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WEAK A2 SPACES, THE KASTANAS GAME, AND STRATEGICALLY
RAMSEY SETS

CLEMENT YUNG

Abstract. We introduce the notion of a weak A2 space (or wA2-space), which generalises spaces
satisfying Todorčević’s axioms A1–A4 and countable vector spaces. We show that in any Polish weak A2
space, analytic sets are Kastanas Ramsey, and discuss the relationship between Kastanas Ramsey sets and
sets in the projective hierarchy. We also show that in all spaces satisfying A1–A4, every subset of R is
Kastanas Ramsey iff Ramsey, generalising the recent result by [2]. Finally, we show that in the setting of
Gowers wA2-spaces, Kastanas Ramsey sets and strategically Ramsey sets coincide, providing a connection
between the recent studies on topological Ramsey spaces and countable vector spaces.

§1. Introduction. In this article we show the notion of a weak A2 space provides a
direct connection between the study of the abstract Kastanas game on closed triples
(R,≤, r) satisfying Todorčević’s axioms A1–A4 in [2], and the study of strategically
Ramsey subsets of a countable vector space in [12]. We show that the set-theoretic
properties of strategically Ramsey subsets of countable vector spaces and Ramsey
subsets of topological Ramsey spaces are consequences of the properties of Kastanas
Ramsey sets in wA2-spaces.

It was shown in [2] that if (R,≤, r) is a closed triple (R,≤, r) satisfying
Todorčević’s axioms A1–A4, and it is selective, then a subset of R is Kastanas
Ramsey iff it is Ramsey. On the other hand, Rosendal showed that all analytic
subsets of a countable vector space are strategically Ramsey, along with other set-
theoretic behaviour of strategically Ramsey sets. This was made further abstract in
[11], where de Rancourt introduced the notion of a Gowers space, and showed that
all analytic subsets of a Gowers space are strategically Ramsey.

This article presents three main theorems. Our first theorem generalises the result
given in [2] to all spaces satisfying A1–A4.

Theorem 1.1. Suppose that (R, r,≤) is a closed triple satisfying A1–A4. Then a
set X ⊆ R is Kastanas Ramsey iff it is Ramsey.

Observing that the abstract Kastanas game may be similarly studied on wA2-
spaces, we present a few set-theoretic properties of the set of Kastanas Ramsey
subsets of a wA2-space R. If AR is countable, then R is a Polish space under the
usual metrisable topology, so we may consider the projective hierarchy of subsets
of R.
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2 CLEMENT YUNG

Theorem 1.2. Suppose that (R,≤, r) is a wA2-space, and that AR is countable (so
R is a Polish space under the metrisable topology). Then every analytic set is Kastanas
Ramsey.

We will also show that for a large class of wA2-spaces, Theorem 1.2 is consistently
optimal (see Theorem 4.8 and Corollary 4.9).

In our last section, we study the corresponding version of the Kastanas game on
Gowers space.1 We relate the two concepts by introducing the notion of a Gowers
wA2-space (in which countable vector spaces are an example of).

Theorem 1.3. Let (R, r,≤) be a Gowers wA2-space. Then the Kastanas game on
R (as a Gowers space) and the Kastanas game on R (as a wA2-space) are equivalent.
Furthermore, a subset of R is Kastanas Ramsey iff it is strategically Ramsey.

For the precise statements, see Theorem 5.18 and Proposition 5.13.

§2. Weak A2 spaces. In this section, we provide a recap of the axioms of
topological Ramsey spaces presented by Todorčević in [15], which would preface the
setup of a wA2-space. We follow up by discussing various examples of wA2-spaces,
and an overview of Ramsey subsets of wA2-spaces, motivating the need to study an
alternative variant of an infinite-dimensional Ramsey property.

2.1. Axioms. We recap the four axioms presented by Todorčević in [15], which
are sufficient conditions for a triple (R,≤, r) to be a topological Ramsey space.
Here, R is a non-empty set, ≤ be a quasi-order on R, and r : R× � → AR is a
function. We also define a sequence of maps rn : R → AR by rn(A) := r(A, n) for
all A ∈ R. Let ARn ⊆ AR be the image of rn (i.e., a ∈ ARn iff a = rn(A) for some
A ∈ R).

The four axioms are as follows:

(A1) (1) r0(A) = ∅ for all A ∈ AR.
(2) A �= B implies rn(A) �= rn(B) for some n.
(3) rn(A) = rm(B) implies n = m and rk(A) = rk(B) for all k < n.

For each a ∈ AR, let lh(a) denote the unique n in which a ∈ ARn. By
Axiom A1(3), this n is well-defined.

(A2) There is a quasi-ordering ≤fin on AR such that:
(1) {a ∈ AR : a ≤fin b} is finite for all b ∈ AR.
(2) A ≤ B iff ∀n∃m[rn(A) ≤fin rm(B)].
(3) ∀a, b ∈ AR[a 
 b ∧ b ≤fin c → ∃d 
 c[a ≤fin d ]].

(A3) We may define the Ellentuck neighbourhoods as follows: For any A ∈ R,
a ∈ AR, and n ∈ N, we let

[a,A] := {B ∈ R : B ≤ A ∧ ∃n[rn(B) = a]},
[n,A] := [rn(A), A].

1de Rancourt also introduced the Kastanas game Kp in [11], which differs from the one this article
shall be presenting.
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wA2-SPACES, THE KASTANAS GAME, AND STRATEGICALLY RAMSEY SETS 3

Then the depth function defined by, for B ∈ R and a ∈ AR,

depthB(a) :=

{
min{n < � : a ≤fin rn(B)}, if such n exists,
∞, otherwise

satisfies the following:
(1) If depthB(a) <∞, then for all A ∈ [depthB(a), B], [a,A] �= ∅.
(2) IfA ≤ B and [a,A] �= ∅, then there existsA′ ∈ [depthB(a), B] such that

∅ �= [a,A′] ⊆ [a,A].
For each A ∈ R, we let

AR�A := {a ∈ AR : ∃n[a ≤fin rn(A)]}.

If a ∈ AR�A, we also define

AR�[a,A] := {b ∈ AR�A : a 
 b},
rn[a,A] := {b ∈ AR�[a,A] : lh(b) = n}.

(A4) If depthB(a) <∞ and if O ⊆ ARlh(a)+1, then there exists A ∈
[depthB(a), B] such that rlh(a)+1[a,A] ⊆ O or rlh(a)+1[a,A] ⊆ Oc .

We introduce a useful weakening of Axiom A2, which we shall call weak A2, or
just wA2.

Axiom wA2. There is a quasi-ordering ≤fin on AR such that:

(w1) {a ∈ AR : a ≤fin b} is countable for all b ∈ AR.
(2) A ≤ B iff ∀n∃m[rn(A) ≤fin rm(B)].
(3) ∀a, b ∈ AR[a 
 b ∧ b ≤fin c → ∃d 
 c[a ≤fin d ]].

Note that by axiom A1, we may identify each element A ∈ R as a sequence of
elements of AR, via the map A 
→ (rn(A))n<� . Therefore, we may identify R as a
subset of ARN.

Definition 2.1. A triple (R,≤, r) is said to be

(1) a closed triple if R is a metrically closed subset of ARN;
(2) a wA2-space if (R,≤, r) is a closed triple satisfying Axioms A1, wA2, and A3;
(3) an A2-space if it is a wA2-space satisfying A2.

Given a wA2-space (R,≤, r), we shall focus on the following two topologies
on R:

(1) The metrisable topology—we may equip R with the first difference metric,
where for A,B ∈ R, d (A,B) = 1

2n , where n is the least integer such that
rn(A) �= rn(B). If AR is countable, then under this metrisable topology, R is
a Polish space.

(2) The Ellentuck topology generated by open sets of the form [a,A] for A ∈ R
and a ∈ AR�A.

In this article, unless stated otherwise all topological properties of R will be with
respect to the metrisable topology.
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4 CLEMENT YUNG

2.2. Examples. We discuss several examples of wA2-spaces. All examples below,
except for countable vector spaces and the singleton space (Examples 2.8 and 2.9),
may be found in [15]. Discussions of countable vector spaces and strategically
Ramsey sets may be found in [11–14].

Example 2.2 (Natural numbers/Ellentuck space [N]∞). Let R = [N]∞. For each
n and A ∈ [N]∞, let rn(A) be the finite set containing the n least elements of A
(so AR = [N]<∞). Let ≤fin denote the subset relation ⊆. It is easy to check that
([N]∞,⊆, r) is a closed triple satisfying A1–A4.

Example 2.3 (Infinite block sequences/Gowers’ space FIN[∞]
k ). For each k <

�, let FINk be the set of all functions x : N → N with finite support (i.e., the
set supp(x) := {n ∈ N : x(n) > 0} is finite), such that ran(x) ⊆ {0, ... , k} and k ∈
ran(x). For x, y ∈ FINk , we also define the following:

(1) (Tetris operation) T (x)(n) := max{x(n) – 1, 0} ∈ FINk–1.
(2) x < y ⇐⇒ max(supp(x)) < min(supp(y)).
(3) If x < y, define (x + y)(n) := max{x(n), y(n)} ∈ FINk .

It is easy to see that < is transitive. We let R = FIN[∞]
k be the set of all infinite <-

increasing sequences, and for each A = (xn)n<� ∈ R, rN (A) := (xn)n<N . We have
that AR = FIN[<∞]

k , the set of all finite <-increasing sequences.
Given a = (xn)n<N ∈ FIN[<∞]

k , we let

〈a〉 := {T�0 (x0) + ··· + T�N–1 (xN–1) : �i = 0 for some i < N}.

For two a, b ∈ FIN[<∞]
k , we write a ≤fin b iff 〈a〉 ⊆ 〈b〉. Then (FIN[∞]

k ,≤, r) is a
closed triple satisfying A1–A4.

FIN[∞]
k was first introduced by Gowers in [5, 6] to resolve several long-standing

problems in Banach space theory. The current formulation of FIN[∞]
k may be found

in [15]. The fact that (FIN[∞]
k ,≤, r) satisfies A4 follows from Gowers’ FINk theorem

([5, Theorem 1] or [15, Theorem 2.2]).

Example 2.4 (Infinite block sequences FIN[∞]
±k ). Consider a setup similar to

Example 2.3. Instead, we let FIN±k be the set of all functions x : N → Z with finite
support, such that ran(x) ⊆ {– k, ... , k}, and (k ∈ ran(x) or – k ∈ ran(x)). The
tetris operation is now modified to:

T (x)(n) :=

⎧⎪⎨
⎪⎩
x(n) – 1, if x(n) > 0,
x(n) + 1, if x(n) < 0,
0, otherwise.

The rest of the setup is similar. We let R = FIN[∞]
±k be the set of all infinite <-

increasing sequences, soAR = FIN[<∞]
±k is the set of all finite<-increasing sequences.

Given a = (xn)n<N ∈ FIN[<∞]
±k , we let

〈a〉 := {ε0T�0(x0) + ··· + εN–1T
�N–1 (xN–1) :

ε0, ... , εN–1 ∈ {±1} and �i = 0 for some i < N}.
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wA2-SPACES, THE KASTANAS GAME, AND STRATEGICALLY RAMSEY SETS 5

Then FIN[∞]
±k is an A2-space. However, FIN[∞]

±k does not satisfy A4—for each x ∈
FIN±k , let

nx := min{n < � : x(n) ∈ {±k}}.
Now let

Y := {x ∈ FIN±k : x(nx) = k}.

Then, for all A ∈ FIN[∞]
±k , 〈A〉 ∩ Y �= ∅ and 〈A〉 ∩ Yc �= ∅.

FIN[∞]
±k was first introduced by Gowers in [5], and the current formulation of

FIN[∞]
±k may be found in [15].

Example 2.5 (Hales–Jewett space W [∞]
Lv ). Let L =

⋃∞
n=0 Ln be a countable

increasing union of finite alphabets with variable v /∈ L. Let WLv denote the set
of all variable-words over L ∪ {v}, i.e., all finite strings of elements of L ∪ {v} in
which v occurs at least once. For each x ∈WLv and � ∈ L ∪ {v}, we let x[�] denote
the word in which all v’s occurring in x are replaced with a.

