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Abstract

Proof assistants based on dependent type theory provide expressive languages for both programming
and proving within the same system. However, all of the major implementations lack powerful exten-
sionality principles for reasoning about equality, such as function and propositional extensionality.
These principles are typically added axiomatically which disrupts the constructive properties of these
systems. Cubical type theory provides a solution by giving computational meaning to Homotopy
Type Theory and Univalent Foundations, in particular to the univalence axiom and higher inductive
types (HITs). This paper describes an extension of the dependently typed functional programming
language Agda with cubical primitives, making it into a full-blown proof assistant with native sup-
port for univalence and a general schema of HITs. These new primitives allow the direct definition of
function and propositional extensionality as well as quotient types, all with computational content.
Additionally, thanks also to copatterns, bisimilarity is equivalent to equality for coinductive types.
The adoption of cubical type theory extends Agda with support for a wide range of extensionality
principles, without sacrificing type checking and constructivity.

1 Introduction

A core idea in programming and mathematics is abstraction: the exact details of how an
object is represented should not affect its abstract properties. In other words, the implemen-
tation details should not matter. This is exactly what the principle of univalence captures by
extending the equality on the universe of types to incorporate equivalent types.1 This then

1 For the sake of this introduction, “equivalent” may be read as “isomorphic.” In Homotopy Type Theory
(HoTT), isomorphism coincides with equivalence for sets (in the sense of HoTT). Equivalence for types in
general is a refinement of the concept of isomorphism.
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2 A. Vezzosi et al

gives a form of abstraction, or invariance up to equivalence, in the sense that equivalent
types will share the same structures and properties. The fact that equality is proof relevant
in dependent type theory is the key to enabling this; the data of an equality proof can
store the equivalence, and transporting along this equality should then apply the function
underlying the equivalence. In particular, this allows programs and properties to be
transported between equivalent types, hereby increasing modularity and decreasing code
duplication. A concrete example are the equivalent representations of natural numbers in
unary and binary format. In a univalent system, it is possible to develop the theory of nat-
ural numbers using the unary representation but compute using the binary representation,
and as the two representations are equivalent they share the same properties.

The principle of univalence is the major new addition in Homotopy Type Theory and
Univalent Foundations (HoTT/UF) (Univalent Foundations Program, 2013). However,
these new type-theoretic foundations add univalence as an axiom which disrupts the good
constructive properties of type theory. In particular, if we transport addition on binary
numbers to the unary representation, we will not be able to compute with it as the system
would not know how to reduce the univalence axiom. Cubical type theory (Cohen et al.,
2018) addresses this problem by introducing a novel representation of equality proofs and
thereby providing computational content to univalence. This makes it possible to construc-
tively transport programs and properties between equivalent types. This representation of
equality proofs has many other useful consequences, in particular function and propo-
sitional extensionality (pointwise equal functions and logically equivalent propositions
are equal), and the equivalence between bisimilarity and equality for coinductive types
(Vezzosi, 2017).

Dependently typed functional languages such as Agda (2018), Coq (2019), Idris
(Brady, 2013), and Lean (de Moura et al., 2015) provide rich and expressive environ-
ments supporting both programming and proving within the same language. However, the
extensionality principles mentioned above are not available out of the box and need to be
assumed as axioms just as in HoTT/UF. Unsurprisingly, this suffers from the same draw-
backs as it compromises the computational behavior of programs that use these axioms,
and even make subsequent proofs more complicated.

So far, cubical type theory has been developed with the help of a prototype Haskell
implementation called cubicaltt (Cohen et al., 2015), but it has not been integrated
into one of the main dependently typed functional languages. Recently, an effort was
made, using Coq , to obtain effective transport for restricted uses of the univalence
axiom (Tabareau et al., 2018), because, as the authors mention, “it is not yet clear how
to extend [proof assistants] to handle univalence internally.”

This paper achieves this, and more, by making Agda into a cubical programming lan-
guage with native support for univalence and higher inductive types (HITs). We call this
extension Cubical Agda as it incorporates and extends cubical type theory. In addition
to providing a fully constructive univalence theorem, Cubical Agda extends the theory
by allowing proofs of equality by copatterns, HITs as in Coquand et al. (2018) with
nested pattern matching, and interval and partial pretypes. This paper aims to provide a
formal account of the extensions to the language of Agda and its type-checking algorithm
needed to accommodate the new features. In particular, as it requires the most care, we
will dedicate a large portion of this paper to the handling of pattern matching.
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Contributions. The main contribution of this paper is the implementation of
Cubical Agda , a fully fledged proof assistant with constructive support for univalence
and HITs. This makes a variety of extensionality principles provable and we show how
these can be used for programming and proving in Section 2. We explain how Agda
was extended to support cubical type theory (Section 3); in particular, we describe how
some primitive notions of cubical type theory are internalized as pretypes: the inter-
val (Section 3.1), partial elements, and cubical subtypes (Section 3.3). The technical
contributions are

• We extend cubical type theory by records and coinductive types (Section 3.2.2).
• We add support for a general schema of HITs and extend the powerful dependent

pattern matching of Agda to also support pattern matching on HITs (Section 4).
• We include support for inductive families, which also requires extra care to handle

pattern-matching definitions (Section 4).
• We describe an optimization to the algorithm for transport in Glue types (Section 5),

which gives a simpler proof of the univalence theorem compared to Cohen et al.
(2018) (Section 5.2).

Using the optimization to transport for Glue types, we discuss an improved canonicity theo-
rem for cubical type theory with HITs (Section 6). The paper finishes with some concluding
remarks and an overview of related and future work (Section 7).

A conference version of this article has appeared at the International Conference
on Functional Programming (Vezzosi et al., 2019). The support for inductive families
(rather than just inductive types) and the related examples are the novel contributions
of the present journal version of this article. At the time of writing, the implementa-
tion of inductive families has not yet been merged into the main branch of Agda, but it
is available through https://github.com/agda/agda/tree/issue3733. The
required extension to the proof-relevant unifier (see Section 4.3.1) does not yet handle
unification by injectivity of constructors.

2 Programming and proving in Cubical Agda

In this section, we show some examples of how the new cubical features in Agda enable
interesting and useful ways for both programming and proving in dependent type theory.
No expert knowledge of HoTT/UF is assumed. Using univalence and other ideas from
HoTT/UF, we can

1. Transfer programs and proofs between equivalent types (Section 2.1.1);
2. Prove properties for proof-oriented datatypes using computation-oriented ones

(Section 2.1.2);
3. Reason about dependently typed programs using inductive families (Section 2.2);
4. Treat bisimilar elements of coinductive types as equal (Section 2.3);
5. Define and reason about quotient types (Section 2.4);
6. Represent topological spaces as datatypes and reason about them synthetically

(Section 2.5).
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4 A. Vezzosi et al

The examples are taken from the open-source library agda/cubical hosted at
https://github.com/agda/cubical.

2.1 Unary and binary numbers

An example of two equivalent types that are well suited for different tasks are unary
and binary numbers. The unary representation is useful for proving because of its direct
induction principle and the binary representation is much better for computation as it
is exponentially more compact. By utilizing computational univalence, we can transfer
results between the two representations in a convenient way; this gives us the best of both
worlds without having to duplicate results.

The unary numbers, N, are built into Agda and are inductively generated by the
constructors zero and suc (successor). We encode binary numbers as:

data Bin : Set where
bin0 : Bin
binPos : Pos → Bin

data Pos : Set where
pos1 : Pos
x0 : Pos → Pos
x1 : Pos → Pos

A binary number is hence either zero (bin0) or a positive binary number represented as
a list of zeroes and ones with no trailing zeroes. Least significant bits come first (little-
endian format), thus, the number 6 is binary 011 (binPos (x0 (x1 pos1))). This way, every
number has a unique binary representation, and it is straightforward to write maps to
and from the unary representation (Bin→N and N→Bin) with proofs that they cancel
(N→Bin→N and Bin→N→Bin). This means that the two types N and Bin are isomor-
phic which implies that they are equivalent, in the sense of the terminology of Voevodsky
(2015) and Univalent Foundations Program (2013). Spelled out, a map f : A → B is an
equivalence if the preimage of any point in B is a singleton type.

Given types A and B, we write A � B for the type of equivalences between them, and
the univalence theorem2 then states that

(A ≡ B) � (A � B).

In particular, there is a function ua : A � B → A ≡ B, sending a proof that two types are
equivalent to an equality between these types. We use ua to turn the equivalence of N and
Bin into an equality:

N�Bin : N � Bin
N�Bin = isoToEquiv (iso N→Bin Bin→N Bin→N→Bin N→Bin→N)

N≡Bin : N ≡ Bin
N≡Bin = ua N�Bin

2 As the univalence “axiom” is provable in Cubical Agda , we refer to it as the univalence theorem.
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In fact, the equality in N≡Bin is not the regular type-theoretic equality à la Martin-
Löf (in the sense of being inductively generated from constructor refl for reflexivity), but
rather a path equality. The core idea of HoTT/UF is the close correspondence between
proof-relevant equality, as in type theory, and paths, as in topology. The idea that equality
corresponds to paths is taken very literally in cubical type theory; by adding a primitive
interval type I, paths in a type A can be represented as functions I → A. Iterating these func-
tion types lets us represent squares, cubes, and hypercubes, making the type theory cubical.

The interval I has two distinguished endpoints i0 and i1. Since paths are functions,
we introduce them using λ-abstraction and eliminate them using function application; by
applying a path to i0, we get its left endpoint and by applying it to i1 we get the right one.
We often want to specify the endpoints of a path (or, more generally, the boundary of a
cube) in its type; in Cubical Agda , there is a special primitive for this:

PathP : (A : I → Set �) → A i0 → A i1 → Set �

we introduce these paths by lambda abstractions like so, λi → t :
PathP A (t[i0/ i]) (t[i1/ i]), provided that t : A i for i : I. Consequently, we can apply
p : PathP A a0 a1 to an r : I to obtain p r : A r. Also, no matter how p is given, we have that
p i0 reduces to a0 and p i1 reduces to a1.

The PathP types should be thought of as heterogeneous equalities, since the two end-
points are in different types; this is similar to the dependent paths in HoTT (Univalent
Foundations Program, 2013, Section 6.2). We can define homogeneous nondependent path
equality in terms of PathP as follows:

_≡_ : {A : Set �} → A → A → Set �

_≡_ {A = A} x y = PathP (λ _ → A) x y

In the previous definition, the syntax {A = A} tells Agda to bind the hidden argument
A of _≡_ (the first A in {A = A}) to a variable A (the second A) that can be used on
the right-hand side. Note also that some definitions are polymorphic in universe level �

which is implicitly universally quantified. Further, from now, we will omit the explicit
quantification over {A : Set �}.

Viewing equalities as functions out of the interval allows us to reason elegantly about
equality; for instance, the constant path represents a proof of reflexivity:

refl : {x : A} → x ≡ x
refl {x = x} = λ i → x

We can also directly apply a function to a path in order to prove that dependent functions
respect path equality, as shown in the definition of cong below. Simply by computation,
cong satisfies some new definitional equalities compared to the corresponding definition
for the inductive equality type à la Martin-Löf (1975). For instance, cong is functorial by
definition: we can prove congId and congComp by plain reflexivity (refl):

cong : ∀ {B : A → Set �} (f : (a : A) → B a) {x y} (p : x ≡ y) →
PathP (λ i → B (p i)) (f x) (f y)

cong f p i = f (p i)

congId : ∀ {x y : A} (p : x ≡ y) → cong (λ a → a) p ≡ p
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6 A. Vezzosi et al

congId p = refl

congComp : ∀ (f : A → B) (g : B → C) {x y} (p : x ≡ y) →
cong (g ◦ f ) p ≡ cong g (cong f p)

congComp f g p = refl

Path types also let us prove new things that are not provable in standard Agda
with Martin-Löf propositional equality. For example, function extensionality, stating that
pointwise equal functions are equal themselves, has an extremely simple proof:

funExt : {f g : A → B} → ((x : A) → f x ≡ g x) → f ≡ g
funExt p i x = p x i

The proof of function extensionality for dependent and n-ary functions is equally direct.
Since funExt is a definable notion in Cubical Agda , it is, in contrast to Martin-Löf type
theory, not an axiom. This means that it has computational content: it simply swaps the
arguments to p.

The facts that paths can be manipulated as functions and that we have heterogeneous
path types makes many equality proofs simpler compared to the corresponding proofs in
standard Agda or HoTT. For instance, the equality of second projections of dependent pair
types is a simple instance of cong:

�-eq2 : ∀ {A : Set} {B : A → Set} {p q : �[ x ∈ A ] (B x)} → (e : p ≡ q) →
PathP (λ i → B (e i .fst)) (p .snd) (q .snd)

�-eq2 = cong snd

The corresponding result in regular type theory has to be stated with the homogeneous
notion of equality using transport, making equality in dependent pair types notoriously
difficult to work with.

2.1.1 Univalent transport

One of the key properties of type-theoretic equality is transport:

transport : A ≡ B → A → B
transport p a = transp (λ i → p i) i0 a

This is defined using another primitive of Cubical Agda called transp. It is a gener-
alization of the regular transport principle which lets us specify where the transport is
the identity function. In particular, when the second argument to transp is i1, it will
reduce to a, which let us prove that transp A r a is always path equal to a (cf. addp
later). A consequence is that whenever we have an equivalence e : A � B, we have that
transport (λ i → F (ua e i)) is an equivalence as well. This ability to lift equivalences
through arbitrary type operators F is an easily overlooked benefit of a language with
computational univalence.

