theorem 1.1 implies that Γ(M) , Γ(L), which eliminates this case. Similarly,
if (G, M) = (Ω+

8 (q), Sp6(q)) (with q even) then Theorem 1.1 implies that the only
possibility is L = O+

6 (2) with q = 2. By our earlier analysis, we know that there is
no proper subgroup J < L such that Γ(L) = Γ(J), whence H = O+

6 (2). This yields the
first case recorded in part (b) of Corollary 1.4.

Finally, let us assume that (G, M) = (Sp2m(q),O−2m(q)), where m ∈ {2, 4} and q is
even. Let T = Ω−2m(q) be the socle of M and note that π(T ) = π(M). We claim that
Γ(G) , Γ(T ). This can be checked directly if (m, q) = (4, 2), so let us assume that
(m, q) , (4, 2). Let r = 2 and let s be a primitive prime divisor of q2m−2 − 1. If x ∈ G
is a transvection (that is, a b1-involution in the terminology of [1]) then |CG(x)| is
divisible by |Sp2m−2(q)|, so s divides |CG(x)| and thus r ∼G s. Now T = Ω−2m(q) does
not contain any b-type involutions (see [1, Theorem 8.10]). In particular, if y ∈ T is an
involution then either m = 2 and |CT (y)| = q2, or m ≥ 4 and any odd prime divisor of
|CT (y)| must divide |Sp2m−4(q)| (see Lemma 2.6). Therefore, s does not divide |CT (y)|,
so r /T s. This justifies the claim.

In view of the claim, we may assume that H does not contain T . We are now
in a position to apply [12, Corollary 5]. However, T = Ω−2m(q) is not one of the
cases listed in the first column of [12, Table 10.7]. This rules out the case (G, M) =

(Sp2m(q),O−2m(q)), and the proof of Corollary 1.4 is complete.
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