Given x0, ... , xn ∈WLv , we write (xi)i<n < xn iff
∑
i<n |xi | < |xn|. A sequence

(xn)n<N is rapidly increasing if (xi)i<n < xn for all n < N . Let R =W [∞]
Lv be the set

of all infinite rapidly increasing sequences, and for eachA = (xn)n<� ∈ R, rN (A) :=
(xn)n<N . We have thatAR =W [<∞]

Lv , the set of all finite rapidly increasing sequences.
Given a = (xn)n<N ∈W [<∞]

Lv , we let

〈a〉 := {xm0 [�0]� ···� x�k [�k] : m0 < ···mk and �i = v for some i}.

For two a, b ∈W [<∞]
Lv , we write a ≤fin b iff 〈a〉 ⊆ 〈b〉, and 〈a〉 �⊆ 〈c〉 for all c 
 b

and c �= b. Then (W [∞]
Lv ,≤, r) is a closed triple satisfying A1–A4.

W [∞]
Lv was first introduced by Hales–Jewett in [7], and the current formulation of

W [∞]
Lv may be found in [15].

Example 2.6 (Strong subtrees S∞). Let T ⊆ �<� be a tree (i.e., a subset that is
closed under initial segments). We introduce some terminologies.

(1) A node s ∈ T splits in T if there existm �= n such that s�m ∈ T and s�n ∈ T .
For n ≥ 1, we let splitn(T ) be the set of all s ∈ T such that s splits in T, and
there are k1 < ··· < kn–1 < dom(s) such that s�ki splits for 1 ≤ i < n. We
then let split(T ) :=

⋃
n<� splitn(T ).

(2) A node s ∈ T is terminal in T if s�n /∈ T for all n.
(3) The height of a non-empty tree T is defined by:

height(T ) := max({0} ∪ {n ≥ 1 : splitn(T ) �= ∅}).

(4) T is perfect if for all s ∈ T , either there exists some t � s such that t splits in
T, or s is terminal in T.

Let R = S∞ be the set of strong subtrees A ⊆ �<� . That is, T is a perfect subtree
which satisfies the following conditions:

(1) For all s, t ∈ A such that dom(s) = dom(t), s splits in T iff t splits in A.
(2) If s ∈ A and there exists some t ∈ A such that dom(s) < dom(t), then there

exists some u ∈ A such that s 
 u and dom(u) = dom(t).
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6 CLEMENT YUNG

For each A ∈ S∞ and n < �, we define

rn(A) := {s ∈ A : |{t ∈ A : t 
 s ∧ t splits}| ≤ n}.

We observe that ifA ∈ S∞, then rn(A) is a strong subtree of height n, so AR = S<∞
is the set of all strong subtrees of finite height. For a, b ∈ S<∞, we write a ≤fin b iff
a ⊆ b, and for all nodes s ∈ a, which are terminal in a, s splits in b or is terminal b.
Then (S∞,≤, r) is a closed triple satisfying A1–A4.

The space S∞ is also known as the Milliken space of strong subtrees, and was first
introduced by Milliken in [10] to generalise Silver’s partition theorem for infinite
trees. The theorem asserting that (S∞,≤, r) satisfies A4 (also proven in [10]) is the
strong subtree variant of the Halpern–Läuchli theorem. The current formulation
may be found in [15].

Example 2.7 (Carlson–Simpson Space E∞). Let R = E∞ denote the Carlson–
Simpson space, i.e., the collection of equivalence relations A on N in which N/A is
infinite. For each x ∈ N, let [x]A be the equivalence class of A containing x. We then
let p(A) = {pn(A) : n < �} be the increasing enumeration of the set of all minimal
representatives of the equivalence classes of A. Note thatp0(A) = 0 always. For each
A ∈ E∞, we let rn(A) := A�pn(A), i.e., the restriction of the equivalence relation A
to the domain dom(A�pn(A)) := {0, 1, ... , pn(A) – 1}. We denote AE∞ := AR. For
a, b ∈ AE∞, we write a ≤fin b iff dom(a) = dom(b) and a is coarser than b. We
remark that for all a ∈ AE∞, lh(a) is the number of equivalence classes in a. Then
(E∞,≤, r) is a closed triple satisfying A1–A4.

E∞ was first introduced by Carlson–Simpson in [3], as part of their development
of topological Ramsey theory. The current formulation may be found in [15].

Example 2.8 (Countable vector spaces E [∞]). Let F be a countable field, and let
E be an F-vector space of dimension ℵ0, with a distinguished Hamel basis (en)n<� .
Given x ∈ E, if x =

∑
n<� anen, we write supp(x) := {n < � : an �= 0}. We then

define a partial order < on E \ {0} by:

x < y ⇐⇒ max(supp(x)) < min(supp(y)).

We let R := E [∞] denote the set of all infinite <-increasing sequences of non-zero
vectors in E, and for each A = (xn)n<� ∈ E [∞], define rN (A) := (xn)n<N . We have
that AR = E [<∞] is the set of finite<-increasing sequences of non-zero vectors. For
two a := (xn)n<N , b := (ym)m<M ∈ E [<∞], we write (xn)n<N ≤fin (ym)m<M iff xn ∈
span{ym : m < M} for all n < N . Then (E [∞],≤, r) is a wA2-space. Furthermore:

(1) (E [∞],≤, r) is an A2-space iff F is finite—if F is finite, then for all a =
(xn)n<N , b = (ym)m<M ∈ E [<∞], a ≤fin b iff xn is an F-linear combination of
y0, ... , yM–1, of which there are only finitely many of. If F is infinite, then
(e0 + �e1) ≤fin (e0, e1) for all � ∈ F, so A2 fails.

(2) (E [∞],≤, r) satisfies A4 iff |F| = 2. If |F| = 2, then A4 follows from Hindman’s
theorem ([15, Theorem 2.41]). If |F| > 2, then define the set:

Y := {x ∈ E : x = en + y for some n and en < y}.

It is not difficult to show that 〈A〉 ∩ Y �= ∅ and 〈A〉 ∩ Yc �= ∅ for all A ∈
E [<∞].
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wA2-SPACES, THE KASTANAS GAME, AND STRATEGICALLY RAMSEY SETS 7

This Ramsey-theoretic framework of countable vector spaces was first introduced
by Rosendal in [12, 13]. He studied the set-theoretic properties of strategically
Ramsey sets in this framework, a notion motivated by the Ramsey-theoretic methods
employed by Gowers in [6]. Smythe studied the local Ramsey theory of this
framework in [14], extending some results by Rosendal to H-strategically Ramsey
sets, where H is a family satisfying some combinatorial properties.

Example 2.9 (Singleton space). Let R = {(0, 0, ... )}, the singleton containing
the zero sequence. We define rn(A) := (0, ... , 0) of length n, and ≤fin to be the
equality relation. Then (R,≤, r) is a closed triple satisfying A1–A4. Then (R,≤, r)
is a closed triple satisfying A1–A4. The singleton space serves as a pathological
example of a topological Ramsey space.

2.3. Ramsey sets. The definition of a Ramsey subset of a topological Ramsey
space may be extended to any wA2-spaces.

Definition 2.10. Let (R,≤, r) be a wA2-space. A set X ⊆ R is Ramsey if for
all A ∈ R and a ∈ AR�A, there exists some B ∈ [a,A] such that [a, B] ⊆ X or
[a, B] ⊆ X c .

By the abstract Ellentuck theorem [15, Theorem 5.4], if (R,≤, r) is a closed triple
satisfying A1–A4, a subset of R is Ramsey iff it is Baire relative to the Ellentuck
topology. Since the Ellentuck topology refines the metrisable topology, every subset
of R which is Baire relative to the metrisable topology is Ramsey. We show that A4
is a necessary condition.

Proposition 2.11. Let (R,≤, r) be an A2-space. The following are equivalent:
(1) (R,≤, r) satisfies A4.
(2) Every clopen subset of R is Ramsey.

Proof. (1) =⇒ (2) follows from the abstract Ellentuck theorem. For the
converse, let A ∈ R, a ∈ AR�A, and O ⊆ ARlh(a)+1. Define

X := {C ∈ R : rlh(a)+1(C ) ∈ O}.
Since X is clopen, it is Ramsey. Therefore, there exists some B ∈ [a,A] such that
[a, B] ⊆ X or [a, B] ⊆ X c . If [a, B] ⊆ X , then rlh(a)+1(B) ⊆ O, and if [a, B] ⊆ X c ,
then rlh(a)+1(B) ⊆ Oc . By A3, we may let B ′ ∈ [depthA(a), A] such that [a, B ′] ⊆
[a, B], so B ′ witnesses that A4 holds for O. �

Furthermore, Ramsey subsets of a wA2-space need not be closed under countable
intersections (and are hence not closed under countable unions).

Example 2.12 (Countable vector space E [∞]). Let F be a countable field such
that |F| > 2, and let E be an F-vector space of dimension ℵ0. Let Y ⊆ E be the set
defined in Example 2.8 such that for all A ∈ E [∞], 〈A〉 ∩ Y �= ∅, and 〈A〉 ∩ Yc �= ∅.
We define Yn ⊆ E for each n such that Ycn is finite for all n, and Y =

⋂
n<� Yn. This

is possible as E is countable.
For each n, we let

Xn := {(xn)n<� ∈ E [∞] : x0 ∈ Yn},
X := {(xn)n<� ∈ E [∞] : x0 ∈ Y}.

Note that X =
⋂
n<� Xn.
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8 CLEMENT YUNG

Claim. Xn is Ramsey for all n.

Proof. Let A ∈ E [∞] and a ∈ E [<∞]�A. If a = (x0, ... , xn–1) �= ∅, then [a,A] ⊆
Xn orX cn , depending if x0 ∈ Yn or x0 ∈ Ycn . Otherwise, letB ≤ A be such that x < B
for all x ∈ Ycn , which is possible as Ycn is finite. Then [∅, B] ⊆ X cn . �

However, X is not Ramsey—for all A ∈ E [∞], there exist (xn)n<� ≤ A and
(yn)n<� ≤ A such that x0 ∈ Y and y0 ∈ Yc , so [∅, A] �⊆ X and [∅, A] �⊆ X c .

These observations show that Ramsey sets in wA2-spaces are not as well-
behaved as Ramsey sets in topological Ramsey spaces, prompting us to consider
an alternative notion of Ramsey sets in wA2-spaces—one example being the notion
of Kastanas Ramsey.

§3. The Kastanas game in wA2-spaces. We shall introduce the abstract Kastanas
game in wA2-spaces, and study the set-theoretic properties of Kastanas Ramsey
sets.

3.1. The abstract Kastanas game.

Definition 3.1 [2, Definition 5.1]. Let (R,≤, r) be a wA2-space. Let A ∈ R and
a ∈ AR�A. The Kastanas game played below [a,A], denoted as K [a,A], is defined
as a game played by Players I and II in the following form:

Turn I II
1 A0 ∈ [a,A]

a1 ∈ rlh(a)+1[a,A0]
B0 ∈ [a1, A0]

2 A1 ∈ [a1, B0]
a2 ∈ rlh(a1)+1[a1, A1]
B1 ∈ [a2, A1]

3 A2 ∈ [a2, B1]
a3 ∈ rlh(a2)+1[a2, A2]
B2 ∈ [a3, A2]

...
...

...

The outcome of this game is limn→∞ an ∈ R (i.e., the unique elementB ∈ R such
that rn(B) = an for all n). We say that I (resp., II) has a strategy in K [a,A] to reach
X ⊆ R if it has a strategy in K [a,A] to ensure that the outcome is in X .

Note that we do not require (R,≤, r) to satisfy either A2 or A4 for the game to
make sense. In particular, we may consider the abstract Kastanas game in countable
vector spaces.

Definition 3.2. Let (R,≤, r) be a wA2-space. A set X ⊆ R is Kastanas Ramsey
if for all A ∈ R and a ∈ AR�A, there exists some B ∈ [a,A] such that one of the
following holds:

(1) I has a strategy in K [a, B] to reach X c .
(2) II has a strategy in K [a, B] to reach X .
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wA2-SPACES, THE KASTANAS GAME, AND STRATEGICALLY RAMSEY SETS 9

The seemingly unintuitive decision to define Kastanas Ramsey sets such that I
plays into the set X c , instead of X , allows us to describe the relationship between
Kastanas Ramsey sets and strategically Ramsey sets, projections and projective sets
more easily.

We conclude the section with some definitions and notations which are useful in
studying the Kastanas game.