The substitution principle is obtained as an instance of transport:

subst : (B : A → Set �) {x y : A} → x ≡ y → B x → B y
subst B p b = transport (λ i → B (p i)) b

Function subst invokes transport with a proof of B x ≡ B y; this proof λ i → B (p i) is an
inlining of cong, stating that families B respect equality p.
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After this digression about path types, let us revisit the N≡Bin path. Using transport,
we can transfer zero along N≡Bin, and since univalence is a theorem with computational
content in Cubical Agda , this will reduce to bin0. In contrast, if we were working in
a system with axiomatic univalence, we could still define N≡Bin, but the transport of
zero along that equality would be stuck; the system would not know how to automatically
transport with the ua constant.

Having computational univalence lets us do a lot more than just transporting construc-
tors. We can for example transport the addition function from unary to binary numbers
in order to make it easier to prove properties about the more complex binary addition
function:

_+Bin_ : Bin → Bin → Bin
_+Bin_ = transport (λ i → N≡Bin i → N≡Bin i → N≡Bin i) _+_

In this case, the path that we transport along is between the function types N → N → N

and Bin → Bin → Bin. This way, we obtain an addition function on binary numbers and
the fact that ua has computational content lets us run it:

_ : (binPos (x0 (x0 pos1))) +Bin (binPos pos1) ≡ binPos (x1 (x0 pos1))
_ = refl

In order to reduce the left-hand side, Cubical Agda will convert all of the arguments to
the unary representation, add them using _+_, and then convert the result back to binary.
The main reason for defining _+Bin_ like this is that it lets us transport results about the
unary addition function. For example, we transport the proof of associativity as follows:

addp : PathP (λ i → N≡Bin i → N≡Bin i → N≡Bin i) _+_ _+Bin_
addp i = transp (λ j → N≡Bin (i ∧ j) → N≡Bin (i ∧ j) → N≡Bin (i ∧ j)) (~ i) _+_

+Bin-assoc : (m n o : Bin) → m +Bin (n +Bin o) ≡ (m +Bin n) +Bin o
+Bin-assoc =
transport (λ i → (m n o : N≡Bin i) → addp i m (addp i n o)

≡ addp i (addp i m n) o)
+-assoc

In addp, we utilize the interval operators minimum (_∧_) and reversal (~_); further,
Cubical Agda features the maximum operator (_∨_). The intuition is that elements of I
correspond to points in the real unit interval [0, 1]. The _∧_ and _∨_ operations take
the minimum and maximum of i, j : I, while the reversal operation computes 1 − i. These
operations satisfy the laws of a De Morgan algebra. This means, for one, that the min/max
operations form a bounded distributive lattice, with i0 and i1 as bottom and top elements.
Further, the reversal is a De Morgan involution, so, for instance, ~ (i ∧ j) = ~ i ∨ ~ j. Note
that this is still not a Boolean algebra, since i ∧ ~ i = i0 and i ∨ ~ i = i1 are not valid for
points of the unit interval, except for the endpoints.

Let us assert the well-typedness of addp: when i is i0, the first argument to transp in
addp is constantly N → N → N, since i0 ∧ i is then just i0 and N≡Bin i0 reduces to
N. The second argument ~ i becomes i1, so that the left endpoint of the path is _+_,
exploiting that transp (...) is the identity function when applied to i1. On the other hand,
when i is i1, then addp i reduces to transp (λ j →N≡Bin j→N≡Bin j→N≡Bin j) i0 _+_
which is exactly the definition of _+Bin_. This establishes that addp indeed constitutes a
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8 A. Vezzosi et al

path from _+_ to _+Bin_. Note that the path type of addp is heterogeneous as the two
addition functions have different types.

The desired result is then obtained by transporting the proof that unary addition is
associative along a path from

(m n o : N) → m + (n + o) ≡ (m + n) + o

to

(m n o : Bin) → m +Bin (n +Bin o) ≡ (m +Bin n) +Bin o .

The above proof might seem quite complex and the reader might rightfully question
the scalability to more involved examples. However, one can largely simplify things using
subst in a suitable �-type:

T : Set → Set
T X = �[ _+_ ∈ (X → X → X) ] ((x y z : X) → x + (y + z) ≡ (x + y) + z)

TBin : T Bin
TBin = subst T N≡Bin (_+_ , +-assoc)

_+Bin′_ : Bin → Bin → Bin
_+Bin′_ = fst TBin

+Bin′-assoc : (m n o : Bin) → m +Bin′ (n +Bin′ o) ≡ (m +Bin′ n) +Bin′ o
+Bin′-assoc = snd TBin

The operation _+Bin’_ is definitionally that same as _+Bin_. The user hence does
not have to write the proof of +Bin-assoc by hand, but Cubical Agda can compute the
addition operation with its associativity proof for them. It is now easy to imagine auto-
matic transport of more complex operations and properties simply by modifying the type
family T.

As discussed above, the _+Bin_ operation is of course a very inefficient way of adding
binary numbers. However, we can also define an efficient addition function _+B_ as
follows:

mutual
_+P_ : Pos → Pos → Pos
pos1 +P y = sucPos y
x0 x +P pos1 = x1 x
x0 x +P x0 y = x0 (x +P y)
x0 x +P x1 y = x1 (x +P y)
x1 x +P pos1 = x0 (sucPos x)
x1 x +P x0 y = x1 (x +P y)
x1 x +P x1 y = x0 (x +PC y)

_+B_ : Bin → Bin → Bin
bin0 +B y = y
x +B bin0 = x
binPos x +B binPos y = binPos (x +P y)

- Add with carry
_+PC_ : Pos → Pos → Pos
pos1 +PC pos1 = x1 pos1
pos1 +PC x0 y = x0 (sucPos y)
pos1 +PC x1 y = x1 (sucPos y)
x0 x +PC pos1 = x0 (sucPos x)
x0 x +PC x0 y = x1 (x +P y)
x0 x +PC x1 y = x0 (x +PC y)
x1 x +PC pos1 = x1 (sucPos x)
x1 x +PC x0 y = x0 (x +PC y)
x1 x +PC x1 y = x1 (x +PC y)
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This function is rather complicated as the helper function _+P_ for adding positive
numbers has to be defined mutually with an addition with carry operation _+PC_ in
order to be efficient. We do not expect the reader to understand the details, but it should
be clear that directly proving properties like associativity for this operation would be very
complicated as the deeply nested pattern matching would quickly lead to an explosion of
cases. Luckily, we can take advantage of the naive addition operation _+Bin_ which we
know share all properties of the unary addition _+_. The key lemma we need to prove is

N→Bin-+B : (x y : N) → N→Bin (x + y) ≡ N→Bin x +B N→Bin y

As this lemma is expressed by quantification over unary numbers, we largely avoid the
explosion of cases. Combining function extensionality with the fact that N→Bin consti-
tutes one direction of an equivalence, we can easily construct a path +B≡+Bin proving
that _+B_ and _+Bin_ are equal functions:

+B≡+Bin : _+B_ ≡ _+Bin_
+B≡+Bin i x y = goal x y i
where
goal : (x y : Bin) → x +B y ≡ N→Bin (Bin→N x + Bin→N y)
goal x y = (λ i → Bin→N→Bin x (~ i) +B Bin→N→Bin y (~ i))

• sym (N→Bin-+B (Bin→N x) (Bin→N y))

The • operation is binary composition of paths which will be discussed in detail in
Section 3.4. Finally, as the functions are proved equal, they share the same properties; for
example, we can turn the proof of +Bin-assoc into a proof that _+B_ is also associative
as follows:

+B-assoc : (m n o : Bin) → m +B (n +B o) ≡ (m +B n) +B o
+B-assoc m n o = (λ i → +B≡+Bin i m (+B≡+Bin i n o))

• +Bin-assoc m n o
• (λ i → +B≡+Bin (~ i) (+B≡+Bin (~ i) m n) o)

This example shows how univalent transport can be used to reason conveniently about
efficient functions on computation-oriented types which would otherwise have been very
complicated to do directly. Another useful consequence of being able to transport proofs
between types is that we can prove some result by computation for binary numbers and
then transport the proof to the unary representation where the computation might have
been infeasible.

2.1.2 Univalent program and data refinements

Sometimes, concrete computations are necessary in proofs. For example, one could imag-
ine a situation where one needs to check an equality between two terms that are expensive
to compute like:

220 · 210 = 25 · 215 · 210

When this is part of a proof, it is likely that one is using a unary representation of natural
numbers. However, that makes it impossible to verify the above equation by computation.
One way to resolve this dilemma would be to redo the formalization using binary numbers,
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10 A. Vezzosi et al

but that could involve a complete rewrite of the formalization. Another alternative would
be to use algebraic manipulations to prove the above equality manually. However, the
latter is sometimes not feasible as the computation might be very complicated.

Such issues can be resolved by what we call univalent program and data refinements
following Cohen et al. (2013). As binary numbers are equivalent to unary numbers, we
can prove the property for binary numbers by computation and then transport the proof
to unary numbers. To this end, we define a “doubling structure” in which we can express
the above equation and instantiate with unary and binary numbers. We omit the concrete
definitions, but as expected the doubling function is of linear complexity for unary numbers
and constant for binary:

record Double (A : Set) : Set where
constructor doubleStruct
field
double : A → A
elt : A

DoubleN : Double N
DoubleN = doubleStruct doubleN 1024

DoubleBin : Double Bin
DoubleBin = doubleStruct doubleBin bin1024

The equality between binary and unary numbers lifts to an equality of doubling struc-
tures. We omit the details of this definition as they are quite technical; however, the whole
definition is only 7 lines of code so it is not particularly difficult to write once one is
familiar with all of the features of Cubical Agda :

DoubleBin≡DoubleN : PathP (λ i → Double (Bin≡N i)) DoubleBin DoubleN

We can now formulate the equation that we originally wanted to verify. We wrap the
equation in a record and use copattern matching when proving it for the Bin instance
(DoubleBin). This technical trick prevents Agda from eagerly unfolding the N instance
when we transport the proof over to unary numbers along the equality of doubling
structures. Section 3.2.2 discusses transport in record types:

doubles : {A : Set} (D : Double A) → N → A → A
doubles D n x = iter n (double D) x

record propDouble {A : Set} (D : Double A) : Set where
field
proof : doubles D 20 (elt D) ≡ doubles D 5 (doubles D 15 (elt D))

propDoubleBin : propDouble DoubleBin
proof propDoubleBin = refl

propDoubleN : propDouble DoubleN
propDoubleN = transport (λ i → propDouble (DoubleBin≡DoubleN i))

propDoubleBin
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The fact that equivalences of types lift to equivalences of structures is called the struc-
ture identity principle (SIP) in HoTT/UF (Univalent Foundations Program, 2013, Section
9.8). Combining this with univalence lets us lift equalities of types to equalities of struc-
tures on these types. This was originally formalized in Agda for algebraic structures and
isomorphisms by Coquand & Danielsson (2013). Recently, another variation of the SIP,
due to Escardó (2019), was implemented in Cubical Agda by Angiuli et al. (2020). This
cubical SIP extracts the pattern described here, so that a user need not repeat this construc-
tion when considering new structures. Using the cubical SIP, Angiuli et al. (2020) have
developed a variety of more substantial examples from computer science and mathematics,
including queues and finite multisets.

2.2 Inductive families

When programming with dependent types in Agda , it is very common to use inductive
families as they allow the programmer to encode various information using indices in the
type. The classic example is vectors—length-indexed lists—which allow the programmer
to write, for example, a safe head function that extracts the first element of a non-empty list.
While such types are ubiquitous in dependently typed programming, they also cause some
headache when reasoning formally about the functions written using them. For instance,
one cannot naively state associativity of concatenation for vectors because the two ways
of associating concatenation lead to terms of different type. To even state the equation,
we need to substitute along the proof of associativity for addition of natural numbers. This
can quickly become complicated, making reasoning about dependently typed programs
rather bureaucratic. Cubical Agda offers a solution to this as the built-in PathP equality
is heterogeneous, making it more natural to express such equations. In this section, we
will show how this helps with dependently typed programming by developing some basic
results about vectors and size-indexed matrices.

Another very important example of an inductive family is the equality type. With the
recently added support for inductive families to Cubical Agda , we can work with equality
without loosing the benefits of dependent pattern matching on the reflexivity constructor.
Furthermore, we can prove that the equality type is equivalent to the _≡_ type, mak-
ing it possible to give computational meaning to functional extensionality and univalence
expressed using the equality type.