Definition 3.3. Let (R,≤, r) be a wA2-space, and let A ∈ R and a ∈ AR�A.
Consider the Kastanas game K [a,A].

(1) A (partial) state is a tuple containing the plays made by both players in a
partial play of the game K [a,A]. For instance, a state ending on the nth turn
of I would be

s = (A0, a1, B0, A1, ... , An–1).

The rank of s would be the turn number in which the last play was made
(so, in the example above, rank(s) = n).

A state for I (resp., for II) is a state as defined above, except only the plays
made by I (resp., by II) are listed in the tuple. For instance a state for I would
be

sI = (A0, A1, ... , An–1),

and a state for II would be

sII = (a1, B0, ... , an, Bn–1).

(2) If s = (A0, a1, B0, ... , An) is a state of rank n, then the realisation of s, denoted
as a(s), is the element of AR last played by II, i.e., an–1. We also say that s
realises a(s). If rank(s) = 0, then a(s) := a.

If � is a strategy for I (resp., II) in K [a,A] and s is a state for I (resp.,
II) following �, then a(s) is understood to mean the element a(s ′) (i.e., an),
where s ′ is the state, following �, such that s is the play made by I (resp., II)
in s ′.

(3) A total state s is an infinite sequence of plays made by both players in a total
play of the game K [a,A]. Thus, a total state s would be of the form:

s = (A0, a1, B0, A1, a2, B1, ... ).

The realisation of s would be the element A(s) := limn→∞ an, i.e., the
unique element A(s) ∈ R such that rlh(a0)+n(A) = an for all n.

(4) If s is a state (for I or II, resp.), and n is such that either n ≤ rank(s) or s is a
total state, then write the restriction of s to rank n, denoted s�n, as the partial
state (for I or II, resp.) following s up to turn n of s.

Definition 3.4. If s = (A0, a1, B0, ... , An) is a state of rank n ending with a play
by I, then last(s) := An. If s = (A0, a1, B0, ... , An, an+1, Bn) is a state of rank n
ending with a play by II, then last(s) := Bn. We also define last(∅) := A.

3.2. Basic properties. Let (R,≤, r) be a wA2-space. We let KR denote the set of
all Kastanas Ramsey subsets of R, and let KR be the set of all subsets of R whose
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10 CLEMENT YUNG

complement is Kastanas Ramsey. In this section, we study various set-theoretic
properties of KR. We state some positive results that are analogous to those of
strategically Ramsey sets presented in [12]. The proofs are inspired by those shown
in the same article.

Lemma 3.5. Let (R,≤, r) be a wA2-space. Let Xn ⊆ R for each n, and let
X :=

⋂
n<� Xn. For any A ∈ R and a ∈ AR�A, there exists some B ∈ [a,A] such

that one of the following must hold:
(1) I has a strategy in K [a, B] to reach X .
(2) II has a strategy � in K [a, B] such that the following holds: For any total state

s following �, there exists some n such that if a(s�n) = an and last(s�n) = Bn,
then I has no strategy in K [an, Bn] to reach Xn.

See also [12, Lemma 4].

Proof. Let {Xn}n<� be a countable family of subsets ofR, and letX :=
⋂
n<� Xn.

Fix any A ∈ R and a ∈ AR�A, and assume that (2) fails for all B ∈ [a,A]. In
particular, applying n = 0 to the negation of (2), I has a strategy inK [a, B] to reach
X0 for all B ∈ [a,A].

IfB ∈ [a,A] and b ∈ AR�[a, B], say that “(2) holds for (b, B)” if II has a strategy
� inK [b, B] such that, for any total state s following �, there exists some n ≥ lh(b) –
lh(a) such that if last(s�(n – lh(b) + lh(a))) = Bn and a(s�(n – lh(b) + lh(a))) =
an, then I has no strategy in K [an, Bn] to reach Xn. Note that this would also imply
that I has no strategy in K [an, C ] to reach Xn for all C ∈ [an, Bn].

Claim. For all B ∈ [a,A] and b ∈ AR�[a, B], (2) holds for (b, B) iff for all A′ ∈
[b, B], there exists some b′ ∈ rlh(b)+1[b,A′] and B ′ ∈ [b′, A′] such that (2) holds for
(b′, B ′).

Proof. =⇒ : Let � be the strategy in K [b, B] witnessing that (2) holds for
(b, B). Given any A′ ∈ [b, B], consider the play where I begins with A, and player II
responds with b′ ∈ rlh(b)+1[b, B] and B ′ ∈ [b′, A′] according to �. The restriction of
the strategy � to K [b′, B ′] is a strategy witnessing that (2) holds for (b′, B ′).

⇐= : Suppose that for all A′ ∈ [b, B], there exists some b′ ∈ rlh(b)+1[b′, A′], B ′ ∈
[b′, A′] and strategy �A′ witnessing that (2) holds for (b′, B ′). Define the strategy � in
K [b, B] such that if I begins with A′, then II responds with b′ and B ′, then continue
according to �A′ . This gives a strategy witnessing that (2) holds for (b, B). �

Let O∅ denote the set of all a′ ∈ rlh(a)+1[a,A] such that for all B ∈ [a′, A], (2)
does not hold for (a′, B). Since we assumed that (2) fails for all B ∈ [a,A], by the
previous claim there exists someA∅ ∈ [a,A] such that rlh(a)+1[a,A′] ⊆ O∅. As stated
in the first paragraph, I has a strategy �∅ inK [a,A∅] to reach X0. To finish the proof,
we shall construct a strategy � for I in K [a,A∅] to reach X .

For the rest of this proof, all states are assumed to be for II. Let �(∅) := �∅(∅).
Now suppose for each state s of K [a,A∅] following � of rank n, we define the
following:

(1) If n > 0 and s ′ = s�(n – 1), then As ∈ [a(s), As′ ].
(2) �s is a strategy for I in K [a(s), As ] to reach Xn.
(3) If i ≤ n, then tis is a state of K [a(s�i), As�i ] following �s�i of rank n – i , and
a(tis) = a(s�i).
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wA2-SPACES, THE KASTANAS GAME, AND STRATEGICALLY RAMSEY SETS 11

(4) �s�(i+1)(ti+1
s ) ∈ [as , �s�i(tis)], and �(s) ∈ [a(s), �s(tns )].

(5) For all b ∈ rlh(a(s))+1[a(s), As ] and B ∈ [b,As ], (2) does not hold in (b, B).

Now let s be a state of K [a,A∅] following � of rank n + 1. We may write
s = (s�n)�(a(s), Bs). Since Bs ∈ [a(s), �(s�n)] ⊆ [a(s), �∅(t0s�n)], we may define
t0s := t0s�n

�
(a(s), Bs), which is a legal state in K [a,A∅] following �∅. We have

�∅(t0s ) ∈ [a(s), Bs ] ⊆ [a(s), �s�1(t1s�n)], so we may define t1s := t1s�n
�

(a(s), �∅(t0s )).
This again, gives us a legal state in K [a(s�1), As�1] following �s�1. We may repeat
this process to give us states tis for i ≤ n. We let A′

s := �s�n(tns ) ∈ [a(s�n), As�n].
Let Os be the set of all a′ ∈ rlh(a(s))+1[a(s), A′

s ] such that there exists some
B ∈ [a(s), A′

s ] in which (2) holds for (a′, B). By (5) of the induction hypothesis
and the claim, we may obtain As ∈ [a(s), A′

s ] such that rlh(a(s))+1[a(s), As ] ⊆ Ocs ,
and I has a winning strategy �s in K [a(s), As ] to reach Xn+1. Define �(s) := �s(∅).
This is indeed a legal move, as

�(s) ∈ [a(s), As ] ⊆ [a(s), A′
s ] ⊆ [a(s), As�n] ⊆ [a(s), Bs ].

This completes the induction. We see that � is indeed a strategy for I in K [a,A∅] to
reach X—if s is a total state ofK [a,A∅] following �, thenA(s) = A(tns ) ∈ Xn for all
n, so A(s) ∈

⋂
n<� Xn = X . This completes the proof.

Proposition 3.6. For any wA2-space (R,≤, r), KR is closed under countable
unions.

See also [12, Theorem 9].

Proof. Let {Xn}n<� be a countable family of subsets ofR, and letX :=
⋃
n<� Xn.

Fix any A ∈ R and a ∈ AR�A. If there exists some B ∈ [a,A] such that II has a
strategy in K [a, B] to reach X , then we’re done, so assume otherwise. Consider
applying Lemma 3.5 to X c =

⋂
n<� X cn . We claim that (2) fails for all (a, B), where

B ∈ [a,A], so by the same lemma, I has a strategy in K [a,A] to reach X c . Indeed,
otherwise let � be a strategy in K [a, B] witnessing that (2) holds for (a, B). Player
II shall follow � until they reach some turn n, ending with II playing (an, B ′

n), such
that I has no strategy in K [an, B ′

n] to reach X cn . Since Xn is Kastanas Ramsey, II
may instead play (an, Bn) in the last turn, where Bn ∈ [an, B ′

n], such that II has a
strategy in K [an, Bn] to reach Xn. Afterwards, II follows this strategy to reach Xn.
Since Xn ⊆ X , this constitutes a strategy for II in K [a, B] to reach X , contradicting
our assumption. �

We now turn our attention to some negative results.

Definition 3.7. Let (R,≤, r) be a wA2-space, and let O ⊆ AR.

(1) O is (a,A)-biasymptotic, where A ∈ R and a ∈ AR�A, if for all B ∈
[depthA(a), A], rlh(a)+1[a, B] ∩ O �= ∅ and rlh(a)+1[a, B] ∩ Oc �= ∅.

(2) O is biasymptotic if O is (a,A)-biasymptotic for all A ∈ R and a ∈ AR�A.

Thus, the assertion that R does not satisfy A4 is equivalent to the assertion that
there exists an (a,A)-biasymptotic set for some A ∈ R and a ∈ AR. We illustrate
some examples here.
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12 CLEMENT YUNG

Example 3.8 (Infinite block sequences FIN[∞]
±k ). Recall that for each x ∈ FIN±k ,

we defined

nx := min{n < � : x(n) = ±k}
and

Y := {x ∈ FIN±k : x(nx) = k}.

Then, for all A ∈ FIN[∞]
±k , 〈A〉 ∩ Y �= ∅ and 〈A〉 ∩ Yc �= ∅. Thus, the set

O := {a ∈ FIN[<∞]
k : a = (x0, ... , xn) ∧ xn ∈ Y}

is a biasymptotic set.

Example 3.9 (Countable vector space E [∞]). Let F be a field such that |F | > 2,
and let E be an F-vector space of dimension ℵ0. We defined the set

Y := {x ∈ E : x = en + y for some n and en < y}.

We have that 〈A〉 ∩ Y �= ∅ and 〈A〉 ∩ Yc �= ∅ for all A ∈ E [<∞]. Thus, the set

{a ∈ E [<∞] : a = (x0, ... , xn) ∧ xn ∈ Y}
is biasymptotic.

Proposition 3.10. Let (R,≤, r) be a wA2-space. If A4 fails, then there exists some
X ∈ KR ∩KR which is not Ramsey.

Proof. Let O be an (a,A)-biasymptotic set for some A ∈ R and a ∈ AR�A.
Define

X := {C ∈ R : a 
 C ∧ rlh(a)+1(C ) ∈ O}.
Since O is (a,A)-biasymptotic, for anyB ∈ [a,A], there exists someC ∈ [a, B] such
that rlh(a)+1(C ) ∈ O, and someC ′ ∈ [a, B] such that rlh(a)+1(C ) /∈ O. Consequently,
[a, B] ∩ X �= ∅ and [a, B] ∩ X c �= ∅, so X is not Ramsey as B is arbitrary. However,
X is a countable union of clopen sets, so it is Borel (under the metrisable topology).
By the Borel determinacy for R

� , the game K [a,A] to reach X or X c is always
determined, so X ∈ KR ∩KR. �

Proposition 3.11. Let (R,≤, r) be a wA2-space, and assume that it has a
biasymptotic set. If KR �= P(R), then KR is not closed under complements.

Proof. Fix a biasymptotic setO, and letX ⊆ R be not Kastanas Ramsey. Define
two sets as follows:

X0 := {C ∈ X : ∀m ∃n ≥ m[rn(C ) ∈ O]},
X1 := {C ∈ X : ∃m ∀n ≥ m[rn(C ) /∈ O]}.