2.2.1 Vectors

It is straightforward to define vectors the same way as in, for example, the Agda standard
library. Here and in the following, we implicitly quantify over m n k : N:

data Vec (A : Set �) : N → Set � where
[] : Vec A zero
_::_ : (x : A) (xs : Vec A n) → Vec A (suc n)

We can also easily define some operations like vector concatenation:

_++_ : Vec A m → Vec A n → Vec A (m + n)
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
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The fact that _++_ is associative can be conveniently expressed using PathP and
+-assoc. The proof is just a direct use of pattern matching and an inlined use of cong:

++-assoc : (xs : Vec A m) (ys : Vec A n) (zs : Vec A k) →
PathP (λ i → Vec A (+-assoc m n k i))

(xs ++ (ys ++ zs)) ((xs ++ ys) ++ zs)
++-assoc {m = zero} [] ys zs = refl
++-assoc {m = suc m} (x :: xs) ys zs i = x :: ++-assoc xs ys zs i

2.2.2 Matrices

A common use of vectors is to define matrices; however, it is quite difficult to prove prop-
erties about functions defined for matrices defined this way. Another representation that
is better suited for proving properties is to use functions out of a finite set of indices. To
define these, we need standard finite sets which is another example of an inductive family:

data Fin : N → Set where
zero : Fin (suc n)
suc : (i : Fin n) → Fin (suc n)

Using this, we can define two different representations of matrices:

FinMatrix : (A : Set �) (m n : N) → Set �

FinMatrix A m n = Fin m → Fin n → A

VecMatrix : (A : Set �) (m n : N) → Set �

VecMatrix A m n = Vec (Vec A n) m

It is straightforward to define functions going between the two representations:

FinVec→Vec : (Fin n → A) → Vec A n
FinVec→Vec {n = zero} xs = []
FinVec→Vec {n = suc _} xs = xs zero :: FinVec→Vec (λ x → xs (suc x))

lookup : Fin n → Vec A n → A
lookup zero (x :: xs) = x
lookup (suc i) (x :: xs) = lookup i xs

Fin→VecMatrix : FinMatrix A m n → VecMatrix A m n
Fin→VecMatrix M = FinVec→Vec (λ i → FinVec→Vec (λ j → M i j))

Vec→FinMatrix : VecMatrix A m n → FinMatrix A m n
Vec→FinMatrix M i j = lookup j (lookup i M)

Using funExt, we can prove that the functions between FinMatrix and VecMatrix cancel
which gives us an equivalence of the two representations. This can then be transformed into
a path by applying ua:

FinMatrix≡VecMatrix : (A : Set �) (m n : N) → FinMatrix A m n ≡ VecMatrix A m n
FinMatrix≡VecMatrix A m n = ua (FinMatrix�VecMatrix A m n)
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We can now do the same kind of transport of properties that we did for unary and binary
numbers. Let us assume that we have a commutative ring R. We write + for the additive
operation of R and the proof that it is commutative is called commring+-comm. It is then
very easy to prove that addition of FinMatrix is commutative:

addFinMatrix : (M N : FinMatrix R m n) → FinMatrix R m n
addFinMatrix M N k l = M k l + N k l

addFinMatrixComm : (M N : FinMatrix R m n) →
addFinMatrix M N ≡ addFinMatrix N M

addFinMatrixComm M N i k l = +-comm (M k l) (N k l) i

Note the inlined use of function extensionality for binary functions in
addFinMatrixComm. Following exactly the same recipe as for transporting addition
of unary numbers and the fact that it is associative to binary numbers, we can now
transport addition of FinMatrix and the fact that it is commutative to VecMatrix:

T : Set � → Set �

T X = �[ _+_ ∈ (X → X → X) ] ((x y : X) → x + y ≡ y + x)

TVecMatrix : T (VecMatrix R m n)
TVecMatrix {m} {n} = subst T (FinMatrix≡VecMatrix R m n)

(addFinMatrix , addFinMatrixComm)

addVecMatrix : (M N : VecMatrix R m n) → VecMatrix R m n
addVecMatrix = fst TVecMatrix

addVecMatrixComm : (M N : VecMatrix R m n) →
addVecMatrix M N ≡ addVecMatrix N M

addVecMatrixComm = snd TVecMatrix

Note that there is really no added complexity here compared to the unary and binary
numbers example. However, just like we get a naive addition function on binary numbers
this way we get a naive one for VecMatrix as well. The addVecMatrix function transports
the input matrices to FinMatrix, add them using addFinMatrix, and then transport the result
back. We can of course do better and define addition for VecMatrix more directly by:

addVec : Vec R m → Vec R m → Vec R m
addVec [] [] = []
addVec (x :: xs) (y :: ys) = x + y :: addVec xs ys

addVecMatrix′ : (M N : VecMatrix R m n) → VecMatrix R m n
addVecMatrix′ [] [] = []
addVecMatrix′ (M :: MS) (N :: NS) = addVec M N :: addVecMatrix′ MS NS

Using the fact that addVecMatrix is just addFinMatrix with transports back and forth,
we can prove that it is in fact equal to addVecMatrix’. The proof of this is a little bit more
involved so we refer the interested reader to the formalization; however, the proof is only
about 10 lines of code so it is not that complex:
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addVecMatrixPath : (M N : VecMatrix R m n) →
addVecMatrix M N ≡ addVecMatrix′ M N

Combining this with addVecMatrixComm, we easily get the fact that the direct
definition of addition for vector matrices is commutative:

addVecMatrixComm′ : (M N : VecMatrix R m n) →
addVecMatrix′ M N ≡ addVecMatrix′ N M

This example shows that the kind of reasoning that we did for unary and binary numbers
also works for more complex data structures like matrices. Furthermore, we can—without
too much effort—relate proof-oriented definitions with computation-oriented ones. In
proof assistants based on regular dependent theory, this is typically not as easy, since the
user has to choose a representation and then stick to it. Even further, the fact that we can
use paths to reason about equalities of FinMatrix makes it straightforward to use function
extensionality which also simplifies many proofs. If one wants to develop this in standard
Agda , one instead has to resort to either using setoids or define a notion of finite func-
tions represented by their graphs which complicates the definition considerably. For more
details about various considerations when developing basic matrix operations in standard
Agda , we refer the interested reader to a blog post by Wood (2019).

2.2.3 Equality

A very important inductive family is the equality type. This is also written _≡_ in the
Agda standard library, but in order to avoid confusion we call it Eq here:

data Eq {A : Set �} (x : A) : A → Set � where
reflEq : Eq x x

With this definition, we can define functions by pattern matching on reflEq just like in
regular Agda :

ap : (f : A → A′) {x y : A} → Eq x y → Eq (f x) (f y)
ap f reflEq = reflEq

More interestingly, we can define functions between Eq and paths:

eqToPath : {x y : A} → Eq x y → x ≡ y
eqToPath reflEq = refl

pathToEq : {x y : A} → x ≡ y → Eq x y
pathToEq {x = x} p = transport (λ i → Eq x (p i)) reflEq

It is straightforward to prove that these maps cancel so that we get a path between paths
and equalities:

Path≡Eq : {x y : A} → (x ≡ y) ≡ (Eq x y)
Path≡Eq = ua Path�Eq

This means that these types share all properties expressible in type theory. For example,
we can prove function extensionality for equality by going back and forth between paths:
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funExtEq : {B : A → Set �′} {f g : (x : A) → B x} →
((x : A) → Eq (f x) (g x)) → Eq f g

funExtEq p = pathToEq (λ i x → eqToPath (p x) i)

Similarly, we can also prove univalence and define HITs using equalities instead of
paths. This way, we can replace the axioms from existing HoTT Agda libraries with con-
crete terms. The fact that Cubical Agda now has proper support for inductive families
means that these developments will be able to compute closed terms to a canonical form.
We are currently experimenting with this and have written some basic examples of comput-
ing winding numbers on the circle. For details, see the Cubical.Data.Equality file in
the agda/cubical repository. One should also be able to apply the techniques developed
by Danielsson (2020).

2.3 Univalence for coinductive types

Coinductive types allow the direct manipulation of infinite structures without breaking
the consistency of the language. However, in their treatment in Coq and Agda , reason-
ing about them was impeded by the inability to prove two elements equal whenever they
have the same unfolding, rather than when they are the same by definition (McBride,
2009). Cubical Agda solves this by exploiting the interaction between path and projection
copatterns (Abel et al., 2013).

The prototypical example of a coinductive type are infinite streams, which can be
declared in Agda as a coinductive record type with two fields: .head and .tail. A func-
tion returning a stream is then defined by explaining how it computes when applied to the
projections. For example, here we define mapS which applies a function to every element
of a stream:

record Stream (A : Set) : Set where
coinductive; constructor _,_
field
head : A
tail : Stream A

mapS : (A → B) → Stream A → Stream B
mapS f xs .head = f (xs .head)
mapS f xs .tail = mapS f (xs .tail)

The result is that mapS f xs by itself will not unfold further. The termination checker is
happy to accept this definition as productive, since it always reaches a weak head normal
form in finite time when applied to projections. As shown in the following proof of the
identity law for mapS, Cubical Agda extends the notion of productivity by allowing the
same recursion pattern also for paths between streams:

mapS-id : (xs : Stream A) → mapS (λ x → x) xs ≡ xs
mapS-id xs i .head = xs .head
mapS-id xs i .tail = mapS-id (xs .tail) i
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To define a path between (mapS (λ x → x) xs) and xs, we introduce an interval variable i
and then are left to define (mapS-id xs i) of type Stream A, so we can proceed by copatterns
and corecursion.

To convince ourselves that mapS-id defines the required path, we note that if mapS-id xs
is supposed to be a path between mapS (λ x → x) xs and xs, then the type of (λ i →
mapS-id xs i .head) should be mapS (λ x → x) xs .head ≡ xs .head. This type in turn reduces
to xs .head ≡ xs .head, by definition of mapS, and so the constant path suffices. A similar
reasoning applies to the tail case, this time using the tail clause of mapS to realize that we
need a path between mapS (λ x → x) (xs.tail) and xs.tail, which we provide with a corecur-
sive call. We give a systematic description of how we compute such boundary constraints
from the left-hand sides of clauses in Section 4.

More generally, we can define bisimilarity as a coinductive record and show that two
bisimilar streams are equal:

record _≈_ (xs ys : Stream A) : Set where
coinductive
field
≈head : xs .head ≡ ys .head
≈tail : xs .tail ≈ ys .tail

bisim : ∀ {xs ys : Stream A} → xs ≈ ys → xs ≡ ys
bisim xs≈ys i .head = xs≈ys .≈head i
bisim xs≈ys i .tail = bisim (xs≈ys .≈tail) i

Finally, we note that bisim is actually an equivalence, and so equality of streams is indeed
bisimilarity:

path≡bisim : ∀ {xs ys : Stream A} → (xs ≡ ys) ≡ (xs ≈ ys)

The agda/cubical library contains the complete proof, as well as a proof of the universal
property of indexed M-types (Ahrens et al., 2015).

2.4 Quotient types as HITs

Another major new addition in HoTT are HITs. These are datatypes in which we can
specify “higher” constructors representing nontrivial paths of the type (representing iden-
tifications of elements), in addition to the normal “point” constructors. These types enable
many interesting constructions in type theory, in particular quotient types.

The addition of HITs in systems like Agda or Coq is usually done by postulating their
existence; however, this suffer from the same issues, in terms of computation, as postulat-
ing the univalence axiom. Cubical Agda extends the datatype declarations of Agda to also
support a general schema of HITs, so that it is not necessary to postulate their existence
axiomatically.

In this section, we illustrate how we can use HITs to define quotient types in
Cubical Agda . The first example of a quotient type is a very simple encoding of the
integers—while this example might seem rather trivial it will help us showcase quite
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a few interesting possibilities of working with HITs. The second example is a general
formulation of quotient types and set quotients.

2.4.1 Integers as a HIT

The integers are often represented as N + N; however, this has the drawback that there
are two zeroes (inl 0 and inr 0). This is usually resolved by shifting one of them by 1 (so
that for example inl 0 represents −1, etc.); however, this can easily lead to confusion and
off-by-one errors. A better solution is to identify the two zeroes. This can be achieved with
the following HIT:

data Z : Set where
pos : (n : N) → Z

neg : (n : N) → Z

posneg : pos 0 ≡ neg 0

sucZ : Z → Z

sucZ (pos n) = pos (suc n)
sucZ (neg zero) = pos 1
sucZ (neg (suc n)) = neg n
sucZ (posneg i) = pos 1

This type is similar to N + N, except that there is also a path constructor posneg which
identifies the two zeroes. For an element i of the interval type, posneg i is an integer which
reduces to pos 0 in case i = i0 and neg 0 in case i = i1. These so-called boundary conditions
of posneg have to be respected by any function on Z. For example, the successor function
on Z can be written as above. The final case maps the path constructor constantly to pos 1
which is accepted by Cubical Agda as the following equations hold definitionally:

sucZ (pos 0) = sucZ (neg 0) = pos 1.

It is direct to define an inverse to sucZ (i.e., the predecessor function) and hence get an
equivalence from Z to Z which, combined with ua, gives a nontrivial path from Z to Z.
Transporting along this path applies the successor function:

sucPathZ : Z ≡ Z

sucPathZ = isoToPath (iso sucZ predZ sucPredZ predSucZ)

We can also define addition and prove that addition with a fixed number is an equiva-
lence; however, this takes a bit of work as we need to define subtraction and prove that it is
the inverse of addition. Using univalence, we can take a shortcut and define an alternative
addition function so that addition with a fixed number is automatically an equivalence.
Consider the following path equality that composes sucPathZ with itself n times:

addEq : N → Z ≡ Z

addEq zero = refl
addEq (suc n) = addEq n • sucPathZ

Similarly, we can define a path composing the predecessor path with itself n times. By
transporting along these paths, we get an addition function:
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addZ : Z → Z → Z

addZ m (pos n) = transport (addEq n) m
addZ m (neg n) = transport (subEq n) m
addZ m (posneg _) = m

Using that transporting along a path is an equivalence, we get that addition by a fixed
number is an equivalence.

isEquivAddZ : (m : Z) → isEquiv (λ n → addZ n m)
isEquivAddZ (pos n) = isEquivTransport (addEq n)
isEquivAddZ (neg n) = isEquivTransport (subEq n)
isEquivAddZ (posneg i) = isEquivTransport refl

2.4.2 General quotient types and set quotients

In Agda and other dependently typed programming languages, quotient type could so far
only be defined axiomatically. Here, we show how to define them as a HIT in Cubical
Agda.

The first attempt is the following definition:

data _/_ (A : Set �) (R : A → A → Set �) : Set � where
[_] : A → A / R
eq : (a b : A) → R a b → [ a ] ≡ [ b ]

This type has a constructor for mapping elements of A to the quotient by R and an equality
identifying the image of each pair of related elements. However, this is not exactly what
we want because the resulting quotient type might have a too complex notion of equality.
For example, if we use this construction to quotient Unit by the total relation, then we will
get a type with a point [ tt ] and an identification of this point with itself. We would expect
this to be equivalent to Unit; however, it is in fact equivalent to the HIT circle that we will
discuss in Section 2.5.1. As Unit and the circle do not satisfy the same properties, they
are not equivalent; the loop space of Unit, here the type of paths from the only element
to itself, is contractible, while the loop space of the circle is Z (Univalent Foundations
Program, 2013).

We get the expected notion of quotients if we switch to set quotients. We add another
higher constructor that eliminates all of the higher-dimensional structure from the quotient
type, in other words, we set truncate the type:

data _/_ (A : Set �) (R : A → A → Set �) : Set � where
[_] : A → A / R
eq : (a b : A) → (r : R a b) → [ a ] ≡ [ b ]
trunc : (x y : A / R) → (p q : x ≡ y) → p ≡ q

This makes the quotient into a recursive HIT as the trunc constructor quantifies over
elements of the type that we are constructing. It forces the quotient to be a set in the sense
of satisfying the uniqueness of identity proofs (UIP) principle, in other words, any two
proofs of equality of members of A / R are equal. Thanks to trunc, we can prove the
universal property of set quotients:
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setQuotUniversal : {A B : Set �} {R : A → A → Set �} → isSet B →
(A / R → B) � (�[ f ∈ (A → B) ] (∀ a b → R a b → f a ≡ f b))

This says that maps out of the set quotient is the same as maps sending related elements
to equal elements in the quotient (assuming that the image satisfies UIP). If we furthermore
assume that R is a propositional equivalence relation, then the set quotients are effective,
in the sense that if [ a ] ≡ [ b ] then also R a b. As an interesting application, we could for
example define the positive fractions as a quotient of N×N by relating (n1, d1) and (n2, d2)
if (n1 · (1 + d2) ≡ n2 · (1 + d1)).

2.5 Synthetic homotopy theory in Cubical Agda

One of the main applications of HITs in HoTT is the ability to reason synthetically about
topological spaces inside type theory. This means that we can define topological spaces
(like spheres, tori, etc.) as datatypes and reason about them using functional programming.
The semantic justification for this is the standard model in Kan simplicial sets, a combi-
natorial representation of topological spaces (Kapulkin & Lumsdaine, 2012; Lumsdaine &
Shulman, 2017). We will discuss how cubical type theory relates to Kan simplicial sets
in Section 6. In this section, we illustrate how we can do synthetic homotopy theory in
Cubical Agda by proving that the torus is equivalent to two circles.

2.5.1 The torus and two circles

We can define circle and torus as the following HITs:

data S1 : Set where
base : S1

loop : base ≡ base

data Torus : Set where
point : Torus
line1 : point ≡ point
line2 : point ≡ point
square : PathP (λ i → line1 i ≡ line1 i) line2 line2

The idea is that the circle, S1, is generated by a base point and a nontrivial path con-
structor loop connecting base to itself. The Torus on the other hand also has a base point
with two nontrivial path constructors connecting it to itself and a square relating the two
paths. This square can be illustrated by:

point point

point point

square

line1

line2 line2

line1
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The idea is that the square constructor identifies line2 with itself over an identification of
line1 with itself. This has the effect of identifying the opposite sides of the square, making
it into a torus (imagine the square being a sheet of soft paper that one folds so that the
opposite sides match).

As we demonstrate in the following, a torus is equivalent to the product of two circles:

t2c : Torus → S1 × S1

t2c point = (base , base)
t2c (line1 i) = (loop i , base)
t2c (line2 j) = (base , loop j)
t2c (square i j) = (loop i , loop j)

c2t : S1 × S1 → Torus
c2t (base , base) = point
c2t (loop i , base) = line1 i
c2t (base , loop j) = line2 j
c2t (loop i , loop j) = square i j

The functions back and forth are directly definable by pattern matching. As a conse-
quence, proving that they are mutually inverse is trivial, and we get an equality between
the two types:

c2t-t2c : (t : Torus) → c2t (t2c t) ≡ t
c2t-t2c point = refl
c2t-t2c (line1 _) = refl
c2t-t2c (line2 _) = refl
c2t-t2c (square _ _) = refl

t2c-c2t : (p : S1 × S1) → t2c (c2t p) ≡ p
t2c-c2t (base , base) = refl
t2c-c2t (base , loop _) = refl
t2c-c2t (loop _ , base) = refl
t2c-c2t (loop _ , loop _) = refl

Torus≡S1×S1 : Torus ≡ S1 × S1

Torus≡S1×S1 = isoToPath (iso t2c c2t t2c-c2t c2t-t2c)

This is a rather elementary result in topology. However, it had a surprisingly nontrivial
proof in HoTT because of the lack of definitional computation for higher constructors
(Licata & Brunerie, 2015; Sojakova, 2016). With the additional definitional computation
rules of Cubical Agda , this proof is now almost entirely trivial.

2.5.2 Further synthetic homotopy theory in Cubical Agda

The agda/cubical library contains several further results from synthetic homotopy the-
ory. For instance, we have a direct proof that the fundamental group of the circle is Z,
inspired by Licata & Shulman (2013). Combined with the above characterization of the
torus, it proves that the fundamental group of the Torus is Z × Z. The fact that univalence
and HITs compute in Cubical Agda lets us then compute winding numbers of iterated
loops around the circle and torus.

The library also features more substantial results: a proof that S3, that is, the four dimen-
sional sphere, is equivalent to the join of two circles, and a proof that the total space of the
Hopf fibration is S3 (Mörtberg & Pujet, 2020). We also have a definition of the “Brunerie
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number”: a number n ∈Z such that π4(S3) �Z/nZ.3 However, despite considerable efforts
we have not been able to reduce n to a normal form yet; even though the absolute value of
the expected result is just 2 as proved by Brunerie (2016).

3 Making Agda cubical

In the remainder of the paper, we will describe how Agda was extended to become cubical.
The key additions to Agda are

1. The interval and path types (Section 3.1).
2. Generalized transport, transp (Section 3.2).
3. Partial elements (Section 3.3).
4. Homogeneous composition, hcomp (Section 3.4).
5. Higher inductive types (Section 4).
6. Glue types (Section 5).

We have already discussed the first two points in some detail in the examples; however,
the implementation of the transp operation is especially interesting as it is what makes
Cubical Agda compute. This operation is defined by cases on the type formers of Agda ;
a contribution of this paper is the extension of these to types that are present in Agda but
not covered by Cohen et al. (2018), namely, record and coinductive types. Furthermore,
the way the hcomp operation works in Cubical Agda differs from Coquand et al. (2018)
in a subtle way which enables us to optimize the transp operation for Glue types. These
types are what allows us to give computational content to univalence. By optimizing how
their composition operation computes, we obtain simpler and more efficient proofs of uni-
valence. As discussed in Section 6, this also has meta-theoretical consequences for the
canonicity theorem for HITs.

3.1 The interval and path types

The first thing Cubical Agda adds is an interval type I. Then, we add the PathP types
that behave like function types out of the interval, but with fixed endpoints. Note that the
interval in Cubical Agda is not inductively defined, so we cannot pattern match on it. This
follows from the intuition that path types are continuous functions from the interval into a
space, so that they cannot provide arbitrarily different results for i0 and i1.

3.2 Generalized transport

The next key thing that Cubical Agda adds is the generalized transport operation:

transp : (A : I → Set �) → I → A i0 → A i1

Given a type line A : I → Set � and an element at end A i0, the transp operation gives an
element at A i1, the other end of the line. This is generalized compared to regular transport

3 For details see https : //github.com/agda/cubical/blob/master/Cubical/Experiments/
Brunerie.agda .
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in the sense that transp lets us specify where it should behave as the identity function. In
particular, there is an additional side condition to be satisfied for transp A r a to type-check,
which is that A should be a constant function whenever the constraint r = i1 is satisfied.
When r is equal to i1, the transp function will compute as the identity function:

transp A i1 a = a

and this would not be sound in general if A was allowed to be a more complex line that
is nonconstant when r = i1. In case r = i0 there is nothing to check, thus, transp A i0 a is
well formed for any A, as in the definition of transport A a.

Internally, the transp operation computes differently for each of the type formers of
Agda . We will show how this works in the special case of transport, but the general
transp operation is not much more complicated. For a detailed type-theoretic presentation
of these definitions, see Huber (2017). This formulation of the computation rules for cubi-
cal type theory is based on a variation of the comp operation of Cohen et al. (2018) that
was introduced in Coquand et al. (2018) in order to support HITs.

3.2.1 Function types

Given two type lines A B : I → Set, we seek to transport a function f : A i0 → B i0 to a
function A i1 → B i1. To this end, we compose backward transport A i1 → A i0 along A,
function f , and forward transport B i0 → B i1 along B:

transportFun : (A B : I → Set) → (A i0 → B i0) → (A i1 → B i1)
transportFun A B f = transport (λ i → B i) ◦ f ◦ transport (λ i → A (~ i))

By evaluating transport (λ i → A i → B i) f, we can see that the definition of
transportFun A B f is definitionally the same as the internal definition for how transp
computes in Cubical Agda :

transportFunEq : (A B : I → Set) → (f : A i0 → B i0) →
transportFun A B f ≡ transport (λ i → A i → B i) f

transportFunEq A B f = refl

The definition for dependent functions is very similar, except that some extra work is
required to correct the type in the outer transport. This definition clarifies why we need to
consider transp and not just the simpler transport operation:

transportPi : (A : I → Set) (B : (i : I) → A i → Set)
→ ((x : A i0) → B i0 x)
→ ((x : A i1) → B i1 x)

transportPi A B f = λ (x : A i1) →
transport (λ j → B j (transp (λ i → A (j ∨ ~ i)) j x))

(f (transport (λ i → A (~ i)) x))

If we would have used the same definition as for nondependent functions, the outer
transport would have been ill-typed. The reason is that f has a dependent type, meaning
that f x′ has type B x′ for x′ := transport (λ i → A (~ i)) x. The first argument of the outer
transport must hence be a line between B i0 x′ and B i1 x. This line is constructed by
abstracting over j and considering B j (transp (λ i → A (j ∨ ~ i)) j x). When j is i0 this is
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indeed B i0 x′ and when j is i1 this is B i1 x by virtue of transp being the identity function
when applied to i1.

3.2.2 Records and coinductive types

For record types, the transport operation is computed pointwise, that is, independently for
every field. The only subtlety is when the record is dependent, in which case a similar type
correction has to be done as for dependent functions.

As coinductive types in Agda are just record types, these are handled in the same way.
In this case, however, we have to consider the issue of productivity, which is taken care
of by how transport for record types unfolds only when projected from. Analogously to
the Stream example from Section 2.3, we have that transport (λ i → Stream A) xs will not
reduce further, while if we apply .tail to it we get transport (λ i → Stream A) (xs .tail).4

Such controlled unfolding generally leads to smaller normal forms, so Cubical Agda
adopts it for record types in general. The same kind of controlled unfolding is also
implemented for other “negative” types like function and path types.

3.2.3 Datatypes

The transport operation for inductive datatypes without parameters, for instance, the
natural numbers, is trivial as they cannot vary along the interval:

transport (λi →N) x = x

This would not work for inductive types with parameters like the disjoint union A + B for
which the transport operation would need to reduce to the transport operation in A or B
depending on the argument:

transportSum : (A B : I → Set) → A i0 + B i0 → A i1 + B i1
transportSum A B (inl x) = inl (transport (λ i → A i) x)
transportSum A B (inr x) = inr (transport (λ i → B i) x)

The transp operation for HITs is a bit more involved. It also computes by cases
on the argument, but for the higher constructors some extra care has to be taken. In
particular, complicated parameterized HITs, like pushouts, require additional endpoint
corrections (Coquand et al., 2018, Section 3.3.5).

3.2.4 Inductive families

In the case of inductive families, we have an extra complication: constructors only
target specific indexes. For example, it is not clear how to proceed when reducing
transport (λ i → Vec A (p i)) [], as [] might not fit the expected result type of Vec A (p i1).
Moreover, we not only have to care about the endpoint, but we should also keep track of
the path p, as it might contain computationally relevant information.

To address this problem, we adapt the strategy of Cavallo & Harper (2019), adding a
constructor to each inductive family to represent a residual index transport. In the case

4 Productivity for the case of dependent records then relies on the type of later fields only being able to depend
on earlier fields.
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of vectors, we have a constructor5 transpXVec p r u0 : Vec A (p i1) for p : I→N, r : I
and u0 : Vec A (p i0), such that p is constant when r = i1. Like for transp, we have that
transpXVec p i1 u0 reduces to u0. We can then transport constructors like so:

transport (λi → Vec (A i) (p i)) [] = transpXVec (λi → p i) i0 []
transport (λi → Vec (A i) (p i)) (x :: xs) = transpXVec (λi → p i) i0

(transport (λi → A i) x :: transport (λi → Vec (A i) m) xs)

In the clause for [], the typing lets us assume that p i0 is equal to 0, while in the second
clause the typing implies p i0 is equal to suc m where m is the length of xs : Vec (A i0) m.
In both cases, transpXVec lets us produce a result at the desired index by storing the path
p. The full reduction algorithm for transp on inductive families is an adaptation of the one
for the coercion operator from Cavallo & Harper (2019).