Observe that both X c0 and X c1 are Kastanas Ramsey: Indeed, for any A ∈ R and
a ∈ AR�A, II has a winning strategy in K [a,A] to reach X c0 by playing an /∈ O for
all n, and II also has a winning strategy in K [a,A] to reach X c1 by playing an ∈ O
for all n. On the other hand, we have that X0 ∪ X1 = X , so if both X0 and X1 are
Kastanas Ramsey, then so is X by Proposition 3.6, a contradiction. Thus, at least
one of X0 or X1 witnesses that KR is not closed under complements. �
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wA2-SPACES, THE KASTANAS GAME, AND STRATEGICALLY RAMSEY SETS 13

Proposition 3.12. Let (R,≤, r) be a wA2-space, and assume that it has a
biasymptotic set. If KR �= P(R), then KR is not closed under finite intersections.

Proof. Fix a biasymptotic set O, and let X ⊆ R be a Kastanas Ramsey set in
which X c is not Kastanas Ramsey. Define two sets as follows:

X0 := {C ∈ X : ∀m ∃n ≥ m[rn(C ) ∈ O]},
X1 := {C ∈ X : ∃m ∀n ≥ m[rn(C ) /∈ O]}.

By the same argument as in Proposition 3.11, X c0 and X c1 are Kastanas Ramsey.
However, X c = X c0 ∩ X c1 is not. �

3.3. Kastanas Ramsey sets in topological Ramsey spaces. We shall now give a
proof of Theorem 1.1, which is split into a proof of two different propositions. The
first proposition is as follows.

Proposition 3.13 [2, Proposition 4.2]. Let (R,≤, r) be an A2-space. For every
X ⊆ R, A ∈ R, and a ∈ AR�A, I has a strategy inK [a,A] to reach X iff [a, B] ⊆ X
for some B ∈ [a,A].

We remark that the proof in [2] assumes that (R,≤, r) satisfies the following
property: If a ∈ AR�A, and b 
 a but b �= a, then depthA(b) < depthA(a). While
it is not true that all spaces satisfying A1–A4 would also satisfy such a property, the
gap may be fixed with a careful enumeration of elements of AR. We omit the details.

The second proposition is as follows.

Proposition 3.14. Suppose that (R,≤, r) satisfies A1–A4. For every X ⊆ R,
A ∈ R, and a ∈ AR�A, if II has a strategy in K [a,A] to reach X , then I has a
strategy in K [a,A] to reach X .

A proof of Proposition 3.14 for selective topological Ramsey spaces ([2, Definition
5.4]) was provided in [2]. We shall use the idea presented in [4] to instead prove
Lemma 5.5 of [2] using a semiselectivity argument.

Definition 3.15. Let A ∈ R and a ∈ AR�A.

(1) A family of subsets �D = {Db}b∈AR�[a,A] is dense open below [a,A] if for
all b ∈ AR�[a,A], Db is a ≤-downward closed subset of [b,A], and for all
B ∈ [b,A], there exists some C ∈ [b, B] such that C ∈ Db .

(2) Let �D = {Db}b∈AR�[a,A] be dense open below [a,A]. We say that B ∈ [a,A]
diagonalises �D if for all b ∈ AR�[a, B], there exists some Ab ∈ Db such that
[b, B] ⊆ [b,Ab].

Lemma 3.16. If (R,≤, r) is an A2-space, then every family of subsets
�D = {Db}b∈AR�[a,A], which is dense open below [a,A] has a diagonalisation.

In other words, Lemma 3.16 asserts that R is a “semiselective coideal.”

Proof. Fix some A ∈ R and a ∈ AR�A. Suppose that �D = {Db}b∈AR�[a,A] is
dense open below [a,A]. We shall define a fusion sequence (An)n<� in [a,A], with
an+1 := rlh(a)+n+1(An), such that An+1 ∈ [an+1, An]: Let A0 := A, and suppose that
An has been defined. Let {bi : i < N} enumerate the set of all b ∈ AR�An such
that a 
 b and b ≤fin an+1. Let A0

n+1 := An. If Ain+1 ∈ [an+1, An] has been defined,
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14 CLEMENT YUNG

let Bn+1 ∈ Dbi be such that Bn+1 ∈ [bi , Ain+1], which exists as Dbi is dense open in
[bi , A]. By A3, we then let Ai+1

n+1 ∈ [an+1, A
i
n] such that [bi , Ai+1

n+1] ⊆ [bi , Bn+1]. We
complete the induction by letting An+1 := ANn+1. Let B be the limit of the fusion
sequence (An)n<� , and we have that B diagonalises �D. �

We are now ready to prove Proposition 3.14.

Lemma 3.17. Let (R,≤, r) be a closed triple satisfying A1–A4. Suppose that
f : [a,A] → rlh(a)+1[a,A] and g : [a,A] → [a,A] are two functions such that for all
B ≤ A:

(1) f(B) ∈ rlh(a)+1[a, B].
(2) g(B) ∈ [f(B), B].

We also say that these two functions f, g are suitable in [a,A]. Then there exists some
Ef,g ∈ [a,A] such that for all b ∈ rlh(a)+1[a,Ef,g ], there exists some B ∈ [a,A] such
that f(B) = b and [b,Ef,g ] ⊆ [b, g(B)].

Proof. For each b ∈ rlh(a)+1[a,A], we define

Db,0 := {D ∈ [b,A] : ∃B ∈ [a,A] s.t. f(B) = b ∧D ∈ [b, g(B)]},
Db,1 := {D ∈ [b,A] : ∀C ∈ [a,A], g(C ) ∈ [b,D] → g(C ) /∈ Db,0}.

Let Db := Db,0 ∪ Db,1. Observe that Db is dense open in [b,A]: Clearly both Db,0 and
Db,1 are open. If D ∈ [b,A] and D /∈ Db,1, then there exists some C ∈ [a,A] such
that g(C ) ∈ [b,D]. Then g(C ) ≤ D and g(C ) ∈ Db,0, so Db is dense.

By Lemma 3.16, there exists some D ∈ [a,A] diagonalising (Db)b∈AR�[a,A]. Now
let

O0 := {b ∈ rlh(a)+1[a,D] : ∃B ∈ Db,0 [b,D] ⊆ [b, B]},
O1 := {b ∈ rlh(a)+1[a,D] : ∃B ∈ Db,1 [b,D] ⊆ [b, B]}.

By A4, there exists some Ef,g ∈ [a,D] such that rlh(a)+1[a,Ef,g ] ⊆ O0 or
rlh(a)+1[a,Ef,g ] ⊆ O1. However, we see that the latter case is not possible: In
this case, we let b := f(Ef,g). Then b ∈ rlh(a)+1[a,Ef,g ] ⊆ O1, so let B ∈ Db,1 such
that [b,D] ⊆ [b, B]. Then g(Ef,g) ∈ [b,Ef,g ] ⊆ [b,D] ⊆ [b, B], so g(Ef,g) /∈ Db,0.
But g(Ef,g) ∈ [b, B], so this implies that f(Ef,g) �= b, a contradiction.

We shall show that Ef,g works. Let b ∈ rlh(a)+1[a,Ef,g ]. Then b ∈ O0, so there
exists some B ∈ Db,0 such that f(B) = b and [b,Ef,g ] ⊆ [b,D] ⊆ [b, g(B)], as
desired. �

Proof of Proposition 3.14. Let � be a strategy for II in K [a,A] to reach X . We
shall construct a strategy � for I in K [a,A] to reach X as follows: We shall assign a
state s (for II) in K [a,A] following �, to a state ts (for II) in K [a,A], following �,
such that:

(1) a(s) = a(ts).
(2) last(s) ≤ last(ts).
(3) If s ′ 
 s , then ts′ 
 ts .

We begin by defining t∅ := ∅. Now suppose that s is a state (for II) in K [a,A]
following � so far. We define the functions fs, gs by stipulating that for all
B ∈ [a(ts), last(ts)], (fs(B), gs(B)) := �(ts�B). Observe that fs, gs are suitable
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wA2-SPACES, THE KASTANAS GAME, AND STRATEGICALLY RAMSEY SETS 15

in [a(s), last(s)] (when restricted to [a(s), last(s)]), so by Lemma 3.17 there
exists some Es ∈ [a(s), last(s)] such that for all b ∈ rlh(a(s))+1[a(s), Es ], there
exists some Bs,b ∈ [a(s), last(s)] such that fs(Bs,b) = b and [b,Es ] ⊆ [b, g(Bs,b)].
Thus, we define �(s) := Es ∈ [a(s), last(s)], and for all b ∈ rlh(a(s))+1[a(s), Es ] and
C ∈ [b,Es ], define

ts�(b,C ) := ts�(b, g(Bs,b)).

Clearly, (1) and (3) of the induction hypothesis are satisfied. (2) is also satisfied, as

last(s) = C ∈ [b,Es ] ⊆ [b, g(Bs,b)].

This completes the induction. Since every total state following � corresponds to a
total state following � with the same outcome, � is a strategy for I to reach X . �

Combined with Proposition 3.6, we get the following.

Corollary 3.18. Let (R,≤, r) be a closed triple satisfying A1–A4. Then the set
of (Kastanas) Ramsey subsets of R forms a �-algebra.

§4. Kastanas Ramsey sets and the projective hierarchy. Given a wA2-space (R,≤,
r), if AR is countable then the metrisable topology is Polish, allowing us to discuss
the projective hierarchy on R. We discuss some relationships between Kastanas
Ramsey sets and sets in the projective hierarchy.

4.1. Projective hierarchy. In this section, we prove a general relationship between
Kastanas Ramsey sets and sets in the projective hierarchy, which, in particular, gives
a proof of Theorem 1.2.

Given a wA2-space (R,≤, r), we shall construct another wA2-space (R× 2�,�,
r) as follows:

(1) A(R× 2�) :=
⋃
n<� ARn × 2n.

(2) Given (A, u) ∈ R× 2� , let rn(A, x) := (rn(A), u�n). Thus, if (a, p) ∈ A(R×
2�), then lh(a, p) = lh(a) = |p|.

(3) We define a�fin onA(R× 2�) by stipulating that (a, p) �fin (b, q) iff a ≤fin b.
(4) Given (A, u), (B, v) ∈ R× 2� , we write

(A, u) � (B, v) ⇐⇒ ∀n ∃m[rn(A, u) �fin rm(B, v)].

We remark that � is never a partial order. For instance, if a ∈ AR2, then
(a, (0, 1)) �fin (a, (1, 0)) and (a, (1, 0)) �fin (a, (0, 1)), but (a, (0, 1)) �= (a, (1, 0)).

Lemma 4.1. Let (R,≤, r) be a wA2-space (resp., A2-space). Then the closed triple
(R× 2�,�, r) defined above is a wA2-space (resp., A2-space) which has a biasymptotic
set.

Proof. It is easy to verify that (R× 2�,�, r) satisfies A1, wA2 (resp., A2), and
A3. A biasymptotic set would be

O = {(a, p) ∈ A(R× 2�) : |p| > 0 ∧ p(|p| – 1) = 1}. �
Let �0 : R× 2� → R denote the projection to the first coordinate, which is a

surjective map which respects ≤ (i.e., if (A,p) � (B, q) then �0(A,p) ≤ �0(B, q)).
We also use �0 to denote the infinite tuple of zeroes (0, 0, 0, ... ) ∈ 2� .
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16 CLEMENT YUNG

Lemma 4.2. Let (R,≤, r) be a wA2-space. Let C ⊆ R× 2� be a subset. LetA ∈ R
and a ∈ AR�A. If II has a strategy inK [(a, p), (A, �0)] to reach C for some p ∈ 2lh(a),
then II has a strategy in K [a,A] to reach �0[C].

Proof. If� is a strategy for II inK [(a, p), (A, �0)] to reach C, then the strategy � for
II in K [a,A] defined by �(A0, ... , An–1) := (b, B), where �((A0, �0), ... , (An–1, �0)) =
((b, p), (B, u)) for some p, u, is a strategy to reach �0[C]. �

Lemma 4.3. Let (R,≤, r) be a wA2-space. Let C ⊆ R× 2� be a subset. LetA ∈ R
and a ∈ AR�A. If for all p ∈ 2lh(a) and B ∈ [a,A], there exists some C ∈ [a, B] such
that I has a strategy in K [(a, p), (C, �0)] to reach Cc , then I has a strategy in K [a,A]
to reach �0[C]c .