In Section 4, we will show how definitions by pattern matching can be extended to cover
the extra transpX constructor, without the user needing to specify a clause for it.

3.2.5 Path types

For path types, we will need a new operation to provide the computation rules for transport
as we need some way to record the endpoints of the path after transporting it. Indeed,
consider the following naïve definition:

transportPath : (A : I → Set) (x y : (i : I) → A i) → x i0 ≡ y i0 → x i1 ≡ y i1

transportPath A x y p = λ i → transport (λ j → A j) (p i)

This might look plausible as a definition, but the resulting path does not have the cor-
rect boundary. When i is i0, for instance, the left boundary is transport (λ j → A j) (x
i0) and not just x i1. Note that these elements are equal up to a path (using
λ k → transp (λ j → A (j ∨ k) k (x k)), so what we need is a way to compose the
result with this path in order to correct the endpoints. To do this, we introduce the homo-
geneous composition operation (hcomp) that generalizes binary composition of paths to
n-ary composition of higher-dimensional cubes.

3.3 Partial elements

In order to describe the homogeneous composition operation, we need to be able to write
partially specified n-dimensional cubes, that is, cubes where some faces are missing. Given
an element of the interval r : I, there is a new primitive predicate IsOne r which represents
the constraint r = i1. This comes with a proof 1=1 that i1 is in fact equal to i1, that is,
1=1 : IsOne i1. The type IsOne (i ∨ ~ i) corresponds to the formula (i = i1) ∨ (i = i0)
which represents the two endpoints of the line specified by i, so by considering formulas
made out of more variables we can specify the boundary of cubes. The type IsOne r is also
proof-irrelevant, meaning that any two of its elements are definitionally equal.

Building on IsOne, we have extended Cubical Agda with partial cubical types, written
Partial r A. The idea is that Partial r A is the type of cubes in A that are only defined when

5 The X in transpX stands for “indeX.”
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IsOne r holds.6 Concretely, Partial r A is a special version of the function space IsOne r →
A with a more extensional equality: two of its elements are considered judgmentally equal
if they represent the same subcube of A. Concretely, they are equal whenever they reduce
to equal terms for all the possible assignment of variables that make r equal to i1. An
example of where this much extensionality is useful is the definition of hfill in Section 3.4.

Elements of these partial cubical types are introduced using pattern-matching lambdas.
For this purpose, Cubical Agda supports a new form of patterns, here (i = i0) and (i = i1),
that specify the cases where IsOne (i ∨ ~ i) is true. Similarly to pattern matching on an
inductive family, some variables from the context might get refined, in this case i, even if
otherwise we would not be able to pattern match on them:

partialBool : ∀ i → Partial (i ∨ ~ i) Bool
partialBool i = λ { (i = i0) → true ; (i = i1) → false }

The term partialBool should be thought of as a boolean with different values when i is
i0 and when i is i1. This is hence just the endpoints of a line and there is no way to connect
them, since true is not equal to false. The pattern-matching cases must match the interval
expression in the type (under the image of IsOne) and if there are overlapping cases then
they must agree up to definitional equality. Furthermore, IsOne i0 is actually absurd and
lets us define an empty partial element, also known as an “empty system” (Cohen et al.,
2018, Section 4.2):

empty : Partial i0 A
empty = λ { () }

Cubical Agda also has cubical subtypes as in Cohen et al. (2018); given A : Set � and
r : I and u : Partial r A, we can form the type A [ r �→ u ]. A term v of this type is a term
of type A that is definitionally equal to u when IsOne r is satisfied.7 Any term u : A can be
seen as a term of type A [ r �→ u ] that agrees with itself when IsOne r. This observation is
incarnated in the introduction principle inS:

inS : {r : I} (a : A) → A [ r �→ (λ _ → a) ]

We can also forget that a partial element agrees with u when IsOne r holds. This insight is
manifest in the subsumption principle outS:

outS : {r : I} {u : Partial r A} → A [ r �→ u ] → A

We have that both outS (inS v) = v and inS (outS v) = v hold if well typed. Moreover,
outS {r} {u} v will reduce to u 1=1 when r = i1.

With all of this cubical infrastructure, we can now describe the hcomp operation.

3.4 Homogeneous composition

The homogeneous composition operation generalizes binary composition of paths so that
we can compose multiple composable cubes:

6 Partial is somewhat analogous to constrained set P ⇒ A = {a ∈ A | P} where P = IsOne r, only that the proof
of P matters.

7 In the set-theoretic analogy, A [ r �→ u ] = {a ∈ A | if r then (a = u)} ⊆ A, given u ∈ {a ∈ A | r}. We have a ∈
A [ r �→ λ _→a ] always for a ∈ A.
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hcomp : {r : I} (u : I → Partial r A) (u0 : A [ r �→ u i0 ]) → A

When calling hcomp u u0, Cubical Agda makes sure that u0 agrees with u i0 on r; this
is specified in the type of u0. The idea is that u0 is the base and u specifies the sides of
an open box where the side opposite of u0 is missing. The hcomp operation then gives us
the missing side opposite of u0, which we refer to as the lid of the open box. For example,
binary composition of paths can be written as:

_•_ : {x y z : A} → x ≡ y → y ≡ z → x ≡ z
_•_ {x = x} p q i = hcomp (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (inS (p i))

Pictorially, we are given p : x ≡ y and q : y ≡ z, and the composite of the two paths is
obtained by computing the dashed lid at the top of the following square:

x z

x y

x q j

inS (p i)

j

i

As we are constructing a path from x to z along i, we have i : I in context and put inS (p
i) as bottom line. The direction j is abstracted in the first argument to hcomp and we use
pattern matching to specify the sides.

We can also define homogeneous filling of open boxes as:

hfill : {r : I} (u : I → Partial r A) (u0 : A [ r �→ u i0 ]) → I → A
hfill {r = r} u u0 i =
hcomp (λ j → λ { (r = i1) → u (i ∧ j) 1=1 ; (i = i0) → outS u0 })

(inS (outS u0))

When i is i0 this is just outS u0 and when i is i1 it is hcomp (λ j → λ { (r = i1) → u j
1=1 }) u0 because the absurd face (i0 = i1) gets filtered out. By the extensionality of partial
elements, this gives a line along i between outS u0 and hcomp u u0 which geometrically
corresponds to the filling of an open box as it connects the base with the lid computed using
hcomp. The elimination followed by introduction in inS (outS u0) might look redundant,
but it is necessary because the sides of this composition are defined on r ∨ ~i = i1, while
u0 belongs to a subtype specified on r. In the special case when q is refl, the filler of the
above square gives us a direct cubical proof that composing p with refl is p:

compPathRefl : {x y : A} (p : x ≡ y) → p • refl ≡ p
compPathRefl {x = x} {y = y} p j i =
hfill (λ _ → λ { (i = i0) → x ; (i = i1) → y }) (inS (p i)) (~ j)

This way, we can do even more equality reasoning by directly working with higher-
dimensional cubes.

By combining hcomp and transp, we can define the heterogeneous composition
operation of Cohen et al. (2018):

comp : (A : I → Set �) {r : I} (u : (i : I) → Partial r (A i))
(u0 : A i0 [ r �→ u i0 ]) → A i1
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comp A {r = r} u u0 =
hcomp (λ i → λ { (r = i1) → transp (λ j → A (i ∨ j)) i (u _ 1=1) })

(inS (transport (λ i → A i) (outS u0)))

With the comp operation, we can then finally give the definition of transp for path types:

transportPath : (A : I → Set) (x y : (i : I) → A i) → x i0 ≡ y i0 → x i1 ≡ y i1
transportPath A x y p =
λ i → comp A (λ j → λ { (i = i0) → x j ; (i = i1) → y j}) (inS (p i))

The computation rules for hcomp are also defined by cases on the type formers of Agda
, just like for transp. These are all quite direct to define and we refer the interested reader
to Huber (2017) for details. We will note, however, that for HITs and inductive families
hcomp (λ i → λ { (r = i1) → u}) u0 only reduces to u[i1/i] when r = i1 and is to be con-
sidered a canonical element otherwise. Therefore, functions defined by pattern matching
on a HIT also have to make progress when provided an element built with hcomp. We
will often refer to such an element as hcomp r u u0 for ease of notation. The next section
describes how this can be achieved, in the context of a core type theory for Cubical Agda
.

4 Pattern matching with HITs and inductive families

Our main technical contribution is an elaboration algorithm for (co)pattern-matching defi-
nitions in the presence of HITs and path applications. Following Cockx & Abel (2018), we
formulate our algorithm as a translation from (co)pattern-matching clauses to case trees.
The main challenges are generating the computational behavior on hcomp elements of
HITs, transpX elements of inductive families, and making sure clauses for path construc-
tors agree with what the function does at the endpoints of the path. In this section, we will
consider the equality type as our only inductive family to simplify the presentation of the
algorithm, while still being able to illustrate the relevant issues.

4.1 Elaboration by example

Here, we illustrate by example how we can handle the cases for hcomp and transpX.
Consider the function c2t from Section 2.5.1, it is defined by four clauses, which pattern-

match on a pair of elements of the circle. Recalling that hcomp r u u0 is also a canonical
element of the circle, we can see that we additionally have to cover the following cases:

c2t (hcomp r u u0 , y) = ?0
c2t (base , hcomp r u u0) = ?1
c2t (loop i , hcomp r u u0) = ?2

We can cover the first by setting:

?0 := hcomp (λ{j (r = i1) → c2t (u j 1=1, y)}) (c2t (u0, y))

which not only produces an element of the right type but also satisfies ?0 = c2t (u i 1=1, y)
when r = i1, which is required to preserve the equality hcomp i1 u u0 = u i 1=1. The case
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?1 can be solved analogously, while ?2, since it matches on loop, has additional constraints:
?2 should be equal to c2t (base, hcomp r u u0) whenever i = i0 or i = i1. We can satisfy all
of these constraints at once by including them in the composition, that is, setting:

?2 := hcomp (λ j → λ

⎧⎨
⎩

(r = i1) → c2t (loop i, u j 1=1)
(i = i0) → c2t (base, hcomp r u u0)
(i = i1) → c2t (base, hcomp r u u0)

⎫⎬
⎭) (c2t (loop i, u0))

where all the components of the partial element match up because they are all different
specializations of c2t (loop i, hcomp r u u0) under the different boundary conditions. In
the general case, the return type of the function can depend on the HIT argument, so a
heterogeneous composition will be necessary.

To illustrate how to handle transpX elements, let us look at an artificially constrained
proof of symmetry:

sym0 : (x : N) → Eq x 0 → Eq 0 x
sym0 .0 reflEq = reflEq

Ideally, we would only have to handle the following extra clause involving transpX:

sym0 x (transpX p r t) = ?0

However, we find ourselves stuck because t has type Eq x (p i0) so we cannot recurse with
sym0 x t, as that is not well typed. To get around this, we can match with reflEq against t,
which gives us this clause:

sym0 x (transpX p r reflEq) = ?0

Now we know from the typing that p is a path connecting x to 0, so we can use it to solve
our goal with a transport:

?0 := transp (λi → Eq 0 (p (~ i))) r (sym0 0 reflEq)

It is not by chance that we were able to rely on the value of sym0 at reflEq to solve this
goal, but rather an instance of the specialization by unification technique which is used to
translate, under certain conditions, definitions by clauses into functions defined solely by
eliminators (Cockx & Devriese, 2018). We refer to the algorithm in Section 4.3.3 for the
general case, including how to handle remaining patterns transpX p r (hcomp s w w0) and
transpX p r (transpX q s t1).

4.2 Syntax of the core type theory

We recall some definitions from Cockx & Abel (2018) extended to allow for the new
cubical primitives.

Expressions (Figure 1) are given in spine-normal form, so that the head symbol of
an application is easily accessible. Rather than adding the cubical types and operations
described in Section 3 as new expression formers, we subsume them under f ē and c ēc.
This happens also in the implementation of Agda, thanks to the preexisting support for
built-ins and primitives.

We include a universe level ω for types like I which do not support transp or hcomp.
Eliminations e include, beyond function application to u and projections .π , path
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x, i variables
� ::= n | ω universe levels
A, B, u, v ::= w weak head normal form

| f ē defined function or primitive applied to eliminations
| x ē variable applied to eliminations
| c ēc constructor applied to eliminations

W , w ::= (x : A) → B dependent function type
| Set� universe �

| D ū datatype fully applied to parameters
| R ū record type fully applied to parameters
| λx. u lambda abstraction

e ::= ec elimination for constructors
| .π projection

ec ::= u application
| @u0,u1 v path application

Fig. 1. Syntax of terms.

applications @u0,u1 v. Path applications to interval element v are annotated by the
endpoints u0 and u1 used for reduction, in case v becomes i0 or i1.

In contrast to ordinary applications, path applications of stuck terms can reduce; for
instance, x @u0,u1 i0 reduces to u0. Thus, variable eliminations x ē are not necessarily
in weak head normal form. Thanks to HITs, this is not even the case for constructor
applications; c ē might also reduce!