Proof. We shall construct a strategy � for I in K [a,A] to reach �0[C]c . Let
{pk : k < 2lh(a)} enumerate the set 2lh(a). We define a decreasing sequence C0 ≥
C1 ≥ ···C 0

2lh(a)–1
as follows: Let �p0 be the strategy for I inK [(a, p0), (A, �0)] to reach

Cc , and letC0 := �p0(∅). We also defineBp0 := A. Suppose thatA0
k has been defined.

By the hypothesis, there exists some Bpk+1 ∈ [a,Ck] such that I has a strategy in
K [(a, pk+1), (Bpk+1 ,

�0)] to reach Cc . Now let Ck+1 := �pk+1(∅). Having constructed
the above sequence, we now define �(∅) := C2lh(a)–1.

Note that we may assume that for all partial states t of K [(a, p), (Bp, �0)] for II,
�p(t) = (B, �0) for someB ∈ R. Now let s be a partial state ofK [a,A] for II following
� so far, and rank(s) = n, and assume that �(s) has been defined. Suppose for the
induction hypothesis that we have a set {ts,q : q ∈ 2lh(a)+n} such that:

(1) ts,q is a partial state of K [(a, q� lh(a)), (Bq� lh(a), �0)] following �q� lh(a) with
a(ts,q) = (a(s), q).

(2) If �q� lh(a)(ts,q) = (As,q, �0), then �(s) ∈ [a(s), As,q].

Note that for the base case, for each p ∈ 2lh(k) we let t∅,a be the empty state of the
gameK [(a, p), (Bp, �0)]. For each an+1 ∈ rlh(a(s))+1[a(s), �(s)] andBn ∈ [an+1, �(s)],
Let {qk : k < 2lh(a)+n+1} enumerate the set 2lh(a)+n+1, and for each k we let q′k :=
qk�(lh(a) + n) and pk := qk� lh(a) (which differs from the enumeration in the first
paragraph, but it doesn’t matter). We define a decreasing sequenceD0 ≥ D1 ≥ ··· ≥
D2lh(a)+n+1–1 as follows: LetD0 := �p0(ts,q′0

�((an+1, q0), (Bn, �0))). Assuming thatDk
has been defined, we let Dk+1 := �pk (ts,q′

k

�((an+1, qk), (Dk, �0))). Note that by the
induction hypothesis, all the partial states listed above are legal. We conclude the
construction of � by asserting that �(s�(an+1, Bn)) := D2lh(a)+n+1–1.

We shall now show that � is a strategy for I in K [a,A] to reach �0[C]c .
If not, then there exists some complete play K [a,A] following � such that II
plays (a1, B0, a2, B1, ... ), and C := limn→∞ an ∈ �0[C]. In particular, we have that
(C, x) ∈ C for some x ∈ 2� . For each n, let qn := x�(lh(a) + n) and let p := q0. By
our construction of �, there exists a complete play of the game K [(a, p), (Bp, �0)]
following �p such that II plays ((a1, q1), (B0, �0), (a2, q2), (B1, �0), ... ). But since �p
is a strategy for I in K [(a, p), (A, �0)] to reach Cc , we have that (C, x) ∈ Cc , a
contradiction. �

These two lemmas lead us to the following results.
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wA2-SPACES, THE KASTANAS GAME, AND STRATEGICALLY RAMSEY SETS 17

Theorem 4.4. Let (R,≤, r) be a wA2-space. If C ⊆ R× 2� is Kastanas Ramsey,
then �0[C] ⊆ R is Kastanas Ramsey.

Theorem 4.5. Let (R,≤, r) be a wA2-space, and assume that AR is countable.

(1) Every analytic subset of R is Kastanas Ramsey.
(2) If every coanalytic subset of R× 2� is Kastanas Ramsey, then every Σ1

2 subset
of R is Kastanas Ramsey. More generally, for every n ≥ 1, if every Π1

n subset of
R× 2� is Kastanas Ramsey, then every Σ1

n+1 subset of R is Kastanas Ramsey.

See also [1, Theorem IV.4.14]. We remark that one may alternatively prove that
every analytic subset of R is Kastanas Ramsey using Lemma 3.5, and follow an
argument similar to the proof of Theorem 5 of [12].

This also allows us to extend Corollary 3.18.

Corollary 4.6. Suppose that (R,≤, r) is a closed triple satisfying A1–A4 and
assume that AR is countable. If X ⊆ R is in the smallest algebra of subsets of R
containing all analytic sets, then X is Ramsey.

Proof. The set of Ramsey subsets of R is closed under complements by
definition. By Proposition 3.6, the set of Ramsey subsets of R is closed under
countable intersections, so it forms a �-algebra. By Theorems 1.1 and 1.2, every
analytic subset of R is contained in this �-algebra. �

We remark that the abstract Rosendal theorem in [11] uses a similar approach to
prove that every analytic subset of X� of a Gowers space is strategically Ramsey,
where given a Gowers space, de Rancourt constructed a second Gowers space which
equips a binary sequence along with elements of X.

4.2. Σ1
2 well ordering. We dedicate this section to showing that Theorem 1.2 is

consistently optimal for a family of sufficiently well-behaved wA2-space.

Definition 4.7. Let (R,≤, r) be a wA2-space. We say that R is deep if for all
A ∈ R, a ∈ AR�A and N < �, there exists some B ∈ [a,A] such that for all b ∈
rlh(a)+1[a, B], depthA(b) ≥ N .

We shall see later in the proof of Corollary 4.18 that all examples of wA2-spaces
introduced in Section 2.2, except for the singleton space (Example 2.9), are deep. The
singleton space is not deep as deepness implies that for allA ∈ R and a ∈ AR�[a,A],
rlh(a)+1[a,A] is infinite. We do not know if there are any “natural” examples of wA2-
spaces which are not deep.

The main theorem of this section is as follows.

Theorem 4.8. Let (R,≤, r) be a deep wA2-space, and assume thatAR is countable.
Suppose that there exists a Σ1

2-good well-ordering of the reals. Then there exists a Σ1
2

subset of R which is not Kastanas Ramsey.

See also Theorem IV.7.4 of [1]. Observing that if (R,≤, r) is deep, then so is
(R× 2�,�, r), we obtain the following corollary.

Corollary 4.9. Let (R,≤, r) be a deep wA2-space, and assume that AR is
countable. Then there exists a coanalytic subset of R× 2� which is not Kastanas
Ramsey.
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18 CLEMENT YUNG

We now furnish a proof of Theorem 4.8. We shall now introduce two related
games, which serve as a “reduction” of the Kastanas game for each player.

Definition 4.10. Let (R,≤, r) be a wA2-space. Let A ∈ R and a ∈ AR�A. The
fusion game played below [a,A], denoted as Z[a,A], is defined as a game played by
Players I and II in the following form:

Turn I II
1 A0 ∈ [a,A]

a1 ∈ rlh(a)+1[a,A0]
2 A1 ∈ [a1, A0]

a2 ∈ rlh(a1)+1[a1, A1]
3 A2 ∈ [a2, A1]

a3 ∈ rlh(a2)+1[a2, A2]
...

...
...

The outcome of this game is limn→∞ an ∈ R. We say that I (resp., II) has a strategy
in Z[a,A] to reach X ⊆ R if it has a strategy in Z[a,A] to ensure that the outcome
is in X .

The following lemma, which roughly states thatZ[a,A] is a “reduction” ofK [a,A]
for I, is obvious.

Lemma 4.11. Let (R,≤, r) be a wA2-space. For any A ∈ R and a ∈ AR, if I has
a strategy in K [a,A] to reach X , then I has a strategy in Z[a,A] to reach X .

Similar to the game in Definition IV.7.2 of [1], it is possible to modify the fusion
game to ensure that the set of all partial states is countable.

Definition 4.12. Let (R,≤, r) be a wA2-space. Let A ∈ R and a ∈ AR�A. The
game Z∗[a,A] is defined as a game played by Players I and II in the following form:

(1) Player I begin by playing some b0
1 ∈ rlh(a)+1[a,A].

(2) Player II may choose to either respond with some a1 ∈ {b ∈ rlh(a)+1[a,A] :
b ≤fin b

0
1}, or not respond, in which case I plays some b1

1 ∈ rlh(b0
1 )+1[b0

1 , A].

(3) Repeat (2) until II chooses to respond with some a1 ∈ {b ∈ rlh(a)+1[a,A] :
b ≤fin b

k
1 } for some k. Then I responds by playing some b0

2 ∈ rlh(a1)+1[a1, A].
(4) Again, Player II may choose to either respond with some a2 ∈ {b ∈
rlh(a1)+1[a,A] : b ≤fin b

0
2}, or not respond, in which case I plays some b1

2 ∈
rlh(b0

2 )+1[b0
2 , A].

(5) Repeat.

The outcome of this game is limn→∞ an. We say that I has a strategy in Z∗[a,A] to
reach X ⊆ R if either limn→∞ an /∈ R (i.e., II stops playing after some finite stage),
or I has a strategy in Z[a,A] to ensure that the outcome is in X . II has a strategy in
Z∗[a,A] to reach X ⊆ R if limn→∞ an ∈ X .

It is also easy to see that this gives us another reduction for I.
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wA2-SPACES, THE KASTANAS GAME, AND STRATEGICALLY RAMSEY SETS 19

Lemma 4.13. Let (R,≤, r) be a wA2-space. For any A ∈ R and a ∈ AR, if I has
a strategy in Z[a,A] to reach X , then I has a strategy in Z∗[a,A] to reach X .

We shall now introduce the reduction of K [a,A] for II.

Definition 4.14. Let (R,≤, r) be a wA2-space. The subasymptotic game played
below [a,A], denoted as Y [a,A], is defined as a game played by Players I and II in
the following form:

Turn I II
1 n0 < �

a1 ∈ rlh(a)+1[a,A] s.t. depthA(a1) ≥ n0

2 n1 < �
a2 ∈ rlh(a1)+1[a1, A] s.t. depthA(a2) ≥ n1

3 n2 < �
a3 ∈ rlh(a2)+1[a2, A] s.t. depthA(a3) ≥ n2

...
...

...

The outcome of this game is limn→∞ an ∈ R. We say that I (resp., II) has a strategy
in Y [a,A] to reach X ⊆ R if it has a strategy in Y [a,A] to ensure that the outcome
is in X .

Lemma 4.15. Let (R,≤, r) be a deep wA2-space. For any A ∈ R and a ∈ AR, if
II has a strategy in K [a,A] to reach X , then II has a strategy in Y [a,A] to reach X .

Proof. We first note that since R is deep, it is always possible for II to respond
with a legal move in Y [a,A]. The deepness of R also allows us to view Y [a,A]
as a “special case” of K [a,A]: In K [a,A], if II responded with (ak, Bk–1), and I
wants to restrict the next response by II such that depthA(ak+1) ≥ nk for some
nk < �, then I can respond to (ak, Bk–1) by playing any Ak ∈ [ak, Bk–1] such that
for all b ∈ rlh(ak )+1[ak, Ak], depthA(b) ≥ nk . Therefore, a strategy for II in K [a,A]
to reach X may be passed to a strategy for II in Y [a,A] to reach X . �

Definition 4.16. Let (R,≤, r) be a wA2-space. A set X ⊆ R is pre-Kastanas
Ramsey if for all A ∈ R and a ∈ AR�A, there exists some B ∈ [a,A] such that one
of the following holds:

(1) I has a strategy in Z∗[a, B] to reach X c .
(2) II has a strategy in Y [a, B] to reach X .

It is clear from the definition that every Kastanas Ramsey set is pre-Kastanas
Ramsey.

Proof of Theorem 4.8. It suffices to construct a Σ1
2 subset of R which is not

pre-Kastanas Ramsey. Define the following two sets:

SI := {(a,A, �) : a ∈ AR�A ∧ � is a strategy for I in Z∗[a,A]},
SII := {(a,A, �) : a ∈ AR�A ∧ � is a strategy for II in Y [a,A]}.

Note that a strategy in a game is a function from the set of partial states of the game
to a play of the game. SinceAR is countable, the sets of partial states ofZ∗[a,A] and
of Y [a,A] are also countable, and in both games all players play from a countable
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20 CLEMENT YUNG

set. Therefore, we may naturally embed both sets SI and SII to the reals, giving us a
Σ1

2-well ordering ≺s of SI and SII. Note that ≺s is of order-type �1, so every triple
in SI ∪ SII has countably many ≺s -predecessors.

Given a triple (a,A, �) ∈ SI ∪ SII, we build Ba,A,� ∈ R by an increasing sequence
a = b0 
 b1 
 ··· with lh(bn) = lh(a) + n, and letBa,A,� := limn→∞ bn. We consider
two cases.

(1) If (a,A, �) ∈ SI, then we shall construct some Ba,A,� ∈ R such that Ba,A,�
is the outcome of some full play in Z∗[a,A], with I following �, and that
Ba,A,� �= Ba′,A′,�′ for all (a′, A′, �′) ≺s (a,A, �). We do this as follows: We
first enumerate the ≺s -predecessors by {(an, An, �n) : n < �}. Following
a play in Z∗[a,A] where I follows �, suppose that I started the nth turn
with Bn ∈ [bn, A]. If bn �= rlh(a)+n(Ban,An,�n ) or Ban,An,�n �≤ A, then pick any
bn+1 ∈ rlh(a)+n+1[bn, Bn]. Otherwise, since R is deep we may pick some bn+1 ∈
rlh(a)+n+1[bn, Bn] such that depthA(bn+1) > depthA(rlh(a)+n+1(Ban,An,�n )).
This construction ensures that Ba,A,� �= Ban,An,�n for all n < �.

(2) If (a,A, �) ∈ SII, then we shall construct some Ba,A,� ∈ R such that Ba,A,�
is the outcome of some full play in Y [a,A], with II following �, and that
Ba,A,� �= Ba′,A′,�′ for all (a′, A′, �′) ≺s (a,A, �). We do this as follows: Again,
we enumerate the ≺s -predecessors by {(an, An, �n) : n < �}. Following a
play in Y [a,A] where II follows �, suppose that the sequence bn has
been played so far. If Ban,An,�n ≤ A, we then ask that I respond with
depthA(rlh(a)+n+1(Ban,An,�n )) + 1, so that for any bn+1 that II respond with
next, bn+1 �= rlh(a)+n+1(Ban,An,�n )). Otherwise, I may respond with any k < �.
This construction ensures that Ba,A,� �= Ban,An,�n for all n < �.

Now let

X := {Ba,A,� : (a,A, �) ∈ SI}.

X is Σ1
2, as the well-ordering ≺s is Σ1

2 and the construction of X is natural from ≺s .
We then see that X is not pre-Kastanas Ramsey: Let A ∈ R and a ∈ AR.

(1) If � is a strategy for I inZ∗[a,A], thenBa,A,� is the outcome of a run following
� such that Ba,A,� /∈ X c , so � is not a winning strategy for I.

(2) If � is a strategy for II inY [a,A], thenBa,A,� is the outcome of a run following
� such that Ba,A,� /∈ X , so � is not a winning strategy for II.

This completes the proof. �
We remark that the set {Ba,A,� : (a,A, �) ∈ SI} would similarly produce a Π1

2
subset of R that is not pre-Kastanas Ramsey. Since such a well-ordering exists in
Gödel’s constructible universe, we may conclude the following.

Corollary 4.17 (V = L). Let (R,≤, r) be a deep wA2-space, and assume that
AR is countable. Then there exists a Σ1

2 subset of R which is not Kastanas Ramsey.

Corollary 4.18 (V = L). The following wA2-spaces have a Σ1
2 subset which is not

Kastanas Ramsey:

(1) ([N]∞,⊆, r).
(2) (FIN[∞]

k ,≤, r), the topological Ramsey space of infinite block sequences.
(3) (FIN[∞]

±k ,≤, r), a variant of the space of infinite block sequences.
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(4) (W [∞]
Lv ,≤, r), the Hales–Jewett space.

(5) (S∞,⊆, r), the topological Ramsey space of strong subtrees.
(6) (E∞,≤, r), the Carlson–Simpson space.
(7) (E [∞],≤, r), the space of infinite-dimensional block subspaces of a countable

vector space.

Proof. By Corollary 4.17, it suffices to show that every wA2-space above is deep.

(1) LetA = {n0, n1, ... } ∈ [N]∞, and let a ⊆ A be finite. For all N such that nN >
max(a), we have that depthA(a ∪ {nN–1}) = N . Therefore, a ∪ {nN–1} ∈
rlh(a)+1[a,A] and depthA(a ∪ {nN–1}) ≥ N .

(2) Let A = (x0, x1, ... ) ∈ FIN[∞]
k , and let a ∈ FIN[<∞]

k �A. For all N such
that xN > a, we have that depthA(a�xN–1) = N . Therefore, a�xN–1 ∈
rlh(a)+1[a,A] and depthA(a�xN–1) ≥ N .

(3) The proof is identical to that of (FIN[∞]
k ,≤, r).

(4) Let A = (x0, x1, ... ) ∈W [∞]
Lv , and let a = (yi)i<n ∈W [<∞]

Lv �A. Since A is
rapidly increasing, for N large enough we have that

∑
i<n |yi | < |xN |.

Therefore, a�xN ∈ rlh(a)+1[a,A] and depthA(a�xN ) ≥ N .
(5) Let A ⊆ T be a strong subtree. Given any a ∈ S<∞�A, we let Sa be the set of

terminal nodes in a. Since a is a strong subtree, Sa ⊆ splitN (A) for some N.
We observe that

depthA(a) = N ⇐⇒ Sa ⊆ splitN (A).

Fix any a ∈ S<∞�A and N < � be large enough. For each s ∈ Sa , let
ts,0, ts,1 ∈ splitN (A) be such that s 
 ts,0, s 
 ts,1 and ts,0 �= ts,1. We let

b := {u ∈ A : u 
 ts,i for some s ∈ Sa and i ∈ {0, 1}}.

Observe that a is an initial segment of b, and every terminal node in a splits
in b. Thus, b ∈ rlh(a)+1[a,A] and depthA(b) = N .

(6) Let A ∈ E∞, and let a ∈ AE∞�A. Let {pn(A) : n < �} be the increasing
enumeration of the minimal representatives of A. GivenN > m := depthA(a),
we define the equivalence relation b on {0, 1, ... , pN (A) – 1} as follows: Given
i, j ∈ N, we define

(i, j) ∈ b ⇐⇒
{

(i, j) ∈ A and (i ∈ dom(a) or j ∈ dom(a)), or;
(i /∈ dom(a) and j /∈ dom(a)).

We shall show that b ∈ rlh(a)+1[a,A] and depthA(b) = N .
Given i, j < pN (A) such that (i, j) ∈ A, if i ∈ dom(a) or j ∈ dom(a) then

(i, j) ∈ b. Otherwise, (i, j) ∈ b as well. Therefore, b is an equivalence relation
on dom(rN (A)) which is coarser than A, so b ≤fin rN (A). To see that a 
 b—
if i, j ∈ dom(a) and (i, j) ∈ b, then (i, j) ∈ A, so (i, j) ∈ a as a is coarser
than A. Finally, the equivalence classes in b are either of the form [i ]b for
some i ∈ dom(a) (of which (i, j) /∈ a implies that [i ]b �= [j]b), or [i ]b for
any i /∈ dom(a) (of which [i ]b = [j]b for all i, j /∈ dom(a)). Therefore, b has
lh(a) + 1 many equivalence classes, i.e., b ∈ rlh(a)+1[a,A].

(7) The proof is identical to that of (FIN[∞]
k ,≤, r). �
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22 CLEMENT YUNG

§5. Strategically Ramsey sets and Gowers spaces.

5.1. Gowers spaces. de Rancourt first introduced Gowers spaces in [11] as a
common abstraction to the topological Ramsey space [N]∞ (i.e., the Ellentuck
space or Mathias–Silver space) and countable vector spaces (i.e., Rosendal space).
We recall the definition.

Definition 5.1 [11, Definition 2.1]. A Gowers space is a quintuple (P,X,≤,
≤∗,�), where P �= ∅ is the set of subspaces, X �= ∅ is at most countable (the set
of points), ≤,≤∗ are two quasi-orders on P, and � ⊆ X<� × P is a binary relation,
satisfying the following properties:

(1) For all p, q ∈ P, if p ≤ q, then p ≤∗ q.
(2) For all p, q ∈ P, if p ≤∗ q, then there exists some r ∈ P such that r ≤ p,
r ≤ q, and p ≤∗ r.

(3) For every ≤-decreasing sequence (pn)n<� of P, there exists some p∗ ∈ P such
that p∗ ≤∗ pn for all n < �.

(4) For all p ∈ P and s ∈ X<� , there exists some x ∈ X such that s�x � p.
(5) For all s ∈ X<� and p, q ∈ P, if s � p and p ≤ q, then s � q.

Given p, q ∈ P, we also write p � q iff p ≤ q and q ≤∗ p.

de Rancourt proceeded to introduce various games in this abstract setting. We
hereby provide a summary of the games we’re interested in. Note that we have
employed some changes in the names/notations of the game.

Definition 5.2 [11, Definition 2.2]. For each p ∈ P, the adversarial Gowers game
AG(p) is defined as a game played by Players I and II in the following form:

I x0, q0 x1, q1 ···
II p0 y0, p1 y1, p2 ···

such that xn, yn ∈ X and pn, qn ∈ P for all n, and that the following additional
condition must be fulfilled for all n < �:

(1) (x0, y0, ... , xn–1, yn–1, xn) � pn.
(2) (x0, y0, ... , xn, yn) � qn.
(3) pn ≤ p and qn ≤ p.

The outcome of this game is (x0, y0, x1, y1, ... ). We say that I (resp., II) has a strategy
in K(p) to reach X ⊆ X� if it has a strategy in K(p) to ensure that the outcome is
in X .

Definition 5.3 [11, Definition 2.2]. For each p ∈ P, the adversarial Gowers game
for I AGI(p) (resp., for II AGII(p)) is the gameAG(p) with the following additional
restrictions:

(1) For AGI(p), I can only play qn such that qn � p.
(2) For AGI(p), II can only play pn such that pn � p.

Definition 5.4 [11, Definition 2.5]. For each p ∈ P, the de Rancourt game R(p)
is the game AG(p) with the following additional restriction:

(1) For all n < �, qn ≤ pn and pn+1 ≤ qn.
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Definition 5.5 [11, Definition 3.1]. For each p ∈ P, the Gowers game G(p) is
defined as a game played by Players I and II in the following form:

I p0 p1 ···
II x0 x1 ···

such that xn ∈ X and pn ∈ P for all n, and that the following additional condition
must be fulfilled for all n < �:

(1) (x0, ... , xn) � pn.
(2) pn ≤ p.

The outcome of this game is (x0, x1, ... ). We say that I (resp., II) has a strategy
in K(p) to reach X ⊆ X� if it has a strategy in K(p) to ensure that the outcome
is in X .

Definition 5.6 [11, Definition 3.1]. For each p ∈ P, the asymptotic game F (p)
is the game G(p) with the following additional restriction:

(1) For all n < �, pn � p.

We now introduce several variants of game-theoretic Ramsey properties.

Definition 5.7 [11, Definition 2.3]. A set X ⊆ X� is adversarially Ramsey if for
all p ∈ P, there exists some q ≤ p such that one of the following holds:

(1) I has a strategy in AGI(q) to reach X .
(2) II has a strategy in AGII(q) to reach X c .
Definition 5.8 [11, Definition 3.2]. A set X ⊆ X� is strategically Ramsey if for

all p ∈ P, there exists some q ≤ p such that one of the following holds:
(1) I has a strategy in F (q) to reach X c .
(2) II has a strategy in G(q) to reach X .

Definition 5.9. A setX ⊆ X� is de Rancourt Ramsey if for all p ∈ P, there exists
some q ≤ p such that one of the following holds:

(1) I has a strategy in R(q) to reach X .
(2) II has a strategy in R(q) to reach X c .
Proposition 5.10. Let p ∈ P and X ⊆ X� .
(1) I has a strategy in R(q) to reach X for some q ≤ p iff there exists some q ≤ p

such that I has a strategy in AGI(q) to reach X .
(2) II has a strategy in R(q) to reach X for some q ≤ p iff there exists some q ≤ p

such that II has a strategy in AGII(q) to reach X .