Binary application u e is defined as a partial function on the syntax, by β reduction
(λx.u) v = u[v/x] in case of abstractions, or by accumulating eliminations (x ē) e = x (ē, e),
(f ē) e = f (ē, e), (c ē) ec = c (ē, ec), and otherwise it is undefined.

Patterns are augmented with path application copatterns, also in the spine for construc-
tors:

p ::= x variable pattern
| c q̄c fully applied constructor pattern
| �c� q̄c forced constructor pattern
| �u� forced argument
| ∅ absurd pattern

q ::= qc copattern for constructors
| .π projection copattern

qc ::= p application copattern
| @u0,u1 i path application copattern

Note that we retain the boundary annotations of path applications even in patterns, since
we convert copatterns to eliminations, denoted as �q�, during type and coverage checking
for case trees.

We write PV(q̄) for the set of variables appearing as variable patterns x or as i in a path
application copattern. We will also often drop the subscript from ec and qc.
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s ::= � status: unchecked
| ⊕ status: checked

decls ::= data D � : Setn where con datatype declaration
| record self : R � : Setn where field record declaration
| definition f : A where clss function declaration

con ::= c � [ī | b] constructor declaration
b ::= ε | (u0, u1) b boundary terms

field ::= π : A field declaration

cls� ::= q̄ ↪→ rhs unchecked clause
cls⊕ ::= � � q̄ ↪→ u : B checked clause

rhs ::= u clause body: expression
| impossible empty body for absurd pattern

� ::= decl⊕ signature

Fig. 2. Declarations.

The theory is parameterized by a list of declarations � whose grammar is shown
in Figure 2. Declaration forms are due to Cockx & Abel (2018) except for datatype
constructors c � [ī | b]. These take a telescope of arguments �, that is, a list of variable
typings (x : A), but now also a boundary [ī | b], which specifies the dimensions ī and
endpoints b of path constructors. For example, posneg from Section 2.4.1 would be

specified by posneg ε [i | (pos 0, neg 0)]. We will write �[ī | b] → A for the iterated
function and path type defined by the following equations:

[] → A = A

[i ī | (u0, u1) b] → A = PathP (λi. [ī | b] → A) (λī. u0) (λī. u1)

(x : B)�[ī | b] → A = (x : B) → �[ī | b] → A

Further, we write �̂[ī | b] for the appropriate sequence of function and path applications.
A constructor c �′ [ī | b] for a datatype D � will then have type ��′[ī | b] → D �̂.

The core definition of Cockx & Abel (2018) is the elaboration judgment for function
definitions �; � � P | f q̄ := Q : C��′ which performs type and coverage checking for
the user-supplied clauses of f given to the judgment as P. It further computes the cor-
responding case tree Q and checked clauses cls⊕ in �′. Case trees Q are previously
specified by a typing judgment �; � � f q̄ := Q : C��′ which follows the same struc-
ture but takes the case tree as input. Whenever the elaboration judgment succeeds, the
typing judgment will also hold. In particular, given a signature �, a function declaration

definition f : C where q̄′ ↪→ rhs is elaborated by a call to the elaboration judgment where
� = ε, q̄ = ε and P = {q̄′

i ↪→ rhsi | i = 1 . . . k}. In the following, we only present the rules
for the case tree typing judgment and refer to the Supplemental Material for the elaboration
judgment.
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4.3 Case trees

Figures 3 and 4 describe the case tree typing judgment �; � � f q̄ := Q : C | ���′ . In
our version, the judgment takes an extra input � which is a possibly empty list of boundary
assignments α, which in turn are lists of assignments of interval variables to either i0 or
i1. We denote with [α] the substitution implied by the equalities in α itself. The list � is
used to keep track of which faces of the current definition have accumulated some bound-
ary constraints, due to the rules to introduce a path (CTINTROPATH), a partial element
(CTSPLITPARTIAL), or to pattern-match on an higher inductive type (CTSPLITCONHIT).

In the following, we comment on the individual rules of Figure 3:

CTDONE A leaf of a case tree consists of a term v of the expected type C. Moreover,
v has to fulfill the boundary constraints on the faces specified by �: for every αi, we
require that f q̄ and v agree when substituted with [αi], that is, when restricted to the
face in question. Note that we impose the boundary constraints in the signature �

where we have not added the clause f q̄ ↪→ v yet, so they are nontrivial to satisfy.
We use �α to denote the context obtained by removing the variables in α from �

and substituting their occurrences with the specified values.
CTINTROPATH If the expected type C is a path type PathP B u0 u1, then we can
extend the left-hand side to f q̄ @u0,u1 i. We also extend the list of boundary assign-
ments to include the two faces (i = i0) and (i = i1), which will in CTDONE ensure
that Q produces an element that connects u0 and u1. To see this, note that u0 is judg-
mentally equal to expression f q̄ @u0,u1 i0 and u1 to f q̄ @u0,u1 i1 because of equality
for path applications.
CTSPLITPARTIAL If the expected type is equal to PartialP r A,8 then we can pro-
ceed by splitting on the faces α1, . . . , αn as long as they together cover all the ways in
which we can have r = i1. This is ensured by the premise r = ∨

i

∧
αi, where

∧
α

is defined by mapping (i = i1) to i and (i = i0) to ~ i, and combining the resulting ele-
ments with ∧. For each face, the left-hand side is first refined to f q̄[αi] so that the
variables in the copatterns q̄ match their assignment and then extended by �1=1�
which is the right elimination for PartialP r A as we have r = i1 in �αi . Additionally,
since the faces αi can have overlaps, we need to make sure that the different case
trees Qi agree on the intersections, and this is accomplished by extending � with the
assignments of the previous cases. Finally, when substituting into a list of assign-
ments, as in �[α] , any trivial equalities get removed and any contradictory ones
cause the whole assignment in which they appear to be removed.
CTSPLITCONHIT If the left-hand side f q̄ contains a variable x of a datatype D v̄,
then we can pattern-match on x, building a casex{. . .} node that covers all the alterna-
tives. Note that here, as well as CTSPLITCON, the datatype is not an indexed family,
so we do not require a clause for transpX. In this rule, we deal with the case in which
D v̄ is an HIT, as at least one of the ci has a non-empty boundary. For each of the
constructors ci, we check the case tree Qi. To do so, we (1) refine f q̄ by replacing
x with ci fully applied to variable and path application copatterns according to its
type and (2) expand the list of assignments with both (j = i0) and (j = i1) for each

8 PartialP is a dependent version of Partial where A is a partial element as well, that is, A : Partial r Setn.

https://doi.org/10.1017/S0956796821000034 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000034


32 A. Vezzosi et al

�; � � f q̄ := Q : C | ���′ Presupposes: �; � � f �q̄� : C and dom(�) = PV(q̄) and
� = α1; . . . ; αn where α ::= ε | (i = i0) α | (i = i1) α such that �; � � i : I.
Checks case tree Q and outputs an extension �′ of � by the clauses represented by
“f q̄ ↪→ Q”.

�; � � v : C � = α1; . . . ; αn

(�; �αi � f q̄[αi] = v[αi] : C[αi])i=1...n

�; � � f q̄ := v : C | ���, (clause � � f q̄ ↪→ v : C)
CTDONE

�; � � C = (x : A) → B : Set� �; �(x : A) � f q̄ x := Q : B | ���′

�; � � f q̄ := λx. Q : C | ���′ CTINTRO

�; � � C = PathP B u0 u1 : Setn �′ = (i = 0); (i = 1); �
�; �(i : I) � f q̄ @u0,u1 i := Q : B i | �′��′

�; � � f q̄ := λi. Q : C | ���′ CTINTROPATH

�0; � � C = PartialP r A : Setω �0; � � r = ∨
i

∧
αi : I(

�′
i = (α1; . . . ; αi−1; �)[αi]

�i−1; �αi � (f q̄[αi] �1=1�) := Qi : (A 1=1) | �′
i��i

)
i=1...n

�0; � � f q̄ := split{α1 �→ Q1; . . . ; αn �→ Qn} : C | ���n

CTSPLITPARTIAL

�0; � � C = R v̄ : Setn record self : R � : Setn where πi : Ai ∈ �0

σ = [v̄ / �, f �q̄� / self ] (�i−1; � � f q̄ .πi := Qi : Aiσ | ���i)i=1...n

�0; � � f q̄ := record{π1 �→ Q1; . . . ; πn �→ Qn} : C | ���n

CTCOSPLIT

�0; �1 � A = D v̄ : Setn data D � : Setn where ci �i [] ∈ �0

(�′
i = �i[v̄ / �])i=1...n (ρi = 1�1 � [ci �̂

′
i / x] ρ ′

i = ρi � 1�2 )i=1...n

(�i−1; �1�
′
i(�2ρi) � f q̄ρ ′

i := Qi : Cρ ′
i | ���i)i=1...n

�0; �1(x : A)�2 � f q̄ := casex{c1 �̂′
1 �→ Q1; . . . ; cn �̂′

n �→ Qn} : C | ���n

CTSPLITCON

�0; �1 � A = D v̄ : Setn � = �1(x : A)�2

data D � : Setn where ci �i [j̄i | bi] ∈ �0 ∃k. [j̄k | bk] �= []
⎛
⎜⎜⎝

�′
i = �i(j̄i : I)[v̄ / �] q̄i = �̂i[j̄i | bi][v̄ / �]

ρi = 1�1 � [ci q̄i / x] ρ ′
i = ρi � 1�2

�i = BOUNDARY(j̄i); �
�i−1; �1�

′
i(�2ρi) � f q̄ρ ′

i := Qi : Cρ ′
i | �i��i

⎞
⎟⎟⎠

i=1...n

�n; �1(x : D v̄)�2 � f q̄ := casex{hcomp r u u0 �→ Qhc} : C | ���n+1

�0; � � f q̄ := casex

{
c1 q̄1 �→ Q1; . . . ; cn q̄n �→ Qn

hcomp r u u0 �→ Qhc

}
: C | ���n+1

CTSPLITCONHIT

Fig. 3. Typing rules for case trees (excluding Eq).
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�; �1 � A = EqB u v : Set� �; �1 �r
p u =? v : B ⇒ YES(�′

1, ρ, τ , _)

ρ ′ = (ρ � [refl / x]) � 1�2 τ ′ = τ � 1�2

�; �′
1(�2(ρ � [refl / x])) � f q̄ρ ′ := Qrefl : Cρ ′��1

�1; �1(x : EqB u v)�2 � f q̄ := casex{hcomp r t t0 �→ Qhc} : C��2

�tX = (b : B)(r : I)(p : Pathr B b v)(t0 : EqB u b)
ρtX = 1�1 � [transpX p r t0 / x] ρ ′

tX = ρtX � 1�2

�2; �1�tX(�2ρtX) � f q̄ρ ′
tX := QtX : Cρ ′

tX | (r = i1); ���′

�; �1(x : A)�2 � f q̄ := casex

⎧⎨
⎩

refl �→τ ′
Qrefl

hcomp r t t0 �→ Qhc

transpXb p r t0 �→ QtX

⎫⎬
⎭ : C��′

CTSPLITEQ

�; �1 � A = EqB u v : Set� �; �1 �r
p u =? v : B ⇒ NO

�; �1(x : A)�2 � f q̄ := casex{} : C��
CTSPLITABSURDEQ

Fig. 4. Typing rules for case trees involving Eq.

�; � � f q̄ := casex{hcomp r u u0 �→ Q} : C | ���′ Presupposes: (x : A) ∈ � where A
is a type supporting hcomp, and the presuppositions made by the typing of case trees
judgment (Figure 3).
Checks case tree Q can be used for the hcomp case of a split on x.

�hc = (r : I)(u : I→ Partial r A)(u0 : A [ r �→ u i0 ])
ρhc = 1�1 � [hcomp r u u0 / x] ρ ′

hc = ρhc � 1�2

�; �1�hc(�2ρhc) � f q̄ρ ′
hc := Q : Cρ ′

hc | (r = i1); ���′

�; �1(x : A)�2 � f q̄ := casex{hcomp r u u0 �→ Q} : C | ���′

Fig. 5. Typing a match against hcomp.

j in j̄i, which is what BOUNDARY(j̄i) denotes. Moreover, we need to consider the
case for hcomp r u u0 (see Figure 5): we check Qhc by (1) replacing x by the pattern
hcomp r u u0 in the left-hand side and (2) extending � with (r = i1) since that is the
face where hcomp r u u0 computes to u i1 1=1.

We discuss rule CTSPLITEQ in the next section, while the remaining rules do not directly
involve any of the new features of Cubical Agda , so we ask the reader to refer back to
the corresponding judgment in Cockx & Abel (2018).