Proof. The forward direction for both statements has been proven in Proposition
2.6 of [11], so we only prove the converse for (1) (the proof for the converse for (2)
is almost verbatim). Suppose � is a strategy for I in AGI(p) to reach X , and we
define a strategy � for I in R(p). For each state s for II of R(p) following �, we
shall correspond it to a state ts for II of AGI(p) realising a(s). Start by letting
t(p0) := (p0) for any p0 ≤ p. Now let s be a state of R(p) for II following � so
far, with s = s ′�(yn, pn+1). Suppose by the induction hypothesis that there exists a
corresponding state ts of the game AGI(p) such that:
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24 CLEMENT YUNG

(1) a(s ′) = a(ts′);
(2) �(ts′) = (xn, q′n) for some q′n � p.

Now let ts := ts′�(yn, pn+1), and suppose �(ts) = (xn+1, q
′
n+1) for some q′n+1 � p.

Since pn+1 ≤ p, by Property (2) of Definition 5.1 there exists some qn+1 ≤ pn+1

such that qn+1 ≤ q′n+1. Then �(s) := (xn+1, pn+1) is a legal continuation. This
completes the inductive definition of �, which is a winning strategy as every complete
play following � corresponds to a complete play following � realising the same
sequence. �

5.2. The Kastanas game. We now introduce (our version of) the Kastanas game
for Gowers spaces.

Definition 5.11 [11, Definition 2.5]. For each p ∈ P, the Kastanas game K(p)
is defined as a game played by Players I and II in the following form:

I p0 p1 p2 ···
II x0, q0 x1, q1 ···

such thatxn ∈ X andpn, qn ∈ P for all n, and that the following additional condition
must be fulfilled for all n < �:

(1) (x0, ... , xn) � pn.
(2) qn ≤ pn and pn+1 ≤ qn.

The outcome of this game is (x0, x1, ... ). We say that I (resp., II) has a strategy
in K(p) to reach X ⊆ X� if it has a strategy in K(p) to ensure that the outcome
is in X .

Definition 5.12. A set X ⊆ X� is Kastanas Ramsey if for all p ∈ P, there exists
some q ≤ p such that one of the following holds:

(1) I has a strategy in K(q) to reach X c .
(2) II has a strategy in K(q) to reach X .

Proposition 5.13. A subset X ⊆ X� is Kastanas Ramsey iff X is strategically
Ramsey [11, Definition 3.2].

We shall prove this proposition as a corollary of Proposition 5.10.

Proof. We let (P,X,≤,≤∗,�) be a Gowers space, and assume WLOG
that 0 /∈ X . We then define a relation � ⊆ (X ∪ {0})<� × P such that for all
s ∈ (X ∪ {0})<� :

(1) If lh(s) is odd, then for all x ∈ X ∪ {0} and p ∈ P, s�x � P iff x = 0.
(2) If lh(s) is even, then for all x ∈ X ∪ {0} and p ∈ P, s�x � P iff x �= 0 and
s�x � P.

It is easy to verify that (P,X ∪ {0},≤,≤∗,�) is a Gowers space. We now define
an injective function f : X<� → (X ∪ {0})<� by

f((x0, ... , xn–1)) := (x0, 0, x1, 0 ... , xn–1, 0)
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and naturally extend f toX� → (X ∪ {0})� . Note that f is injective. For eachp ∈ P,
we also define the functions g, h by

g(p0, 0, p1, 0, p2, ... ) := (p0, p1, p2, ... ),

h(x0, q0, x1, q1, ... ) := (x0, x1, ... ).

We may now observe that:

(1) � is a strategy for I in K(p) to reach X iff:

s 
→
{
�(s), if s = ∅,
(0, �(s)), if s �= ∅

is a strategy for II in R(p) to reach f[X ].
(2) � is a strategy for II in K(p) to reach X iff � ◦ g is a strategy for I in R(p) to

reach f[X ].
(3) � is a strategy for I in F (p) to reach X iff:

s 
→
{

(� ◦ h)(s), if s = ∅,
(0, (� ◦ h)(s)), if s �= ∅

is a strategy for II in AGII(p) to reach f[X ].
(4) � is a strategy for II in G(p) to reach X iff s 
→ ((� ◦ g)(s), p) is a strategy

for I in AGI(p) to reach f[X ].

Therefore, the proposition follows from Proposition 5.10. �

5.3. Gowers wA2-spaces. We shall now reformulate the above result in the context
of wA2-spaces. In [9], Mijares introduced the notion of an almost reduction for spaces
satisfying A1–A4, which may be applied to wA2-spaces. We introduce a variant of
this almost reduction, restricted to a fixed initial segment.

Notation 5.14. Let (R,≤, r) be a wA2-space. Given A,B ∈ R and a ∈ AR, we
write A ≤∗

a B iff there exists some b ∈ AR�[a,A] such that [b,A] ⊆ [b, B].

Note that ≤∗
a need not be a transitive relation—counterexample would be the

topological Ramsey space of strong subtrees (which satisfies A1–A4). Note also that,
by A1, we may identify each element a ∈ AR with the sequence (rn(a))1≤n≤lh(a) ∈
AR<� .

Definition 5.15. Let (R,≤, r) be a wA2-space. We say that R is Gowers if there
exists a relation � ⊆ AR×R such that the following properties hold:

(G1-5) For all A ∈ R and a ∈ AR�A, ([a,A],AR�[a,A],≤,≤∗
a,�) is a Gowers

space (when identifying elements of AR with AR<�).
(G6) Let A,B ∈ R. Let a ∈ AR�A ∩ AR�B .

(1) [a,A] ⊆ [a, B] iff rn(A) � B for all n > depthA(a).
(2) If there exists some N such that rn(A) � B for alln ≥ N , thenA ≤∗

a B .
(G7) For all A ∈ R, a ∈ AR�A, and B ≤ A, there exists some C ∈

[depthA(a), A] such that for all b ∈ AR�[a,A], if b � C then b � B .

Example 5.16 (Natural numbers/Ellentuck space [N]∞). We show that ([N]∞,
⊆, r) is a Gowers wA2-space.
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26 CLEMENT YUNG

(G1-5) Let A ∈ [N]∞ and a ∈ [N]<∞�A. Note for all B,C ∈ [a,A], C ≤∗
a B

iff C \N ⊆ B for some N ≥ max(a). Given b = a ∪ {x|a|, ... , xn} ∈
[N]<∞�[a,A] and B ∈ [a,A], we define b � B iff xn ∈ B .
(1) Clearly C ⊆ B implies that C ≤∗

a B .
(2) If C ≤∗

a B , then there exists some n such thatD := a ∪ (C \ n) ⊆ B .
Then D ⊆ C , D ⊆ B, and C ≤∗

a D as (C \ a) \ (D \ a) ⊆ n.
(3) Let (Bn)n<� be a ⊆-decreasing sequence in [a,A], and let C ⊆ B0 \ a

be such thatC ⊆∗ Bn for all n. Then a ∪ C ∈ [a,A] and a ∪ C ≤∗
a Bn

for all n.
(4) Given B ∈ [a,A] and b ∈ [N]<∞�[a,A], b ∪ {x} � B for any x ∈ B

such that max(b) < x.
(5) If b = a ∪ {x0, ... , xn} ∈ [N]<∞�[a,A], b � C, andC ⊆ B , then xn ∈
C ⊆ B , so b � B .

(G6) Let A,B ∈ [N]∞ and b ∈ [N]<∞�[a,A] ∩ [N]<∞�[a, B]. We write A =
{x0, x1, ... } and m := depthA(a) (i.e., max(a) = xm–1).
(1) We have that:

[a,A] ⊆ [a, B]

⇐⇒ A \ max(a) ⊆ B
⇐⇒ xn ∈ B for all n ≥ m
⇐⇒ (x0, ... , xn) � B for all n ≥ depthA(a)

⇐⇒ rn(A) � B for all n > depthA(a).

(2) If {x0, ... , xn} � B for all n ≥ N > m, then we have that A \ (a ∪
{x|a|, ... , xN}) ⊆ B , so A ≤∗

a B .
(G7) Let A ∈ [N]∞, a ∈ [N]<∞�A, and B ⊆ A. Let m := depthA(a), and

let C := rm(A) ∪ (B \ max(a)). Then for all b ∈ [N]<∞[a,A], if b =
a ∪ {x|a|, ... , xn} and b � C , then xn > max(a) = max(rm(A)) and xn ∈
C ⊆ B , so c � B .

Example 5.17 (Countable vector space E [∞]). We show that (E [∞],≤, r) is a
Gowers wA2-space. Given some A = (xn)n<� ∈ E [∞], we denote A/N := (xn)n≥N .

(G1-5) Let A ∈ E [∞] and a ∈ E [<∞]�A. Note for all B,C ∈ [a,A], C ≤∗
a

B iff C/N ≤ B for some N ≥ lh(a). Given b = a�(x|a|, ... , xn) ∈
E [<∞]�[a,A] and B ∈ [a,A], we define b � B iff xn ∈ 〈B〉.
(1) Clearly C ≤ B implies that C ≤∗

a B .
(2) If C ≤∗

a B , then there exists some N ≥ lh(a) such that D :=
a�(C/N ) ≤ B . Then D ≤ C , D ≤ B, and C ≤∗

a D as C/(lh(a) +
N ) ≤ D.

(3) Let (Bn)n<� be a ≤-decreasing sequence in [a,A], and let C ≤
B0/ lh(a) be such that C ≤∗ Bn/ lh(a) for all n (C = (xn)n<� may be
constructed by picking xn ∈ 〈Bn〉). Then a�C ∈ [a,A] and a�C ≤∗

a

Bn for all n.
(4) Given B ∈ [a,A] and b ∈ E [<∞]�[a,A], b�x � B for any x ∈ B such

that max(b) < x.
(5) If b = a�(x|a|, ... , xn) ∈ E [<∞], b � C, andC ≤ B , then xn ∈ 〈C 〉 ⊆

〈B〉, so b � B .
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(G6) Let A,B ∈ E [∞] and b ∈ E [∞]�[a,A] ∩ E [∞]�[a, B]. We write A =
(x0, x1, ... ) and m := depthA(a).
(1) We have that:

[a,A] ⊆ [a, B]

⇐⇒ A/m ≤ B
⇐⇒ xn ∈ 〈B〉 for all n ≥ m
⇐⇒ (x0, ... , xn) � B for all n ≥ m
⇐⇒ rn(A) � B for all n > depthA(a).

(2) If (x0, ... , xn) � B for all n ≥ N > m, then we have that A/N ≤ B ,
so A ≤∗

a B .
(G7) Let A ∈ E [∞], a ∈ E [<∞]�A, and B ⊆ A. Let m := depthA(a), and

let C := rm(A)�(B/N ), where N > max(supp(a)). Then for all b ∈
E [∞][a,A], if b = a ∪ {x|a|, ... , xn} and b � C , then min(supp(xn)) >
max(supp(a)) = max(supp(rm(A))) and xn ∈ 〈C 〉 ⊆ 〈B〉, so c � B .

Theorem 5.18. Let (R,≤, r) be a Gowers wA2-space, and let X ⊆ R. Let A ∈ R
and a ∈ AR. The following are equivalent:

(1) I (resp., II) has a strategy in K [a,A] to reach X .
(2) I (resp., II) has a strategy in K(A) (as a game of the Gowers space

([a,A],AR�[a,A],≤,≤∗
a,�)) to reach X ∩ [a,A].

Proof. (1)=⇒(2), Player I: Let � be a strategy for I in K [a,A] to reach X . We
define a strategy � for I in K(A) as follows: Let s be a state for II in K(A) following
� so far, and suppose that s = s ′�(an, Bn–1), and we have defined a state ts′ for II
in K [a,A] such that a(s) = a(ts′) (i.e., they realise the same finite sequence so far),
and �(s ′) ≤ �(ts′). Note that for the base case, we define t∅ := ∅ and �(∅) := �(∅).

Since Bn ≤ �(s ′) ≤ �(ts′) and an 
 �(ts′), by G7 there exists some Cn–1 ∈
[an, �(ts′)] such that for all b ∈ AR�[an, Cn], if b � Cn–1 then b � Bn–1. We may
thus define the legal continuation ts := ts′�(an, Cn–1). Then by G6, �(ts) ≤ Cn–1 ≤∗

a

Bn–1, so by G2 (i.e., Property (2) of Definition 5.1) we may define �(s) ≤ Bn to be
such that �(s) ≤ �(ts). This completes the inductive definition of �, and it is a
winning strategy for I as every complete play s of K(A) following � induces a
complete play ts of K [a,A] following �, with the same outcome.