4.3.1 Unification: Splitting on the inductive equality type

The rule CTSPLITEQ allows splitting on EqB u v only when u and v can be unified by
some substitution ρ, so that refl will be typeable at EqBρ uρ vρ. Cockx & Devriese (2018)
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define a proof-relevant notion of unification, where most general unifiers are equivalences
of the form �(x : IdB u v) � �′. Moreover, they also define a notion of strong unifier which
requires additional definitional equalities to be satisfied by the equivalence, and these guar-
antee that reductions are preserved when a case tree is translated to eliminators. Cockx &
Abel (2018) adapt the notion of strong unifier to their specific setting, but they only pre-
serve the substitutions between the two contexts, as the proofs are guaranteed to specialize
to reflexivity when the element of EqB u v is refl, and they have no other canonical ele-
ments of that type. In our context, the arguments r and p of transpX p r t, when paired
together, correspond to the canonical elements of Swan’s Id type (Cohen et al., 2018),
which supports the same interface of the identity type used in Cockx & Devriese (2018)
to define their unifiers, as shown in Section 9.1 of Cohen et al. (2018). Accordingly, we
define Pathr A a0 a1 to be the type of paths a0 ≡A a1 that are refl when r = i1, so that
we can use a telescope like (r : I)(p : Pathr A a0 a1) to represent unification problems, and
the inputs to transpX. The notion of Pathr A a0 a1 has an extensional flavor because an
assumption (p : Pathi1 A a0 a1) implies the definitional equality of a0 and a1. For this rea-
son, we only introduce it as a bookkeeping notation in the typing context of case trees and
merely regard it as an aid to express the meta-theory developed here. To keep track of paths
between substitutions, we define a substitution path between substitutions � � σ0, σ1 : �
to be a substitution �(i : I) � η : � such that � � η[i0/ i] = σ0 : � and � � η[i1/ i] = σ1 : �.
We also say that a substitution path �(i : I) � η : � is constant if it is equal to 1� weakened
by (i : I). We now have everything in place to give our definitions of strong unifier and
disunifier.

Definition 1 (Strong unifier). Let � be a well-formed context and u and v be terms
such that � � u, v : A. A strong unifier (�′, σ , τ , η) of u and v consists of a context �′

and substitutions �′ � σ : �(r : I)(p : Pathr A u v) and �(r : I)(p : Pathr A u v) � τ : �′ and a
substitution path η between σ ; τ and 1�(r:I)(p:Pathr A u v) such that:

1. �′ � rσ = i1 : I and �′ � pσ = refl : Pathi1 Aσ uσ vσ (these imply the definitional
equality �′ � uσ = vσ : Aσ ).

2. �′ � τ ; σ = 1�′ : �′

3. For any �0 � σ0 : �(r : I)(p : Pathr A u v) such that �0 � rσ0 = i1 : I and �0 � pσ0 =
refl : Pathi1 Aσ0 uσ0 vσ0, we have that �0 � σ ; τ ; σ0 = σ0 : �(r : I)(p : Pathr A u v)
and that η; (σ0 � 1i:I) is a constant substitution path.

The last condition about η; (σ0 � 1i:I) being a constant substitution path makes sure that
transporting along η will be the identity whenever r an p are solved by i1 and refl. It
corresponds to the analogous condition about isLinv in Definition 53 of Cockx & Devriese
(2018). Note that while η is not used in the CTSPLITEQ typing rule, it will be necessary in
Section 4.3.3.

Definition 2 (Disunifier). Let � be a well-formed context and � � u, v : A. A disunifier of
u and v is a function � � f : (u ≡A v) → ⊥ where ⊥ is the empty type.
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Finally, we can assume the existence of a proof relevant unification algorithm which we
specify through the following judgments:

• A positive success �; � �r
p u =? v : B ⇒ YES(�′, ρ, τ , η) ensures that the tuple

(�′, ρ � [i1 / r, refl / p], τ , η) is a strong unifier.
• A negative success �; � �r

p u =? v : B ⇒ NO ensures that there exist a disunifier of
u and v.

Note that ρ is a pattern substition, that is, it contains only variables and forced arguments,
so that it can be applied to patterns. In general, the algorithm might also fail to provide a
definitive answer, in which case no split on EqB u v is allowed.

Remark 3. Note that the unification rules from Cockx & Devriese (2018) that are specific
to datatypes will not apply to datatypes with path constructors, as properties like injectivity
and distinctness of constructors cannot be guaranteed to hold in that case. In principle,
we could ask the user to provide suitable proofs of these properties, but there is no such
interface at the moment.

4.3.2 Inferring right-hand side of a hcomp r u u0 match

In the examples given in Section 2, we have never given a clause for the hcomp con-
structor when pattern matching on an element of a higher inductive type. That is because
Cubical Agda generates a suitable clause for us during elaboration. How to deal with
the hcomp case was already explained in Cohen et al. (2018), but only for the respec-
tive induction principle, while in our case we have to deal with user clauses that include
multiple arguments and nested pattern matching.

Fortunately in the context of the rule CTSPLITCONHIT, we have the right informa-
tion available to construct a term that would be suitable for Qhc. This is accomplished in
Figure 6 by the only rule of the judgment �; �(x : D v̄)� � f q̄ : C | � ⇒x HC-RHS(rhs).
The term rhs is supposed to be typable as:

��hc�[hcomp u u0 / x] � rhs : C[hcomp u u0 / x]

while also satisfying the constraints implied by r = i1; �. The construction of rhs is fairly
involved, so we will build up to it with simpler cases.

First, let us assume both � and � are empty and that C = T where T does not depend on
x, which means we want ��hc � rhs : T . We already have �(x : D v) � f q̄ : T , which we can
use with x replaced by elements of type D v obtained by u and u0 and build a composition
in T . Writing g(d) for f q̄[d / x], we define rhs as:

��hc � rhs := hcomp (λ{i (r = i1) → g(u i 1=1)}) (inS(g(outS u0))) : T

Note that ��hc, r = i1 � rhs = f q̄[u i1 1=1 / x] as expected, while defining rhs as just
g(outS u0)) would not have satisfied this equality.

Slightly more complex is the case where T does depend on x, so that g(u i 1=1)
has type T[u i 1=1 / x] and g(outS u0) has type T[outS u0 / x], while rhs will have type
T[hcomp u u0/x]. What we need then is to use heterogeneous composition, comp, along
with a suitable family A : I→ Set� which matches the three types above in the respective
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Fig. 6. Computing the right-hand side of a hcomp match.

cases. We have already seen that hfill u u0 is a filler for the open box specified by u and u0

and with lid hcomp u u0, so taking A = λi. T[hfill u u0 i / x] will do the job:

��hc � rhs := comp A (λ{i (r = i1) → g(u i 1=1)}) (inS(g(outS u0))) : T[hcomp u u0 / x]

this definition also matches the behavior of the eliminator for spheres in Section 9.2 of
Cohen et al. (2018).

Let us now consider that we have a single y of type Y : Set� in �:

��hc(y : Y [hcomp u u0 / x]) � rhs : T[hcomp u u0 / x]

This case could be seen as a special case of the previous one, by replacing T with
(y : Y ) → T and having λy.g(d) in place of g(d). However, for the sake of con-
sistency with other cases, we write out explicitly how such a composition can be
obtained. Let g(d, v) = f q̄[d / x, v / y] and yi = transp (λj. Y [hfill u u0 (~ j ∨ i) / x]) i y and
A = λi. T[hfill u u0 i / x, yi / y], then

rhs = comp A (λ{i (r = i1) → g(u i 1=1, yi)}) (inS(g(outS u0), yi0)) : T[hcomp u u0 / x].

Compare this composition with the definition of transportPi in Section 3.2.1.
Alternatively, � could be (k : I), with � = (k = i0); (k = i1), as might happen when q̄

contains a path application. Then rhs should have typing

��hc(k : I) � rhs : T[hcomp u u0 / x]

and be equal to f q̄[hcomp u u0 / x, i0 / k] whenever k = i0, and likewise for i1. As in the
implementation of transportPath, we can address these constraints by adding to the sides
of the composition. Let g(d, s) = f q̄[d / x, s / k], and A be as in the empty � case, then we
define rhs as:

sys = λi.

⎧⎨
⎩

(r = i1) → g(u i 1=1, k)
(k = i0) → g(hcomp u u0, i0)
(k = i1) → g(hcomp u u0, i1)

⎫⎬
⎭

rhs = comp A sys (inS(g(outS u0, k))) : T[hcomp u u0 / x]
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Note that it does not matter from which part of the context k comes from for the definition
above to be well typed, so the same strategy applies also when � refers to variables in �.

Finally, when we let � and � contain multiple variables and equations, we end up with
the definition given in Figure 6. There we use a version of transp generalized to telescopes,
TRANSP-TEL , which covers both the cases like (k : I) where nothing is to be done, and

(y : Y ) where transp for Y is used. It can also fail if the type does not support transp but it
is not closed, in which case elaboration fails.

During elaboration, we can then run the algorithm expressed by this judgment and
generate internally a clause for hcomp r u u0.

4.3.3 Inferring case tree of a transpX p r t0 match

What we discussed in the previous section about a hcomp match also holds if we are
splitting on an inductive family like EqB u v. Additionally, however, we have to handle the
possibility that we are matching against an element built with transpX p r t0. In this case,
we will produce a case tree that performs a further split on t0, so that we have to produce
right-hand sides that fit the following clauses for the function f:

f q̄[transpX p r refl/x] = rhsrefl

f q̄[transpX p r (transpX q s t1)/x] = rhstX

f q̄[transpX p r (hcomp s w w0)/x] = rhshc

the term rhshc can be computed using the HC-RHS judgment from the previous section,
we only need to specialize the copatterns q̄ to q̄[transpX p r x / x] and update the other
arguments accordingly. Specifically, using the definitions from rule CTSPLITEQ,

�; �1�tX�2ρtX � f q̄ρ ′
tX : Cρ ′

tX | (r = i1); � ⇒t0 HC-RHS(rhshc).

The other two terms, rhsrefl and rhstX, are obtained using the judgments in Figures 7 and 8.
The judgment �; �(x : EqA u v)� | (�′, ρ, τ , η) � f q̄ : C | � ⇒ TRXREFL(rhs) in

Figure 7 is where we make use of the η component of the strong unifier obtained from the
judgment �; � �r

p u =? v : A ⇒ YES(�′, ρ, τ , η). Let us focus on the case where � and �

are empty, then we want to construct a term rhs with typing

�(r : I)(p : Pathr u v) � rhs : C[transpX p r refl/x]

By the definition of strong unifier, we have that σ := ρ � [i1/r, refl/p] is an equivalence
between �(r : I)(p : Pathr u v) and �′, so we can use it to rewrite our goal to

�′ �?0 : C[transpX p r refl/x]σ

By simplifying substitutions and reducing transpX, the type of ?0 is equal to C[ρ � refl/x],
which is the type of f q̄[ρ � refl/x], so we can use that to conclude. Writing an explicit term
for the reasoning above, we get

rhs = comp (λi. C[transpX p r refl/x]η)

(λ{i (r = i1) → f q̄[ρ � refl/x]τ })
(inS(f q̄[ρ � refl/x]τ ))

https://doi.org/10.1017/S0956796821000034 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000034


38 A. Vezzosi et al

Fig. 7. Computing the right-hand side of a transpX p r refl match.

Finally, the judgment �; �(x : EqA u v)� � f q̄ : C | � ⇒ TRXTRX(rhs) in Figure 8 is
where we take care of the case f q̄[transpX p r (transpX q s t) / x] by making use of the
case f q̄[transpX (q •s,r p) (r ∧ s) t], which has one fewer transpX and so gets us closer to
the transpX _ _ refl base case. The expression (q •s,r p) is built with a transitivity operator
that makes use of the s and r argument to reduce to q when r = i1 and reduce to p when
s = i1, making eq0 and eq1 definitionally equal under either condition. Using connections
and transports, we can define both eq and eqs,r as specified and then we proceed to define
the required term rhs by nesting compositions inside an homogeneous composition. The
term obtained with c(i0, eq) would have the right type and satisfy the boundary conditions
from �, but it would not satisfy the ones imposed by (s = i1); (r = i1), the matching cases
of sys′ take care of that.

5 Glue types in Cubical Agda

Glue types are the key contribution of Cohen et al. (2018) for equipping the univalence
principle with computational content. Given that a type in cubical type theory stands for a
higher-dimensional cube, Glue types let us construct a cube where some faces have been
replaced by equivalent types. This is analogous to how hcomp lets us replace some faces
of a cube by composing it with other cubes; however for Glue types, we can compose
with equivalences instead of paths. This implies the univalence principle and it is what
lets us transport along paths built out of equivalences. Glue types were originally also used
to implement composition for the universe Cohen et al. (2018); however, Cubical Agda
uses a dedicate type former for this purpose, which avoids needlessly converting paths into
equivalences.

5.1 Glue types and univalence

As everything in Cubical Agda has to work up to higher dimensions, the Glue types take
a partial family of types A that are equivalent to the base type B. The idea is then that
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Fig. 8. Computing the right-hand side of a transpX p r (transpX q s t) match.

these types get glued onto B, so that the equivalence data gets packaged up into a new
datatype:

Glue : (B : Set �) {r : I} → Partial r (�[ A ∈ Set � ] (A � B)) → Set �

When r is i1 the type Glue {r} B Ae reduces to Ae 1=1 .fst.
Using Glue types, we can turn an equivalence of types into a path and hence define ua.

ua : {A B : Set �} → A � B → A ≡ B
ua {A = A} {B = B} e i = Glue B (λ { (i = i0) → (A , e)

; (i = i1) → (B , idEquiv B) })

The idea is that we glue A onto B when i is i0 using e and B onto itself when i is i1 using
the identity equivalence. The term ua e is a path from A to B as the Glue type reduces when
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the face conditions are satisfied, so when i is i0 this reduces to A and when i is i1 it reduces
to B. Pictorially, we can describe ua e as the dashed line in:

A B

B B

e ∼ ∼ idEquiv B

B

The transp operation for Glue types is the most complicated part of the internals of
Cubical Agda . The algorithm closely follows Huber (2017, Section 3.6), which is a vari-
ation of the original algorithm from Cohen et al. (2018, Section 6.2). We will focus on the
special case of transport (λ i → ua e i ) a for simplicity. This will transport a from A to B
by going through the three fully filled lines in the above picture.

Unfolding ua gives

transport (λ i → Glue B (λ { (i = i0) → (A , e) ; (i = i1) → (B , idEquiv B) }) a

By the boundary equations for Glue types, we get that a : A (as it is in the i = i0 face
of the Glue type). The algorithm then applies the function of e (i.e., e .fst : A → B) to
a giving an element in B. As B is constant along i we could now be done; however, for
the general algorithm, there is no reason for the base to be constant along i; it could for
example be another Glue type! We must hence transport along (λ i → B) to get an element
in the bottom-right B in the diagram. In order to go up to the top-right corner, we then use
the inverse of the identity equivalence.9 Since this is the identity function, we end up with:

transport (λ i → B) (e .fst a)

Using the same path as in the definition of transport for path types, we can prove that
this is equal to e .fst a up to a path:

uaβ : {A B : Set �} (e : A � B) (a : A) → transport (ua e) a ≡ e .fst a
uaβ {B = B} e a = λ i → transp (λ _ → B) i (e .fst a)

Transporting along the path that we get from applying ua to an equivalence is, thus,
the same as applying the equivalence. This makes it possible to use the univalence axiom
computationally in Cubical Agda : we can package up equivalences as paths, do equality
reasoning using these paths, and in the end transport along the paths to compute with the
equivalences. Furthermore, the combination of ua and uaβ is sufficient to prove that ua is
an equivalence which gives the full univalence theorem, that is, an equivalence between
paths and equivalences:10

univalence : ∀{�}{A B : Set �} → (A ≡ B) � (A � B)

5.2 General case of transp for Glue types and the ghcomp operation

While the special case of transp for Glue types above is quite simple, the general case is a
lot more complex. The reason is that the input might depend on many more variables than
just i. When considering

9 In general, this might not be the identity function, thus, this step might actually do something.
10 https : //github.com/agda/cubical/blob/master/Cubical/Foundations/Univalence.agda#L63.
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transport (λ i → Glue B (λ { (r = i1) → (A , e) }) a

the interval element r might be quite complex and its disjunctive normal form might con-
tain clauses that do not involve i. On these parts, the transp function should compute
like the transp function for A by the boundary rules for Glue types. This in turn means that
additional corrections have to be made compared to the ua case. In Cohen et al. (2018), the
part of r that does not mention i is written ∀i.r (as this operation corresponds to universal
quantification on the interval).11

One of the modifications we have to do in the general case of transp for Glue types
is that the simple transport in B has to be a comp with suitable corrections for the ∀i.r
faces. While this is easily achieved, it has some unfortunate consequences in the case of
transporting along ua. In this particular case, r is i ∨ ~ i so that (∀i.r) = i0 as there is no
part that does not mention i. This means that the comp correction will introduce an empty
system which implies that our simple proof of uaβ does not work anymore. In order to fix
this, we have to extend the proof of uaβ with a suitable hfill in order to compensate for the
additional empty system.

Luckily, there is a simple trick in Cubical Agda that lets us adapt the correction to elim-
inate the empty system. The problem with the above-sketched definition is that the comp
does not reduce when ∀i.r is i0; however, if we add a clause mapping to the base for this
case, the issue with the empty system goes away. This relies on a subtle difference between
the hcomp operation in Cubical Agda and the one in Coquand et al. (2018). In the latter,
the boundary constraints were elements of the face lattice F generated by formal genera-
tors (i = i0) and (i = i1) subject to the relation (i = i0) ∧ (i = i1) = ⊥. In Cubical Agda on
the other hand, the hcomp operation takes a family of partial elements that are specified by
some r : I. This means that we in Cubical Agda can add a face when (r = i0) which was
not possible in Coquand et al. (2018) as there is no corresponding operation for F.

The reason that F in Coquand et al. (2018) does not admit such an operation is that while
every ϕ : F is expressible as r = i1, the choice of r is not unique. In particular, for ϕ = 0F,
we can choose either i0 or i ∧ ¬i which would give different results when equated to i0.
Using r : I to specify boundaries in Cubical Agda avoids the need to make such a choice,
and in particular (r = i0) is represented by ¬r. It would be tempting to instead extend F

with a negation operation; however, that would allow us to represent new kinds of bound-
aries, like the open interval (0, 1] as ¬(i = i0), and it is not clear how they would impact
decidability of type checking. Modifying hcomp and transp to take a r : I is semantically
justified by the fact that it is not necessary for boundaries to be specified by a subobject of
the subobject classifier � in the presheaf topos of cubical sets in order to obtain a model
of univalent type theory.12

Inspired by Angiuli et al. (2017, p. 53), we call the homogeneous version of this oper-
ation generalized homogeneous composition, ghcomp. The heterogeneous version used
above can be implemented using ghcomp in the definition of comp. We can write the
ghcomp operation as:

11 Technically speaking, the ∀ operation in Cohen et al. (2018) is not an operation on the interval, but rather on
the face lattice F. However, it is direct to define an analogous operation on the interval and it is this one we
use here.

12 This generalization has been formally verified in Agda in https://github.com/mortberg/
gen-cart/.
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ghcomp : {r : I} (u : I → Partial r A) (u0 : A [ r �→ u i0 ]) → A
ghcomp {r = r} u u0 =
hcomp (λ j → λ { (r = i1) → u j 1=1 ; (r = i0) → outS u0 })

(inS (outS u0))

Using this in all of the places where the ∀ correction has to be made in the general
algorithm for transp for Glue, we obtain a better algorithm which does not produce any new
empty systems. This way the proof of uaβ can stay as simple as above and no additional
corrections has to be made. This is an improvement compared to the algorithm in Cohen
et al. (2018) (that is implemented in cubicaltt ) which produced a surprisingly large
number of empty systems even in simple cases.

6 Meta-theory of cubical type theory and Cubical Agda

The original formulation of cubical type theory as in Cohen et al. (2018) has a model in
Kan cubical sets with connections and reversals, that is, presheaves on a suitable cube
category where types have structure corresponding to the comp operation. This model has
been formally verified in both the NuPRL proof assistant by Bickford (2018) and using Agda
as the internal language of the presheaf topos of cubical sets by Orton & Pitts (2016) and
Licata et al. (2018). This hence provides semantic consistency proofs for the cubical type
theory that Cubical Agda is based on. Applying Tait’s computability method, a syntactic
consistency proof for this cubical type theory was given in Huber (2016) by defining an
operational semantics and proving that any term of type N computes to a numeral.

A crucial property for synthetic mathematics, as in Section 2.5, is the existence of inter-
esting models of the theory. Ideally, we would like to be able to interpret these results in
topological spaces or even any (Grothendieck) ∞-topos. Currently, these questions have
not been fully resolved for the various cubical type theories that have been considered.
In fact, Sattler (2018) has shown that the standard model of Cubical Agda is not equiv-
alent13 to topological spaces. However, if one drops the reversal operation (~_) from
Cubical Agda , any internal result about homotopy groups of spheres corresponds to
a result about the homotopy groups of spheres in spaces.14 Furthermore, there has been
recent progress on an “equivariant” cubical set model that is equivalent to spaces (Riehl,
2019). We are hence very optimistic that these issues will be resolved in the near future.
Furthermore, as soon as a satisfactory cubical type theory with a model in spaces has been
developed, we expect it to be straightforward to adapt Cubical Agda and its library to that
theory. Indeed, the main features that we rely on—computational univalence and HITs
with definitional computation rules for all constructors—should also be satisfied by that
cubical type theory.

The syntax and semantics of HITs in cubical type theory were studied in Coquand et al.
(2018). The canonicity proof has been shown to extend to the circle and propositional
truncation in Huber (2016, Section 5). One technical consequence of the way the system

13 By “equivalent,” we mean that the notion of fibration in the cubical set model gives rise to a model structure
that is Quillen equivalent to the classical Quillen model structure on spaces.

14 For further details and discussions about this result, see: https://groups.google.com/forum/#!
topic/homotopytypetheory/imPb56IqxOI.
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in Coquand et al. (2018) is designed is that there are closed terms of the circle in an
empty context that are not base, for example, hcomp (λ i → empty) base. These degenerate
elements were a serious problem in cubicaltt as they complicated both programming
and proving, affecting the efficiency of the system.

These elements arose from the way comp reduces for Glue types in Cohen et al. (2018),
but with the optimization discussed in Section 5.2 using ghcomp we can eliminate them.
This requires us to impose a “validity” constraint on partial elements—following Angiuli
et al. (2018, Definition 12)—which says that Partial r A is valid if it cannot become
empty from a dimension substitution (a concrete condition is that r is a classical tautol-
ogy). Validity combined with ghcomp eliminates all of the ways that a partial element can
become empty in the system. As Cubical Agda implement the ghcomp optimization we
expect it to be possible to prove a refinement of the canonicity theorem stating that the
point constructors are the only elements of HITs in the empty context.

While the comp operation is complicated, a recent result by Coquand et al. (2019) shows
that for the Cohen et al. (2018) cubical type theory any implementation of the comp oper-
ation yield the same result for natural numbers up to a path. As Cubical Agda is based on
this cubical type theory the result also applies, so even though the implementation of comp
differs from the way comp was defined in Cohen et al. (2018), the result for closed terms
of type natural numbers will be the same up to a path.

7 Conclusion

In this paper, we presented Cubical Agda , an extension of Agda with features from cubi-
cal type theory. This brings to a proof assistant both a fully computational univalence
principle and HITs. Moreover, induction on HITs and construction of paths are integrated
into Agda ’s very expressive pattern matching, providing support for more idiomatic defi-
nitions than direct use of eliminators. We expect that such a development environment will
lead to more widespread use and experimentation not only of cubical type theory but also
of HoTT/UF, in particular for programming applications.

7.1 Related work

This work is based on the work on cubical type theory of Cohen et al. (2018) and
Coquand et al. (2018) and the cubicaltt prototype implementation (Cohen et al., 2015).
However, that implementation did not have support for many of the features of a mod-
ern proof assistant (implicit arguments, type inference, powerful pattern matching, etc.),
so Cubical Agda can be seen as its successor. Additionally, the transport structure for
inductive families is based on the schema presented in Cavallo & Harper (2019).

The most closely related cubical proof assistant to Cubical Agda is redtt (The
RedPRL Development Team, 2018), which also supports computable univalence and
HITs. It is based on a variation of cubical type theory called cartesian cubical type theory.
This has models in cartesian cubical sets (Angiuli et al., 2019) and cartesian cubical com-
putational type theory (Angiuli et al., 2018; Cavallo & Harper, 2019). The redtt system
has been developed from scratch in order to be a proof assistant for cubical type theory and
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it has some features that are not in Cubical Agda yet, like pretype universes and extension
types inspired by Riehl & Shulman (2017).

The work of Tabareau et al. (2018, 2020) extends Coq with the ability to transport
programs and properties along equivalences using what the authors call univalent para-
metricity. While this achieves some consequences of constructive univalence, it does not
provide computational content to the full univalence axiom, in particular to neither function
nor propositional extensionality. There is also no support for HITs.

The computation rules for equality are also defined by cases on the type in Observational
Type Theory (OTT) (unpublished data; Altenkirch et al., 2007). This type theory also
proves function and propositional extensionality without sacrificing type checking and
constructivity; however, it satisfies UIP. Recently, the XTT type theory has been developed
(Sterling et al., 2019) to reconstruct OTT’s exact equality using cubical methods, satisfying
UIP rather than univalence. Languages like XTT and OTT can be used as an extensional
substrate for a two-level type theory (Voevodsky, 2013; Annenkov et al., 2017), which
would have both equality and path types.

Examples of ideas from HoTT/UF in computer science include Angiuli et al. (2016)
where the authors use univalence and HITs to model Darcs style patch theory. This work
envisioned what could be done if these notions were computing, but at the time it was
unknown how to make this happen. However, now that Cubical Agda supports this, it
would be interesting to redo the examples as the implementation would now compute.
Another example is HoTTSQL (Chu et al., 2017) which defines a formal SQL style language.
The use of HoTT/UF is restricted to reasoning about cardinal numbers and it is not clear
how much would be gained from doing this cubically.

Since the conference version (Vezzosi et al., 2019) of this article was published, some
interesting formalizations have been performed using Cubical Agda . Forsberg et al.
(2020) implemented three equivalent ordinal notations systems and transported programs
and proofs between them. Altenkirch & Scoccola (2020) considered a higher inductive ver-
sion of the integers which differs from the one in Section 2.4.1. Veltri & Vezzosi (2020)
formalize the π -calculus using a guarded version of Cubical Agda (Birkedal et al., 2019).
Various results from synthetic homotopy theory, extending Section 2.5, were developed
by Mörtberg & Pujet (2020). Finally, Angiuli et al. (2020) explored the consequences of
cubical type theory and Cubical Agda to traditional computer science applications like
program/proof transfer and representation independence.

7.2 Future work

Interesting further directions would be to study meta-theoretical properties of cubical type
theory, including a proof of decidability of type checking and a complete correctness proof
of the conversion checking algorithm with respect to a declarative specification of equality.
We believe this can be done by extending the canonicity proof of Huber (2016) using ideas
from Abel et al. (2017).

We would also like to extend Cubical Agda with more cubical features, like cubi-
cal extension types inspired by Riehl & Shulman (2017). An important open problem
in the area of constructive synthetic homotopy theory is to compute the Brunerie num-
ber (Brunerie, 2016) which so far has proved to be infeasible using cubicaltt and
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Cubical Agda . It would hence be interesting to study compilation and efficient closed
term evaluators of cubical languages in order to be able to do this kind of computations.
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