(1)=⇒(2), Player II: Let � be a strategy for II in K [a,A] to reach X . We define
a strategy � for II in K(A) as follows: Let s be a state for I in K(A) following �
so far, and suppose that s = s ′�(�(s ′), An), and we have defined a state ts′ for I in
K [a,A] such that a(s) = a(ts′) and Bn–1 ≤ Cn–1. Note that for the base case, we
define t(A0) := (A0) and �((A0)) := �((A0)).

We write �(s ′) = (an, Bn–1) and �(ts′) = (an, Cn–1). Since An ≤ Bn–1 ≤ Cn–1, by
G7 there exists some A′

n ∈ [an, Bn–1] such that for all b ∈ AR�[an, Bn–1], if b � A′
n

then b � An. We may thus define the legal continuation ts := ts′�(A′
n). By G7,

if �(ts′) = (an+1, Cn), then we may define �(s) = (an+1, Bn), where Bn ≤ An and
Bn ≤ Cn. This completes the inductive definition of �, and it is a winning strategy
for II as every complete play s of K(A) following � induces a complete play ts of
K [a,A] following �, with the same outcome.
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The proof of (2) =⇒ (1) for both players is similar but simpler, mostly using G7 to
make the necessary changes to the strategy. For instance, suppose that � is a strategy
for I in K(A) to reach X ∩ [a,A]. Suppose that in the game K [a,A], II responded
with (an, Bn–1), and � then responds with someA′

n ≤ Bn–1. By G7, we instead ask I to
respond with An ∈ [an, Bn–1] such that for all an+1 ∈ rlh(an)+1[an, Bn–1], if an+1 � An
then an+1 � A′

n. Then this modification gives I a strategy in K [a,A] to reach X . �

Alternatively, one may define the corresponding de Rancourt game for wA2-
spaces, then define a corresponding notion of de Rancourt Ramsey, and prove using
similar methods that the corresponding notion of de Rancourt Ramsey is equivalent
to that for Gowers spaces. Then Theorem 5.18 may be deduced using the maps g, h
defined in the proof of Proposition 5.13.

Consequently, we have the following immediate corollary.

Corollary 5.19. Let (R,≤, r) be a Gowers wA2-space, and let X ⊆ R. The
following are equivalent:

(1) X is Kastanas Ramsey (as in Definition 3.2).
(2) For all A ∈ R and a ∈ AR, X ∩ [a,A] is a Kastanas Ramsey subset of [a,A]

(as in Definition 3.2).
(3) For all A ∈ R and a ∈ AR, X ∩ [a,A] is a Kastanas Ramsey subset of [a,A]

(as in Definition 5.12 for the Gowers space ([a,A],AR�[a,A],≤,≤∗
a,�)).

Since a countable vector space E [∞] is a Gowers wA2-space with countable AR,
we may conclude all the following classical facts of strategically Ramsey sets.

Corollary 5.20. Let (E [∞],≤, r) be the wA2-space of infinite-dimensional block
subspaces of a countable vector space.

(1) X ⊆ E [∞] is Kastanas Ramsey (as in Definition 3.2) iff X is strategically
Ramsey (as in Definition 1 of [12]).

(2) Every analytic subset of E [∞] is strategically Ramsey.
(3) The set of strategically Ramsey subsets ofE [∞] is closed under countable unions,

but not under complement and finite intersection.

Proof.

(1) Combine Proposition 5.13 and Corollary 5.19.
(2) Combine Proposition 5.13 and Theorem 1.2.
(3) By Example 3.9, there is a biasymptotic subset of E [<∞]. �

5.4. Coanalytic sets. Combined with Proposition 5.13 and Theorem IV.7.5 of [1],
we get a positive answer to Question 2 in the context of a countable vector space.
This section shows that this is, in fact, a consequence of Corollary 4.9 and a suitable
choice of coding.

Let E be a vector space over a countable field with a dedicated Schauder basis
(en)n<� . Let Y ⊆ E be a biasymptotic set (i.e., for all A ∈ E [∞], 〈A〉 ∩ Y �= ∅ and
〈A〉 ∩ Yc �= ∅). We first define 	 : E → 2 by stipulating that:

	(x) :=

{
1, if x ∈ Y,
0, if x /∈ Y.
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Fix some a ∈ E [<∞] and p ∈ 2lh(a). LetE [<∞](a) denote the set of all b ∈ E [∞] such
that a 
 b. We now define a map Λa,p : E [<∞](a) → A(E [∞] × 2�) by stipulating
that:

Λa,p(a�(xk)k<n) := (a�(x2k)2k<n, p
�(	(x2k+1))2k+1<�).

We may then extend this function to a continuous map Λa,p : E [∞](a) → E [∞] ×
2� . By Corollary 5.20(1), we may replace Kastanas Ramsey sets with strategically
Ramsey sets in our discussion.

Lemma 5.21. Let C ⊆ E [∞] × 2� . Let A ∈ E [∞], a ∈ E [<∞]�A, and p ∈ 2lh(a).
Suppose that I has a strategy in F [a,A] to reach Λ–1

a,p[C]. Then I has a strategy in
F [(a, p), (A, �0)] to reach C.

Proof. Let � be a strategy for I in F [a,A] to reach Λ–1
a,p[C]. We define a strategy

� for I in F [(a, p), (A, �0)] as follows: We first let �(∅) := (�(∅), �0), and t∅ := ∅. Now
suppose, for the induction hypothesis, that for all states s of F [(a, p), (A, �0)] for II of
rank n, there exists a state ts of F [a,A] for II of rank 2n such that Λa,p(a(ts)) = a(s)
and �(s) = (�(ts), �0). Let s be a state for II of rank n + 1, and suppose that last(s) =
(xn, ε), where ε ∈ {0, 1}. We let ts := ts�n�(xn, yn), whereyn is any element of E such
thatyn ∈ Y iff ε = 1. Observe that Λa,p(a(ts)) = a(s). This finishes the construction
of the strategy �. Now let s be a complete play in F [(a, p), (A, �0)] following �. Since
� is a strategy that reaches Λ–1

a,p[C], A(ts) ∈ Λ–1
a,p[C], so

A(s) = Λa,p(A(ts)) ∈ Λa,p[Λ–1
a,p[C]] ⊆ C,

as desired. �
Lemma 5.22. Let C ⊆ E [∞] × 2� . Let A ∈ E [∞], a ∈ E [<∞]�A, and p ∈ 2lh(a).

Suppose that II has a strategy in G [a,A] to reach Λ–1
a,p[C]. Then II has a strategy in

G [(a, p), (A, �0)] to reach C.

Proof. Let � be a strategy for II inG [a,A] to reach Λ–1
a,p[C]. We define a strategy

� for II inG [(a, p), (A, �0)] as follows: For anyB ≤ A, we let t(B) := (B). Now let s be
a state of G [(a, p), (A, �0)] for I, and suppose that we have defined a corresponding
state ts ofG [a,A] of rank 2n such that Λa,p(a(ts)) = a(s), and last(s) = (last(ts), �0).
Let xn, yn be such that xn = �(ts) and yn = �(ts�(A)). We then let

�(s) :=

{
(xn, 1), if yn ∈ Y,
(xn, 0), if yn /∈ Y.

Now let ts�(B) := ts�(A,B). This finishes the construction of the strategy �, and
by a similar reasoning to the last paragraph of Lemma 5.21, � is a strategy for II in
G [(a, p), (A, �0)] to reach C. �

We thus obtain the following variant of Theorem 4.5.

Theorem 5.23 [1, Theorem IV.4.14]. If every coanalytic subset of E [∞] is
strategically Ramsey, then every Σ1

2 subset of E [∞] is strategically Ramsey. More
generally, for every n ≥ 1, if every Π1

n subset of E [∞] is strategically Ramsey, then
every Σ1

n+1 subset of E [∞] is strategically Ramsey.
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Proof. Suppose on the contrary that there exists a Σ1
n+1 non-strategically Ramsey

subset of E [∞]. By Theorem 4.5, there exists a Π1
n subset C ⊆ E [∞] × 2� which

is not strategically Ramsey. Therefore, there exists some A ∈ E [∞] and (a, p) ∈
(E [<∞] × 2<�)�(A, �0) such that for all (B, �0) ∈ [(a, p), (A, �0)], neither I has a strategy
in F [(a, p), (B, �0)] to reach Cc , nor II has a strategy in G [(a, p), (B, �0)] to reach
C. By Lemmas 5.21 and 5.22, this implies that for all B ∈ [a,A], neither I has a
strategy in F [a, B] to reach Λ–1

a,p[C]c = Λ–1
a,p[Cc ], nor II has a strategy in G [a, B] to

reach Λ–1
a,p[C]. Therefore, Λ–1

a,p[C] is a Π1
n set (as Λa,p is continuous) which is not

strategically Ramsey. �
Corollary 5.24. Suppose that there exists a Σ1

2-good well-ordering of the reals.
Then there exists a coanalytic subset of E [∞] which is not strategically Ramsey.

Proof. By Theorem 4.8, there exists a coanalytic C ⊆ E [∞] × 2� which is not
strategically Ramsey. Now apply Theorem 5.23. �

We remark that we have also essentially proved Corollary IV.4.13 of [1]: If X ⊆
E [∞] is analytic, then X = �0[C] for someG	 subset C ⊆ E [∞] × 2� . Then Λ–1

a,p[C] is
also a G	 subset of E [∞] for all a, p, as Λa,p is always continuous and E [∞](a) is a
clopen subset ofE [∞]. Therefore, proving that everyG	 subset ofE [∞] is strategically
Ramsey would imply that every analytic subset of E [∞] is strategically Ramsey.

§6. Further remarks and open questions. Todorčević proved in [15] that if (R,≤, r)
is a closed triple satisfying A1–A4, then every Suslin-measurable subset of R is
Ramsey. This is strictly stronger than Corollary 4.6, which is our best conclusion
from our general results regarding Kastanas Ramsey sets. However, by Proposition
3.12, Kastanas Ramsey sets need not be closed under the Suslin operation in general.

Question 1. Can we prove a general result about Kastanas Ramsey subsets of a
wA2-space which, when restricted to the setting of topological Ramsey space, directly
implies that Ramsey subsets are closed under the Suslin operation?

There are various set-theoretic properties shared by Ramsey subsets of topological
Ramsey spaces and strategically Ramsey subsets of countable vector spaces, but it is
not apparent to us if one can provide general results (in the context of wA2-spaces)
which encompass them. One such property concerns the statement “Every set is
Kastanas Ramsey.” It is a classic result that in Solovay’s model, every subset of
a Polish space has the property of Baire. Since the Ellentuck topology refines the
Polish topology, we have the following.

Theorem 6.1. Let (R,≤, r) be a closed triple satisfying A1–A4 such that AR is
countable. Let κ be an inaccessible cardinal, and let G be Coll(�,< κ)-generic. Then
in the model L(R)V[G], every subset of R is Ramsey.

On the other hand, we have the following property of strategically Ramsey sets.

Theorem 6.2 (Lopez-Abad [8]). Let κ be a supercompact cardinal, and let G be
Coll(�,< κ)-generic. Then in the model L(R)V[G], every subset ofE [∞] is strategically
Ramsey.

This leads to the following conjecture.
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Conjecture. Let (R,≤, r) be a wA2-space, and assume that AR is countable.
It is consistent with sufficiently large cardinal assumptions that every subset of R is
Kastanas Ramsey.

We conclude with a question that naturally extends Corollary 4.9.

Question 2. Let (R,≤, r) be a sufficiently well-behaved wA2-space. Assume that
it has a biasymptotic set, and that AR is countable. If there exists a Σ1

2-good well-
ordering of the reals, then must there exist a coanalytic subset of R which is not
Kastanas Ramsey?
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Basel, 2005. https://doi.org/10.1007/3-7643-7360-1.

[2] J. C. Cano and C. A. Di Prisco, Topological games in Ramsey spaces. Annals of Pure and Applied
Logic, vol. 176 (2025), no. 10, p. 103630.

[3] T. J. Carlson and S. G. Simpson, Topological Ramsey theory, Mathematics of Ramsey Theory
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